Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5154
標題: 生物固體物與奈米零價鐵對受三氯乙烯污染土壤及地下水中厭氧生物分解之研究
Effects of Biosolid and Nanoscale Zero-Valent Iron on the Anaerobic Biodegradation of TCE in Soil and Groundwater
作者: 陳智彥
CHEN, CHIH-YEN
關鍵字: biosoild;生物固體物;MBS;cometabolism;M524;NZVI;PCR-DGGE;MBS共代謝;M524;奈米零價鐵;PCR;DGGE
出版社: 環境工程學系所
引用: 環保署,(2001) http://w3.epa.gov.tw/epalaw/search/LordiDispFull.aspx?lty pe=14&lname=0130http://w3.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=14&lname=0120 環保署土基會,(2006),http://ww2.epa.gov.tw/SoilGW/050304.asp 工業技術研究院環境與安全衛生發展中心「物質安全資料表毒化物列管編號」,(2006),http://www.iosh.gov.tw/msds.htm 王志弘,「以生物強化作用增進上流式厭氧污泥床處理四氯乙烯之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2005)。 王毅賢,「好氧/厭氧併同處理四氯乙烯之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2002)。 王有盛,「促進厭氧生物處理四氯乙烯代謝方式之探討」,碩士論文,國立中興大學環境工程研究所,台中,(2003)。 朱敬平,李篤中,「污泥處置(IV):策略與永續利用」,台大工程學刊,第84期,第91-101頁,台北,(2001)。 杜旻霏,「自營氫細菌與零價鎳金屬結合去除三氯乙烯之研究」,碩士論文,國立台灣大學環境工程研究所,台北,(2005)。 李世偉,「以厭氧生物法處理高濃度四氯乙烯之研究」,碩士論文,國立台灣大學環境工程研究所,台北,(2005)。 李茂山,「受2,4-二氯酚、三氯乙烯污染土壤之生物復育」,碩士論文,國立中興大學環境工程研究所,台中,(1997)。 林宜儒,「生物固體物做為污染土壤生物復育添加劑之可行性研究」,碩士論文,國立中興大學環境工程研究所,台中,(2004)。 周鴻盛,「氫對四氯乙烯污染生物復育效應之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。 周孟琦,「三氯乙烯在土壤之吸附反應及共代謝生物降解之研究」,碩士論文,國立成功大學環境工程研究所,台南,(2001)。 陳家政,「以上流式厭氧污泥床處理四氯乙烯之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2004)。 陳碩修,「氫氣對地下水中四氯乙烯厭氧生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2000)。 陳家洵、董天行,「三氯乙烯污染地下水之整治標準研究」,期末報告,中央大學應用地質研究所,中壢,(1998)。 陳尊賢,「台灣土壤及地下水環境保護協會」,台北,(2002)。 陳嘉芬,「現代遺傳學」,藝軒圖書出版社,台北,(1999)。 郭育仁,「厭氧生物處理四氯乙烯代謝方式之探討」,碩士論文,國立中興大學環境工程研究所,台中,(2002)。 張鎮南,曾四恭,鄭幸雄,趙家珍,謝永旭,「高級廢水處理」,滄海圖書,一版,第159-201頁,台北,(1995)。 張裕釧、蔡長益、范主熙、林繼富、林畢修平,「以 real time PCR方法定量污染場址中四氯乙烯脫氯菌群變化」,台北,(2002)。 張添晉,洪明宏,「下水污泥綠農地利用準則,第十三屆下水道與水環境再生研討會論文集」,第355-365頁,台北,(2003)。 張弘岳,「生物固體物在土壤污染生物復育上的應用」,行政院國家科學委員會補助專題研究計畫之期中進度報告,中興大學環境工程研究所,台中,(2005)。 張琬君,「一種兼具低消耗速率及抗氧化作用之銲點墊層材料」,碩士論文,國立中央大學化學工程與材料工程研究所,中壢,(2004)。 莊順興,張添晉,林獻山,許鎮龍,洪明宏,「下水污泥綠地、農地利用手冊之研訂」,內政部營建署委託研究報告,(2001)。 莊萬發,「超微粒子理論應用」,復漢出版社,台北,(1994)。 程郁璁,「厭氧生物處理四氯乙烯代謝機制及菌相之探討」,碩士論文,國立中興大學環境工程研究所,台中,(2005)。 黃錦怡,「脫氯菌於四氯乙烯厭氧降解中之機制研究」,碩士論文,國立中興大學環境工程研究所,台中,(2001)。 黃昆德,「利用高錳酸鉀氧化法處理三氯乙烯污染之地下水」,碩士論文,中山大學環境工程研究所,高雄,(2004)。 黃德歡,「改變世界的奈米技術」,瀛舟出版社,台北,(2002)。 葉孟芬,「地下水中四氯乙烯強化生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1997)。 楊中治,「模擬地下水中四氯乙烯厭氧生物分解復育之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。 劉煌濱,「厭氧顆粒性污泥處理四氯乙烯之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2001)。 蔡政勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,碩士論文,中央大學環境工程研究所,中壢,(2000)。 蔡璨樺,「零價鐵技術祛除三氯乙烯之研究」,碩士論文,中央大學環境工程研究所,中壢,(2000)。 劉詔文,「生物反應牆袪除地下水中三氯乙烯和氯乙烯之研究」,碩士論文,中央大學環境工程研究所,中壢,(2004)。 歐陽嶠暉、許鎮龍、藍文忠,「都市污水處理廠污泥處理與資源化再利用之研究」,第八屆下水道技術研討會論文集,第19-33頁,(1998)。 潘時正、曾迪華,「下水污泥灰渣特性及在利用於水泥材料之評估」,國立中央大學環境工程學刊,第5期,第110-137頁,(1999)。 賴忠義,「不同電子供給者對厭氧顆粒性污泥處理四氯乙烯之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2003)。 賴彥融,「奈米微粒針對地下水中含氯污染物整治應用」,工研院環安簡訊第四十五期電子報,工研院環安中心,新竹,(2004)。 盧至人(譯),Charbeneau, R. J., P. B. Bedient, and R. C. Loehr(著),「地下水的污染整治」,國立編譯館,台北,(1998)。 