Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5138
標題: 多壁奈米碳管吸附飲用水中有機物之研究
A Study on the Adsorption of Dissolved Organic Matters from Drinking Water by Multiwalled Carbon Nanotubes
作者: 蘇峰生
Su, Feng-Sheng
關鍵字: Adsorption;吸附;Carbon nanotubes;Dissolved Organic Matter;Assimilable organic carbon;Regeneration;Thermal treatment;奈米碳管;溶解性有機碳;生物可利用有機碳;脫附再生;高溫熱處理
出版社: 環境工程學系所
引用: Allen, M. J. and Geldreich, E. E. (1977). Distribution Line Sediments and Bacterial Regrowth. Proceedings, American Water Works Association - Water Quality Technology Conference, American Water Works Association, Kansas City, MO, USA. Allen, M. J., Taylor, R. H. and Geldreich, E. E. (1980). "The Occurrence of Microorganism in Water Main Encrustation." J. AWWA 72(1): 614-625. Barrett, E. P., Joyner, L. G. and Halenda, P. P. (1951). "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms." Journal of the American Chemical Society 73: 373-880. Belin, T. and Epron, F. (2005). "Characterization Methods of Carbon Nanotubes: A Review." Materials Science and Engineering B 119: 105-118. Bjelopavlic, M., Newcombe, G. and Hayes, R. (1999). "Adsorption of NOM onto Activated Carbon : Effect of Surface Charge, Ionic Strength, and Pore Volume Distribution." Journal of Colloid Interface Science 210: 271-280. Boehm, H. P. (1994). "Some Aspects of The Surface Chemistry of Carbon Blacks and Other Carbons." Carbon 32: 759. Bourbigot, M. M., Dodin, A. and Lheritier, R. (1984). "Bacteria in Destribution System." Water Research 18: 585-591. Bull, R. J., Brinbaum, L. S., Cantor, K. P., Rose, J. B., Butterworth, B. E., Pegram, R. and Tuomisto, J. (1995). "Water chlorination: essential process and cancer hazard." Fund. Appl. Toxicol 28: 155-166. Chen, J. P. and Wu, S. (2004). "Acid/Base-Treated Activated Carbons: Characterization of Function Groups and Metal Adsorptive Properties." Langmuir 20: 2233-2242. Cheng, W., Dastgheib, S. S. and Karanfil, T. (2005). "Adsorption of Dissolved Natural Organic Matter by Modified Activated Carbons." Water Research 39: 2281-2290. Christman, R. F., Norwood, D. L., Seo, Y. and Frimmel, F. H. (1989). Oxidative Degradation of Humic Substances from Freshwater Environments. John Wiley & Sons, Chichester. Dastgheib, S. A., Karanfil, T. and Cheng, W. (2004). "Tailoring Activated Carbons for Enhanced Removal of Natural Organic Matter from Natural Waters." Carbon 42: 547-557. Davis, W. M., Erickson, C. L. and Johnston, C. T. (1999). "Quantitative Fourier Transform Infrared Spectroscopic Investigation of Humic Substance Functional Group composition." Chemospher 38: 2913-2928. Dukan, S., Levi, Y., Piriou, P., Guyon, F. and Villon, P. (1996). "Dynamic Modelling of Bacterial Growth in Drinking Water Networks." Water Research 30(9): 1991-2002. Earnhardt, K. B. (1980). Chlorine-Resistant Coliform--The Muncie, Indiana, Experience. Water Quality Technology Conference, American Water Works Association, Miami Beach, Fla, USA. Edwards, G. A. and Amirtharajah, A. (1985). "Removal Color Caused by Humic Acids." J. AWWA 77(3): 50-57. Fanning, P. E. and Vannice, M. A. (1993). "A Drifts Study of the Formation of Surface Groups on Carbon by Oxidation." Carbon 31(5): 721-730. Frimmel, F. H. (1998). "Characterization of Natural Organic Matter as Major Constituents in Aquatic Systems." Journal of Contaminant Hydrology 35: 