Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5146
標題: 以微波加熱四氧化三鐵固定床處理甲苯之研究
Study on the Microwave Heating Fe3O4 Fixed-Bed Process for Toluene
作者: 馮偉哲
Feng, Wei-Che
關鍵字: microwave heat;微波加熱;magnetite;toluene;space velocity;volatile organic compounds;四氧化三鐵;甲苯;空間流速;揮發性有機物
出版社: 環境工程學系所
引用: 中華民國行政院勞工安全委員會物質安全資料表 (2001)。 中華民國行政院環保署固定污染源空氣污染物排放標準,環署空字第09910038996號令修正發布 (2002)。 中華民國行政院環保署揮發性有機物空氣污染管制及排放標 準,環署空字第0910069403號令修正發布 (2002)。 中華民國行政院環保署毒性化學物質管理法,環署毒字第 09100119239號修正公布 (2002)。 中華民國行政院原子能委員會輻射源豁免管制標準,會輻字第0920002030號令發布 (2003)。 李炳南、樓基中、謝翰坤,以觸媒焚化法處理1,1,1-三氯乙烯之研究,大仁學報,22,pp. 41-52 (2002)。 宋天佑、徐家甯、徐文國,高等學校化學學報,中國,13(10), pp. 1209-1210 (1992)。 吳信賢、林樹榮,高級氧化洗滌技術,經濟部工業局,空氣污染防制處理技術講習會講義。 沈耀庭,以為波加熱四氧化三鐵去除二氯甲烷之研究,碩士論文,大仁技術學院環境管理研究所。 林麟易,以觸媒焚化法處理1,3-丁二烯之研究,碩士論文,國立中山大山大學環境工程研究所 (1998)。 林文川,臭味控制技術的介紹,台灣國際環保暨能源展專刊─環保特刊 (1996)。 洪文宗,氧化鐵觸媒分解戴奧辛技術的新研發,2005年4月27 日(2005),取自: http://www.niea.gov.tw/analysis/publish/month/38/38th31.htm。 陳吉祥、張繼炎,微波技術在催化中的應用,石油化工,中國,第29卷,第11期,pp. 876-879 (2000)。 黃振家,揮發性有機廢棄處理技術:活性碳吸附,化工,第44卷,第3期,pp. 49-59 (1997)。 楊伯渝,混合型金屬氧化物觸媒應用於焚化二氯甲烷之研究,碩士論文,國立中山大山大學環境工程研究所 (1998)。 蔡文田,含揮發性有機物廢棄之活性碳吸附與觸媒焚化研究,博士論文,國立台灣大學環境工程學研究所(1994)。 翁瑞裕(2002),揮發性有機廢氣處理技術-觸媒焚化,2005年4月27日,取自: http://www.e-safety.com.tw/1_main/103_learning/1037_news/ens/pdf/A2.pdf。 趙光平、洪品傑,微波場下濕法合成的CoFe2O4粉體對H2O2催化分解研究,物理化學學報,中國,13 (1),pp. 60-63 (1997)。 劉曄、殷元騏,微波條件下V2O5/SiO2 催化氧化鄰二甲苯製鄰苯二甲酸酐,第九屆全國催化學術會議論文集,中國北京:海潮出版社,pp. 463-464 (1998)。 盧滄海、賴龍山,工業污染防治,第八卷,第一期,pp807(1989)。 蘇世昌,溫溼度協同效應對四氯乙烯光催化分解反應影響之探討,碩士論文,國立高雄第一科技大學環境與安全衛生工程系 (2003)。 Bond G., R. B. Moyes and D. A. Whan, Catal. Today, 17, pp. 427-437 (1993). Chiang, Y., C. Chiang and C.P. Huang, “Effect of Pore Structure and Temperature on VOC Adsorption on Activated Carbon,” Carbon, 39, pp. 523-534 (2001). Ford,J.D. and D. C. T .Pei, “High temperature chemical processing via microwave absorption. ” Microwave Power. Vol.22 ,pp.61-64. (1967) Gan,Q. “A gas study of microwave processing of metal hydroxide sediment sludge from printed circuite board manufacturing wash water. ”Waste Management. Vol.20, pp. 695-701. (2000) Lee, C. H., Y. W. Chen, “Effect of Additives on Pd/Al2O3 for CO and Propylene Oxidation at Oxygen-deficient Conditions,” Applied Catalysis B: Environmental, Vol.17, pp. 279-291 (1998). Coss, P. M. and C. Y. Cha, “Microwave Regeneration of Activated Carbon Used for the Removal of Solvents from Vented Air,” Journal of the Air and Waste Management Association,” 50(4), pp. 529-35 (2000). Hellwig, J. and A. Hofmann, “Prenal Toxicity of Toluene in Rabbits Following Inhalation Exposure and Proposal of a Pregnancy Guidance Value,” Toxicology, 66, pp. 373-381 (1992). Jones, D. A., T. P. Lelyveld, S. D. Mavrofids, S. W. Kingman and N. J. Miles, “Microwave Heating Application in Environmental Engineering-a Review,” Resources, Conservation and Recycling, 34, pp. 75-90 (2002). Khan,F.I. and A.Kr.Ghoshal, “ Removal of volatile organic compounds from polluted air. ” Journal of Loss Prevention in the Process Industries. Vol.13, pp. 527-545(2000). Komarneni S., R. Roy, Q. H. Li, J. Mater. Res. B, 27, pp.1393-1405, (1992). McGill, S. L., J. W. Walkiewicz and G. A. Smyres, “The Effect of Power Level on Microwave Heating of Selected Chemicals and Minerals,” In:Sutton M4.6, Vol.124 (1988). Neyestanaki, A. K., N. Kumar and L. E. Lindfors, “Catalytic Combustion of Propane and Natural Gas over Cu and Pd Modified ZSM Zeolite Catalysts,” Applied Catalysis B: Environmental, 7, pp. 95-111 (1995). Ruddy, E. N. and L. A. Carroll, “Select the Best VOC Control Strategy,” In: Chemical Engineering Progress, July, pp. 7-28 (1993). Rink W. Van den Brink, R. Louw and P. Mulder, “Formation of Polychlorinated Benzenes during the Catalytic Combustion of Chlorobenzene Using a Pt/ã-Al2O3 Catalyst,” Applied Catalysis B: Environmental, Vol.16, pp. 219-226 (1998). Suib S. L. and R. P. Zerger, J. Catal., 139, pp. 383-391 (1993). Tichenor, B.A. and M.A. Palazzolo, “Destruction of Volatile Organic Compounds via Catalytic Incineration,” Environmental Progress, 6(3), pp. 172-176 (1987). Trybal R. E., Mass Transfer Operation, McGraw-Hill, 3rd ed., pp.624 (1980). Uslu, T. and U. Atalay, “Microwave Heating of Coal for Enhanced Magnetic Removal of Pyrite,” Fuel Processing Technology, 85, pp. 21-29 (2003). Xiao F. S., W. Xu, S. Qiu, J Mater Sci Lett, 14, pp. 598-599 (1995). Vitale, R. J., O. Braids and R. Schuller, Groundwater Sample Anaiysis. Practical Handbook of Groundwater Monitoring, Lewia Publishers, pp. 501 (1991).