盧至人,「受有機污染的土壤與地下水的現地生物復育探討」,化工技術,第四卷,第六期,第220-227頁,(1996)。 盧至人,「受有機污染的土壤與地下水的現地生物復育探討」,化工技術,第四卷,第六期,第220-227頁,(1996)。 謝哲松,盧至人,邱應志 譯都市廢水污泥處理,國立編譯館,台北,(2001)。ISBN:957-02-9552-X。Lue-Hing, C. et al., (1992). Municipal Sewage Sludge Management:Processing, Utilization and Disposal. Technomic Publishing Company, Inc. 謝文彬,「奈米級零價鐵結合過氧化氫與Fenton試劑處理含PAHs污染土壤」,碩士論文,國立中興大學土壤環境科學系,台中,(2004)。 顏子穎、王海林 譯,「精編分子生物學實驗指南」,科學出版社,北京,(1998)。 蘇品書,「超微粒子材料技術」,復漢出版社,台北,(1984)。 蕭義鴻,「以電化學方法製備鐵奈米粒子之研究」,碩士論文, 國立中山大學電機工程學系,高雄,(2005)。 Agrawal, A., and P. G. Tratnyek (1996), “ Reduction of Nitro Aromatic 140 Compounds by Zero-Valnet Iron Metal , ” Environmental Science & Technology, Vol. 30, No. 1, pp. 153-160. Al-Assiuty, M. A. Khalil, and H. M. Abdel-Lateif (2000), “ Effects of Dry Sludge Application on Soil Microarthropod Communities in a Reclaimed Desert Ecosystem, ” Pedobiologia, 44: 567-578. Aulenta, F., S. Rossetti, M. Majone, and V. Tandoi (2004), “Detection and Quantitative Estimation of Dehalococcoides spp. in a Dechlorinating Bioreactor by a Combination of Fluorescent In Situ Hybridization (FISH) and Kinetic Analysis, ” Appl. Microbiol. Biotechnol., 64, 206-212. Ballapragada, B. S., H. D. Stensel, J. A. Pugakka, and F. F. John (1997), “ Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes, ” Environmental Science & Technology, Vol. 31, pp. 1728-1734. Braddock F. J., M. L. Ruth, and P. H. Catterall (1997), “ Enhancement and Inhibition of Microbial Activity in Hydrocarbon-Contaminated Arxtic Soils:Implications for Nutrient-Amended Bioremediation, ” Environmental Science & Technology, Vol. 31, pp. 2078-2984. Brennan, R. A., A. R. Swanson, F. E. Löffler, and R. A. Sanford (1998), “ Use of a solid-phase sorbent for manipulating PCE concentrations in growing cultures of the halorespiring bacterial strain BB1, ” Poster presentation, American Society for Microbiology 98th General Meeting. Burris, D. R., T. J. Campbell, and V. S. Manoranjan (1995), “ Sorption of Trichloroeyhylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System, ” Environmental Science and Technology, Vol. 29, No. 11, pp. 2850-2855. Butler, E.C. and K.F. Hayes (2001), “ Factor Influencing Rates and Products in the Transformation of Trichloroethylene by Iron Sulfide and Iron Metal, ” Environmental Science and Technology, Vol. 35, No. 19, pp. 3884-3891. Campbell, T. J., D. R. Burris, A. L. Roberts, and J. R. Wells (1997), “ Trichloroethylene and Tetrachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System, ” Environmental Toxicology and Chemistry, Vol. 16, No. 4, pp. 625-630. Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000), “ Isolation and Characterization of a Tetrachloroethylene Dechlorinating Bacterium, ” Clostridium bifermentans DPH-1. J. Biosci. Bioeng., Vol. 89, pp. 489-491. Cheng, S. F., and S. C. Wu (2001), “ Feasibility of Using Metals to Remediate Water Containing TCE, ” Chemosphere, Vol. 43, No. 8, pp.1023-1028. Chiang, H. L., T.C. Chen, M. C. Tsai, and Y. L. Chen (2003) , “ Adsorption Characteristics of Benzene on Biosolid Adsorption, ” Water Science and Technology, Vol. 47, No. 1, pp.83-87. Chiu, P. C. and M. Lee (2001), “ 2-Bromoethanesulfonate Affects Bacteria in a Trichloroethene-Dechlorinating Culture, ” Appl. Environ. Microbiol, Vol. 67, pp. 2371-2374. Choe, S. Y., Chang, Y., Hwang, K. Y., Khim. J. (2000), “ Kinetics of reductive denitrification by. nanoscale zero-valent iron, ” Chemosphere, Vol. 41, pp. 1307. Crecchio, M. Curci, M. D. R. Pizzigallo, P. Ricciuti,and P. Ruggiero (2004), “ Effects of Municipal Solid Waste Compost Amendments on Soil Enzyme Activities and Bacterial Genetic Diversity, ” Soil Biol. Biochem, Vol. 44, pp. 576-578. Daniel W. Elliott and Zhang W. X. (2001), “Field assessment of nanoscale bimetallic particles for groundwater treatment, ” Environmental Science and Technology, Vol. 35, pp. 4922-4926. De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder (1992), “ Complete Biological Reductive Transfromation of Tetrachloroethane to Ethane, ” Appl. Environ. Mirobiol., Vol. 44, pp. 1996-2000. Dennis, P. C., B. E. Sleep, R. R. Fulthorpe, and S. N. Liss (2003), “ Phylogenetic analysis of bacterial populations in an anaerobic microbial consortium capable of degrading saturation concentrations of tetrachloroethylene, ” Can. J. Microbiol., Vol. 49, pp. 15-27. Distefano, T. D., J. M. Gossett, and S. H. Zinder (1991), “ Reductive Decglorination of High Concentrations of Tetrachloroethene to Ethene by an Anaerobic Enrichment Culture on the Absence of Methanogensis, ” Appl. Environ. Microbiol., Vol. 57, pp. 287-2292. Duhamel, M., S. D. Wehr, L. Yu, H. Rizvi, D. Seepersad, S. Dworatzek, E. E. Cox, and E. A. Edwards (2002), “ Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride, ” Water Research., Vol. 36, pp. 4193-4202. Esaac, E. G. and F. Matsumura (1980), “ Metabolism of Insecticides by Reductive Systems, ” Pharmac. Ther., Vol. 9, pp. 1-26. Fathepure, B. Z., J. P. Nengu, and S. A. Boyd (1987), “ Anaerobic Bacteria that Dechlorinate Perchloroethene, ” Appl. Environ. Microbiol., Vol. 53, pp. 2671-2673. Fathepure, B. Z. and S. A. Boyd (1988a), “ Dependence of Tetrachlorothylene Dechlorination on Methangenic Substrate Consumption by Methanoarcina sp. Strain DCM, ” Appl. Environ. Microbiol., Vol. 54, pp. 2976-2980. Fathepure, B. Z. and S. A. Boyd (1988b), “ Reductive Dechlorination of Perchloroethlene and Role of Methanogens, ” FEMS Microbiol. Lett., Vol. 49, pp. 2149-2156. Fathepure, B. Z., J. M. Tiedje, and S. A. Boyd (1988), “ Reductive Dechlorination of Hexachlorobenzene to Tri- and Dichlorobenzenes in Anaerobic Sewage Sludge, ” Appl. Environ. Microbiol., Vol. 54, pp. 327-330. Fathepure, B. Z., G. A. Youngers, D. L. Richter, and C. E. Downs (1995), “ In-Situ Bioremediation of Chlorinated Hydrocarbons under Field Aerobic/Anaerobic Environments, ” In Bioremediation of Chlorinated Solvents, R. E. Hinchee, A. Lesson, and L. Semprini (Eds.), Battelle Press, Columbus, OH., pp. 169-186. Fennell, D. E., M. A. Stover, S. H. Zinder, and