201-216. Gjessing, E. T., Alberts, J. J., Bruchet, A., Egeberg, P. K., Lydersen, E., Mcgown, L. B., Mobed, J. J., Nster, U. M., Pempkowiak, J., Perdue, M., Ratnawerra, H., Rybacki, D., Takacs, M. and Abbt-Braun, G. (1998). "Multi-Method Characterisation of Natural Organic Matter Isolated from Water: Characterisation of Reverse Osmosis-Isolates from Water of Two Semi-identical Dystrophic Lakes Basins in Norway." Water Research 32(10): 3108-3124. Gregg, S. J. and Sing, K. S. (1967). Adsorption area and porosity. Academic press, London and New York. Gregory, V. K., Perry, S. A. L. and Ferguson, J. F. (1996). "Influence of NOM on Copper Corrosion." J. AWWA 88(5): 36-47. Grujicic, M. (2002). "An Atomic-scale Analysis of Catalytically-assisted Chemical Vapor Deposition of Carbon Nanotubes." Materials Science and Engineering B94: 247-259. Haye, K. F. and Leckie, J. O. (1987). "Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface." Journal of Colloid Interface Science 115: 564-572. Haye, K. F. and Leckie, J. O. (1988). "Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface." Journal of Colloid Interface Science 125: 717-726. Hem, L. J. and Efraimsen, H. (1999). "Isolation of Natural Organic Matter - The Influence on the Assimilable Organic Carbon." Environment International 25(2/3): 367-371. Hiura, H., Ebbesen, T. W., Tanigaki, K. and Takahashi, H. (1993). "Raman Studies of Carbon Nanotubes." Chem. Phys. Let. 202(6): 459-576. Ho, Y. S. and McKay, G. (1998). "Sorption Dye from Aqueous by Peat." Chemical Engeering Journal 70: 115-124. Hochstadter, S. (2000). "Seasonal Changes of C:P Ratios of Seston, Bacteria, Phytoplankton and Zooplankton in a Deep Mesotrophic Lake." Freshwater Biology 44(453-463). Hu, J. Y., Wang, Z. S., NG, W. J. and Ong, S. L. (1999). "The Effect of Water Treatment Processes on the Biological Stability of Potable Water." Water Research 33(11): 2587-2592. Iijima, S. (1991). "Helical microtubules of graphitic carbon." Nature 354: 56. Jacangelo, J. G., DeMarco, J., Owen, D. M. and Randtke, S. J. (1995). "Selected Processes for Removing NOM : An Overview." J. AWWA 87(1): 64-77. Kitis, M., Kilduff, J. E. and Karanfil, T. (2001). "Isolation of Dissolved Organic Matter (DOM) from Surface Waters Using Reverse Osmosis and its Impact on The Reactivity of DOM to Formation and Speciation of Disinfection By-Products." Water Research 35(9): 2225-2234. LeChevallier, M. W. (1990). "Coliform Regrowth in Drinking Water: a Review." J. Am. Water Works Assoc. 82: 74-86. LeChevallier, M. W., Babcock, T. M. and Lee, R. G. (1987). "Examination and characterization of distribution system biofilms." Appl. Environ. Microbiol. 53(12): 2714-2724. Lee, S. H., Connor, O. J. T. and Banerji, S. K. (1980). "Biologically Mediated Corrosion and its Effects on Water Quality in Distribution System." J. AWWA 72(1): 636-645. Li, L., Quinlivan, P. A. and Knappe, D. R. U. (2002). "Effects of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Organic Contaminants from Aqueous Solution." Carbon 40: 2085-2100. Li, Y. H., S., W., A., C., D., Z., X., Z., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D. and Wei, B. (2001). "Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes." Chem. Phys. Let. 350: 412-416. Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z. and Wu, D. (2003). "Adsorption of Fluoride from Water by Aligned Carbon Nanotubes." Materials Research Bulletin 38: 469-476. Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. and Wei, B. (2002). "Lead adsorption on carbon nanotubes." Chem. Phys. Let. 357: 263-266. Lin, T.-f. and Hoang, S.-w. (2000). "Inhalation Exposure to THMs form Drinking Water in South Taiwan." The Science the Total Environment 246: 41-49. Liu, W., Wu, H., Wang, Z., Ong, S. L., Hu, J. Y. and Ng, W. J. (2002). "Investigation of Assimilable Organic Carbon (AOC) and Bacterial Regrowth in Drinking Water Distribution System." Water Research 2002: 891-898. Long, R. Q. and Yang, R. Y. (2001). "Carbon nanotubes as superior sorbent for dioxin removal." J. Am. Chem. Soc. 123: 2058-2059. Lu, C., Chung, Y. L. and Chang, K. F. (2005). "Adsorption of Trihalomethanes from Water with Carbon Nanotubes." Water Research 39: 1183-1189. Lu, C. S. and Chiu, H. (2006). "Adsorption of Zinc(II) from Water with Purified Carbon Nanotubes." Chemical Engineering Science 61: 1138-1145. Merkulov, V. I. (2001). "Shaping Carbon Nanostructures by Controlling the Synthesis Process." Applied Physics Letter 79: 1178-1180. Moore, B. C., Cannon, F. S., Westrick, J. A., Metz, D. H., Shrive, C. A., DeMarco, J. and Hartman, D. J. (2001). "Changes in GAC Pore Structure During Full-scale Water Treatment ar Cincinnati: A Comparision Between Virgin and Thermally Reactivated GAC." Carbon 39: 789-807. Morrill, L. G., Mahilum, B. C. and H., M. S., Eds. (1982). Sorption Degradation and Persistence.Ann Arbor Sci. Publishers, Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B. and Jia, Z. (2003). "Adsorption of 1,2-Dichlorobenzene from Water to Carbon Nanotubes." Chem. Phys. Let. 376: 154-158. Polanska, M., Huysman, K. and van Keer, C. (2005). "Investigation of Assimilable Organic Carbon (AOC) in Flemish Drinking Water." Water Research 2005: 2259-2266. Reckhow, D. A., Xie, Y., McEnroe, R., Tobiason, J. E. and Switzenbaum, M. S. (1993). The Use of Chemical Surrogates for Assimilable Organic Carbon. Proceedings AWWA Annual Conference, San Autonio, Texas, USA. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund, P. C. and Smalley, R. E. (1998). "Large-scale purification of single- wall carbon nanotubes: process, product, and characterization." Appl. Phys. A 67: 29-37. Schnitzer, R. W. (1976). The Chemistry of Humic Substances. Environmental Biogeochemistry, Ann Arbor Science, MI. Sismanoglu, T. and Pura, S. (2001). "Adsorption of Aqueous Nitrophenols on Clino Ptilolite." Physicochemical and Engineering Aspects 180: 1-6. Smith, J. M., Van Ness, H. C. and Abbott, M. M. (1996). Introduction to Chemical Engineering Thermodynamics. McGrawHill, New York. Snoeyink, V. L. and Jenkins, D. (1985). Coordination Chemistry. Chap. 5 in Water Chemistry, MI. Sun, L., Perdue, E. M. and McCarthy, J. F. (1995). "Using Reverse Osmosis to Obtain Organic Matter from Surface and Ground Waters." Water Research 29(6): 1471-1477. Thomson, W. J. (2000). Introduction to Transport Phenomena. Prentice Hall PTR, New Jersey, USA. Thurman, E. M. (1985). Organic Geochemistry of Natural Water., The Netherlands. Vadstein, O. (2000). "Heterotrophic, Plankonic Bacteria and Cycling of Phosphorus. Phosphorus Requirements, Competitive Ability and Food Web Interactions." Advances in Microbial Ecology 16: 1115-167. van der Kooij, D. (1982). "Development and application of