摘要: 
本研究之連續式微波處理系統(Continuous microwave radiation,CMWR),是經由家用微波爐進行改裝。實驗是以微波功率760W加熱四氧化三鐵(Fe3O4)固定床,處理含甲烷之進流廢氣;以微波加熱四氧化三鐵固定床,溫度可快速上升且最終溫度穩定,其床體溫度(約820℃)已超出一般有機溶劑之自燃溫度甚多,可快速將廢氣流中之有機污染物(甲苯)破壞去除,其出留尾氣亦無須再經其他空氣污染防治設備即可直接排放至大氣中。

實驗結果中,在未通入任何氣體的情況下,以微波(760W)進行連續加熱四氧化三鐵固定床,在啟動微波加熱裝置12分鐘後,四氧化三鐵即可達溫度穩定狀態,其中測量高度H1/5位置處最後之穩定溫度約為860℃,為床體之最高溫處;若以空間流速SV = 4081hr-1微波功率760W,加熱固定床處理不同初始濃度之甲苯,發現濃度越高處理效果越好,破壞去除率(DRE)分別為2000ppmv>1500ppmv>1000ppmv>500ppmv,以床體溫度趨勢來看,也受到甲苯進流濃度影響,濃度愈高升溫愈快,最終穩定溫度也愈高。此外,進流之空間流速也會影響固定床處理,空間流速高(4081hr-1)者,相較於空間流速低(2040 hr-1)者,溫度變化較不穩定,且破壞去除率也較差。微波爐內室不同相對位置,會對微波加熱四氧化三鐵固定床溫度造成影響,在高度位置中,未通氣的狀況下,以高度H1/5最終穩定溫度為最高,其次是H2/5、H3/5,最低是H4/5;升溫速率則是H3/5(1.03℃sec-1)>H2/5(0.78℃sec-1)>H1/5(0.64℃sec-1)>H4/5(0.29℃sec-1)。

Continuous microwave radiation (CMWR) of this research , Repack via the home microwave oven. The experiment is to heat Fe3O4 fixed bed with the microwave power 760W, waste gas has flowed to deal with and include the entering of toluene; Heating fixed bed with the microwave, temperature can rise fast and final temperature is steady, there is a lot of spontaneous combustion temperature that has already gone beyond the general organic solvent, can abolish the organic pollution (toluene) in the air. Destroy and get rid of, it can be discharged to the atmosphere directly by the equipment of other prevention and cure of air pollution again that it produces and leaves the tail gas.
In the experimental result, in a situation that have not entered any gas, with the microwave (760W) heat fixed beds in succession, after starting the microwave heating device 12 minutes, Fe3O4 fixed bed can reach the temperature stable state, it is about 860 ℃ to measure the last steady temperature of H1/5 position, it is the most high-temperature place of the bed; If with the space velocity SV=4081hr-1 Microwave power 760W, heating the fixed bed and dealing with different toluene initial concentration, it is the better to find the concentration the higher and deal with the result, the DRE(%) are 2000ppmv > 1500ppmv > 1000ppmv > 500ppmv respectively, one degree of trends of temperature is watched with the bed, it is influenced that entered the concentration of flowing by the toluene too, the concentration the faster intensify high, it is the higher to stabilize temperature finally. In addition, space velocity will influence the fixed bed to deal with polution, the high space velocity (4081hr-1),looks than low space velocity (2040 hr-1), temperature changes more unstable, and it is relatively bad to DRE.
Different relative positions of the room in microwave oven, will is it to microwave fixed bed temperature cause influence, among the high position to heat, under the state not kept in touch with, stabilize temperature for being highest finally with high H1/5, secondly it is H2/5, H3/5, it is H4/5 to be the minimum; It is H3/5 (1.03 ℃sec-1) to intensify the speed >H2/5 (0.78 ℃ sec-1) >H1/5 (0.64 ℃ sec-1) >H4/5 (0.29 ℃ sec-1) .
URI: http://hdl.handle.net/11455/5146
其他識別: U0005-1307200613483100
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.