methods for assessing the biostability of drinking water and materials in contact with drinking water." KIWA Research and Consultancy. van der Kooij, D. (1990). Assimilable Organic Carbone (AOC) in Drinking Water. Drinking Water Microbiology. G. A. McFeters. New York, Springer-Verlag: 57-87. van der Kooij, D., Hijnen, W. A. M. and Kruithf, F. C. (1989). "The Effect if Ozonation, Biological Filteration and Distribution on the Concentration on Easily Assimilable Organic Carbon (AOC) in Drinking Water." Ozone Science and Engineering 11: 297-311. van der Kooij, D., Visser, A. and Hijnen, W. A. M. (1982). "Determining the Concentration of Easily Assimilable Organic Carbon in Drinking Water." J. AWWA 74(10): 540-545. van der Kooij, D., Vrouwenvelder, H. S. and Veenendaal, H. R. (1995). "Kinetic Aspects of Biofilm Formation on Surfaces Exposed to Drinking Water." Wat. Sci. Tech. 32(8): 61-65. 王維鵬, "以管柱實驗探討奈米碳管吸附水中腐植酸之研究", 國立中興大學 環境工程研究所碩士論文, 2005 朱振華, "自來水配水管線中水質生物穩定性之研究", 國立中興大學 環境工程研究所博士論文, 2005 邱煥宗, "奈米碳管去除水中二價鋅離子之研究", 國立中興大學 環境工程研究所碩士論文, 2005 葉宣顯、曾怡禎、賴文亮、施惠日 (1997). 配水管網中水質生物穩定性之研究. 第十四屆給水技術研討會論文集, 台北. 蔡正國, "複合奈米碳管吸附水溶重金屬污染物之應用研究", 國立雲林科技大學 環境與安全衛生工程系碩士論文, 2005 鍾孟佳, "奈米碳管吸附水中腐植酸之研究", 國立中興大學 環境工程研究所碩士論文, 2005
摘要: 
本研究利用經加熱處理之多壁奈米碳管(Multi-walled carbon nanotubes, MWCNTs)去除水中溶解性有機物(Dissolved organic matters, DOMs)及生物可利用有機碳(Assimilable organic carbon, AOC),由純化實驗結果顯示經高溫處理之MWCNTs比未處理及氧化處理之MWCNTs具較高之吸附量、比表面積、石墨碳結構與純度,並且經高溫處理MWCNTs因去除了附著於表面的官能基群,減少MWCNTs與有機物間的排斥力。由批次吸附實驗結果顯示奈米碳管吸附DOC及AOC之吸附量隨著溫度降低、水溶液pH值下降、離子強度上升而有增加的趨勢。以Langmuir等溫吸附模式求出奈米碳管其最大吸附量為DOC (26.138 mg/g)、AOC (0.548 mg/g),比商用顆粒狀活性碳(GAC)吸附量DOC (14.710 mg/g)、AOC (0.341 mg/g)高出近一倍。根據熱力學及動力學參數,求得MWCNTs吸附DOC與AOC以膜擴散為反應速率控制因子,且屬於放熱反應。由再生吸脫附實驗結果顯示,MWCNTs可反覆吸脫附數次,脫附十次後吸附量仍可達7.588 mg/g,再生效率保持於65.3 %以上,而GAC脫附十次後吸附量只有0.215 mg/g,再生效果比MWCNTs差6.5倍。總結研究成果,MWCNTs在吸附容量與脫附再生特性上均較商用活性碳有較佳之表現,目前MWCNTs售價仍高出活性碳多倍,但是作為吸附劑的應用潛力卻不容忽視。

Multi-walled carbon nanotubes (MWCNTs) were thermally treated and employed as adsorbents to study adsorption characteristics of dissolved organic matters (DOMs) and assimilable organic carbon (AOC) from drinking water. The adsorption capacity of DOC and AOC onto MWCNTs increased with the decrease of pH and temperature of the solution but increased with the increase of ionic strength of the solution in the range of 0 - 0.01 M. The maximum adsorbed amounts of DOC and AOC onto heated MWCNTs calculated by the Langmuir model at 25 oC were 26.138 mg/g and 0.548 mg/g respectively, which were much higher than that onto commercially available granular activated carbon (DOC:14.710 mg/g, AOC:0.341 mg/g). The activity energies for adsorption of DOC and AOC onto MWCNTs indicated the film diffusion is the rate-controlling mechanism in the reaction. According to thermodynamic analysis, the adsorption of DOC and AOC onto MWCNTs is an exothermic and spontaneous process. A comparative study on the adsorption of DOMs among heated MWCNTs and GAC was also conducted. Heated MWCNTs possess superior capacities for adsorption of DOMs and AOC than GAC. The better capacity, much regeneratation times and durability as compared to GAC suggest that heated MWCNTs have highly potential applications for the removal of DOMs and AOC from aqueous solution.
URI: http://hdl.handle.net/11455/5138
其他識別: U0005-1107200615530300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.