J. M. Gossett (1995), “ Comparison of Alterative Eletron Donors to Sustain PCE Anaerobic Reductive Dechlorination, ” In in R. E. Hinchee, A. Leeson and L. Semprini (Eds.), Bioremediation of Chlorinated Solvents, Battelle Press, Columbus, OH., pp. 9-16. Fennell, D. E., J. M. Gossett, and S.H. Zinder (1997a), “ Comparison of Butyric Acid, Ethanol, Lactic Acid, and Proprionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene, ” Environmental Science and Technology., Vol. 31, pp. 918-926. Fennell, D. E., S. H. Zinder, and J. M. Gossett (1997b), “ Comparative Studies of Hydrogen Donors for Stimulation of Tetrachloroethene Dechlorination, ” In Situ and On-Site Bioremediation, B. C. Allenman and A. Leeson (Eds), 3, Battelle Press, Columbus, Ohio, 11. Ferris, M., and Ward, D. M. (1997), “ Seasonal Distrbutions of Dominant 16S rRNA-Defined Populations in A Hot Spring Microbial Mat Examined by Denaturing Gradient Gel Electrophoresis, ” Appl. Environ. Microbiol., Vol. 63, pp. 1375-1381. Fountain, J. C., (1998), “ Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation, ” Ground-Water Remediation Technologies Analysis Center, TE-98-02. Finneran, K. T., H. M. Forbush, C. V. G. Van-Praagh, and D. R. Lovley (2003), “ Desulfitobacteium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds, ” International Journal of Systematic and Evolutionary Microbiology., Vol. 52, pp. 1929-1935. Flynn, S. J., F. E. Löffler, and J. M. Tiedje (2000), “ Microbial Community Changes Associated with a Shift from Reductive Dechlorination of PCE to Reductive Dechlorination of cis-DCE and VC, ” Environmental Science and Technology, Vol. 34, pp. 1056-1061. Gavaskar, A. R., N. Gupta, B. M. Sass, R. J. Janosy, and D. O’Sullivan (1998), “ Permeable Barriers for Groundwater Remediation: Design, Construcion, and Monitoring, ” Battelle Press, Columbus, Ohio, pp. 21-26. Gan J., S. R. Yeates, S. Papiernik and D. Crowley (1998), “ Application of Organic Amendments To Reduce Volatile Pesticide Emission from Soil, ” Environmental Science and Technology, Vol. 32, pp. 3094-3098. Gantzer, C. J. and L. P. Wackett (1991), “ Reductive Dechlorination Catalyzed by Bacterial Transition-Metal Coenzymes, ”Environmental Science and Technology, Vol. 25, pp. 715-722. Gerritse, J., T. M. P. Gomes, and P. A. Lawson (1996), “ Desulfitobacterium sp. Strain-PCE1, an Anaerobic Bacterium that Can Grow by Reductive Dechlorination of Tetrachloroethene or Ortho-chlorinated Phenols, ” Arch. Microbiol., Vol. 165, pp. 132-140. Gillham, R. W., and S. F. O, Hannesin (1994), “ Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron, ” Ground Water, Vol. 32, No. 6, pp. 958-967. Glaze, W. H., F. Kenneke, and L. Ferry (1992)c Chlorinated Byproducts from the TiO2-Medeated Photodegradation of Trichloroethylene and Tetrachloroethylene in Water, ” Environmental Science and Technology, Vol. 27, pp. 177-184. Gossett, J. M. and S. H. Zinder (1996), “ Microbiological Aspects Relevant to Natural Attenuation of Chloinated Ethenes, ” In Proceedings from the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. Dallas, TX. Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya (1997), “ Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron, ” Environmental Progress, Vol. 16, No. 2, pp. 137-143. Griffin, B. M., J. M. Tiedje, and F. E. Löffler (2004), “ Anaerobic Microbial Reductive Dechlorination of Tetrachloroethene to Predominately trans-1,2-Dichlorothene, ” Environmental Science and Technology, Vol. 38, pp. 4300-4303. Hardy, L. I. and R. W. Gillham (1996), “ Formation of Hydrocarbon from the Reduction of Aqueous CO2 by Zero-Valent Iron, ” Environmental Science & Technology, Vol. 30, No. 1, pp. 57-65. Häggblom (2004), “ Dehalococcoides ethenogenes Strain 195 Dechlorinates Diverse Chlorinated Aromatic Pollutants, ” Environmental Science & Technology, Vol. 38, pp. 2075-2081. Hendrickson, E R., J. A. Payne, R. M. Young, M. G. Starr, M. P. Perry, S. Fahnestock, D. E. Ellis, and R. C. Ebersole (2002), “ Molecular Analysis of Dehalococcoides 16S Ribosomal DNA from Chlororthene-contaminated Sites Throughout North America and Europe, ” Appl. Environ. Microbiol., Vol. 68, pp. 485-495. Holliger, C., G. Schraa, A. J. M. Stams, and A. J. B. Zehnder (1993), “ A Highly Purified Enrichment Culture Couples the Reductive Dechlorination of Tetrachloroethene to Growth, ” Appl. Environ. Microbiol., Vol. 59, pp. 2991-2997. Hughes, J. B., C. J. Newell, and R. T. Fisher (1996), “ Process for In-Situ Biodegradation of Chlorinated Aliphatic Hydrocarbons by Subsurface Hydrogen, ” Inuection U.S. Patent 5602296. Jafvert, C. T. and N. L. Wolfe (1987), “ Degradation of Selected Halogenated Ethane in Anoxic Sediment-Water System, ” Environ. Toxicol. Chem., Vol. 6, pp. 827-837. Johnson, T. L., M. M. Scherer, and P. G. Tratnyek (1996), “ Kinetics of Halogenated Organic Compound Degradation by Iron Metal, ” Environmental Science & Technology, Vol. 30, No. 8, pp. 2634-2640. Kästner, K. and B. Marho (1996), “ Microbial Degradation of Polycyclic Aromatic Hydrocarbons in Soils Affected by the Matrix of Compost, ” Appl. Microbiol. Biotechnol., Vol. 44, pp. 668-675. Komatsu, T., J. Shinmyo, and K. Momonoi (1997), “ Reductive Transformation of Tetrachloroethylene to Ethylene and Ethane by an Anaerobic Filter, ” Environmental Science & Technology, Vol. 36, pp. 125-132. Krumholz, L. R. (1997), “ Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol, ” Vol. 47, pp. 1262-1263. Li, F., C. Vipulanandan, and K. K. Mohanty (2003), “ Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene, ” Colloids and Surfaces A : Physicochemical and Engineering Aspects, Vol. 223, No. 1-3, pp. 103-112. Lien. H. L., Zhang. W. X. (2001), “ Nanoscale iron particles for complete reduction of chlorinated ethenes, ” Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 191, pp. 97-105. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney (1997), “ Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA, ” Appl. Environ. Microbiol., Vol. 63, pp. 4516-4522. Löffler, E. L., K. M. Ritalahti, and J. M. Tiedje (1997), “ Dechlorination of Chloroethenes is Inhibited by 2-Bromo- ethanesulfonate in the Absence of Methanogens, ” Appl. Environ. Microbiol., Vol. 63, pp. 4982-4985. Löffler, F. E., J. M. Tiedje, and R. A. Sanford (1999), “ Fraction of Electrons Consumed in Electron Acceptor Reduction and Hydrogen Thresholds as Indicators of Halorespiratory Physiology, ” Appl. Environ. Microbiol., Vol. 65, pp. 4049-4056. Löffler, F. E., Q. Sun, J. Li, and J. M. Tiedje (2000), “ 16S rRNA Gene-based Detection of Tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species, ” Appl. Environ. Microbiol., Vol. 66, pp. 1369-1374. Luijten, M. L. G. C., J. de Weert, H. Smidt, H. T. S. Boschker, W. M. de Vos, G. Schraa, and A. J. M. Stams (2003), “ Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov, ” International Journal of Systematic and Evolutionary Microbiology, Vol. 53, pp. 787-793. McCarty, P. L.(1997), “ MICROBIOLOGY : Breathing with Chlorinated Solvents, ” Science, Vol. 276. No. 5318, pp. 1521-1522. Martin, S. T., A. T. Lee, and M. R. Hoffmann (1995), “ Chemical echanism of Inorganic Oxidants in the TiO2/UV Process : Inceased Rates of Degradation of Chlorinated Hydrocarbons, ” Environmental Science & Technology, Vol. 29, pp. 2567-2573. Matheson, L. J., and P. G. Tratnydk (1994), “ Reductive Dehalogenation of Chlorinated Methanes by Iron Metal, ” Environmental Science & Technology, Vol. 28, No. 12, pp. 2045-2053. Maymo-Gatell, X., V. Tandoi, J. M. Gosset, and S. H. Zinder, (1995), “ Characterization of an H2-utilizing Enrichment Culture that Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis, ” Appl. Environ. Microbiol., VOl. 61, pp. 3928-3933. MaymÓ-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997), “ Isolation of a Bacterium that Reductively Dechlorinates Tetrachloroethene to Ethane, ” Science., Vol. 276, pp. 1568-1571. Middeldrop, P. J. M., M. L. G. C. Luijten, B. A. van de Pas, M. H. A. van Eekert, S. W. M. Kengen, G. Schraa, and A. J. M. Stams (1999), “ Anerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes, ” Biorem. J., Vol. 3, pp. 151-169. Minna-Laine, M. and K. S. Jørgensen (1996), “ Straw Compost and Bioremediated Soil as Inocula for the Bioremediation of Chlorophenol-Contaminated Soil, ” Appl.Environl. Microbiol., Vol. 62, pp. 1507 -1513. Muftikian, R., Q. Fernando, and N. Korte (1995), “A Method for the RapidDechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water, ” Water Research, Vol. 29, No. 10, pp. 2434-2439. Namkoonga, W., E. Y. Hwangb, J. S. Parka (2002), “ Bioremediation of Diesel-Contaminated Soil with Composting, ” Environ. Pollut., Vol. 119, pp. 23-31. Namkoonga, W., E. Y. Hwangb, J. S. Parka and J. Y. Choic (2002), “ Bioremediation of Diesel-Contaminated Soil with Composting Environ. Pollut.,Vol. 119, pp. 23-31. Nelson, M. J. K.,S. O. Montgomery (1982), “ Aerobic degradation of Trichloroethylene by a bacteria Isolate, ” Appl. Environ. Microbiol., Vol. 52, pp. 383-384. Nelson, M. J. K.,S. O. Montgomery (1987), “ Biodegradation of Trichloroethylene and involvement of an aromatic biodegradative pathway, ” Appl. Environ. Microbiol., Vol. 53, pp. 949-954. Nyer, E. K. (1985), “ Groundwater Treatment Technology, ” Van Nostrand Reinhold, New York. Odziemkowski, M. S., T. T. Schuhmacher, R. W. Gillham, and E. J. Reardon (1998), “ Mechanism of Oxide Film Formation on Iron in Simulating Groundwater Solutions: Raman Spectroscopic Studies, ” Corrosion Science, 40(2/3), pp.371-389. Orth, S. W., and R. W. Gillham (1996), “ Dechlorination of Trichloroethene in Aqueous Solution Using Fe0, ” Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71. Parsons, F. and G. B. Lage (1985), “ Chlorinated Organics in Stimulated Groudwater Environments, ” J. Am. Water Works Assoc., Vol. 77, pp. 52-59. Richardson, R. E., V. K. Bhupathiraju, D. L. Song, T. A. Goulet, and L. Alvarez-Cohen (2002), “ Phylogenetic Characterization of Microbial Communities That Reductively Dechlorinate TCE Based Upon a Combination of Molecular Techniques, ” Environmental Science & Technology, Vol. 36, pp. 2652-2662. Rabideau, A. J., Blayden, J. M., Ganguly, C. (1999), “ Field Performance of Air-Sparging System for Removing TCE from Groundwater, ” Environmental Science and Technology., Vol. 33, No.1, pp. 157-162. Rivera-Espinoza, Y. and L. Dendooven (2004), “ Dynamics of Carbon, Nitrogen and Hydrocarbons in Diesel-Contaminated Soil Amended with Biosolids and Maize, ” Chemosphere, Vol. 54, pp. 379-386. Roberts, A. L., L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell (1996), “ Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals, ” Environmental Science & Technology, Vol. 30, No. 8, pp. 2654-2659. Ros, M., M. T. Hernandez, and C. García (2003), “ Soil Microbial Activity After Restoration of a Semiarid Soil by Organic Amendments, ” Soil Biol. Biochem., Vol. 35, pp. 463-469. Sastre, I., M. A. Vicente, and M. C. Lobo (1996), “ Influence of the Application of Sewage Sludges on Soil Microbial Activity, ” Biores. Technol., Vol. 57, pp. 19-23. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi.M.L., Lowe, K.S. (2001), “ Principle and Practices of In Situ Chemical Oxidation Using Permanganate, ” Battelle Press. Sharma, P. K. and P. L. McCarty (1996), “ Isolation and Characterization of a Facultatively Aerobic Bacterium that Reductively Dehalogenates Tetrachloroethene to cis-1,2-Dichloroethene, ” Appl. Environ. Microbiol., Vol. 62, pp. 761-765. Smatlak, C. R., J. M. Gossett, and S. H. Zinder (1996), “ Comparative kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture, ” Environmental Science & Technology, Vol. 30, pp. 2850-2858. Stroo H.F., Ward C.H., Marqusee J.A., Smith B.P., Kavanaugh M.C., (2003), “ Chlorinated Solvent Source Zones, ” Environmental Science & Technology, pp.224-230. Parsons, F., P. R. Wood, and J. DeMarco (1984), “ Trans- fromations of Tetrachloroethene and Trichloroethene in Microcosms and Groundwater Environments, ” J. Am. Water Works Assoc., Vol. 76, pp. 56-59. Su, C., and R. W. Puls (1999), “ Kinetics of Trchloroethene Reduction by Zero valent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products, ” Environmental Science & Technology, Vol. 33, No. 1, pp. 163-168. Sung, Y., K. M. Ritalahti, R. A. Sanford, J. W. Urbance, S. J. Flynn, J. M. Tiedje, and F. E. Loffler (2003), “ Characterization of Two Tetrachloroethene-Reducing, Acetate-Oxidizing Anaerobic Bacteria and Their Descriptionas Desulfuromonas michiganensis sp. nov, ” Appl. Environ. Microbiol., Vol. 69, pp. 2964-2974. Suyama, A., M. Yamashita, S. Yoshino, and K. Furukawa (2002), “ Molecular characterization of the PCEA reductive dehalogenase of Desulfitobacterium sp. Strain Y51, ” Journal of Bacteriology., Vol. 184, pp. 3419-3425. Tandoi, V., T. D. DiStefano, P. A. Bowser, J. M. Gossett, and S. H. Zindr (1994), “ Reductive Dehalogenation of Chlorinated Ethenesand Halogenated Ethanes by a High-Rate Anaerobic Enrichment Culture. Environmental Science & Technology, ” Vol. 28, pp. 973-979. Uchiyama, H., T. Nakajima, O. Yagi, and T. Tabuchi (2000), “ Aerobic degradation of Trichloroethylene at high concentration by a methane-utilizing mixed culture, ” Agric. Biol. Chem., Vol. 53, pp. 1019-1024 (1989). US EPA, “ Biosolids Technology Fact Sheet: Land Applied of Biosolids, ” EPA 832-F-00-064. US EPA (1999), “ Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers, ” Office of Solid Waste and Emergency Response, Technology Innovation Office, ” EPA-542-R-99-002. US EPA (1998), “ Metal-Enhanced Dechlorination of Volatile Organic Compounds Using an In-Situ Reactive Iron Wall”, National Risk Management Research Laboratory and Office of Research and Development, ” EPA-540-R-98-501. US EPA (1999), “ Groundwater Cleanup:Overview of Operation Experience at 28 Sites, ” Office of Solid Waste and Emergency Response, EPA-542-R-99-006. US EPA (1990), “ Handbook: Groundwater, Volume I: Groundwater and Contamination, ” EPA/625/6-90/016a. US EPA (2000), “ Biosolids Technology Fact Sheet:Land Applied of Biosolids, ” EPA 832-F-00-064. Wang, C. B., Zhang, W. X. (1997), “ Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs, ” Environmental Science & Technology, Vol. 31, pp. 2154. Wang, J., P. Blowers and J. Farrell (2004), “ Understanding Reduction of Carbon Tetrachloride at Nickel Surfaces, ” Environmental Science & Technology, Vol. 38, pp. 1576-1581. Yang, Y. and P. L. McCarty (2000), “ Biologically Enhanced Dissolution of Tetrachloroethene DNAPL, ” Environmental Science & Technology, Vol. 34, pp. 2979-2984. Yang, Y. and P. L. McCarty (2002), “ Comparison between Donor Substrates for Biologically Enhanced Tetrachloroethene DNAPL Dissolution, ” Environmental Science & Technology, Vol. 36, pp. 3400-3404. Yang, Y., and J. Zeyer (2003), “ Specific Detection of Dehalococcoides Species by Fluorescence In Situ Hybridization with 16S rRNA-Targeted Oligonucleotide Probes, ” Appl. Environ. Microbiol., Vol. 69, pp. 2879-2883. Yueqiang Liu, Hyeok Choi, Dionysios Dionysiou, and Gregory V. Lowry (2005), “ Trichloroethene Hydrodechlorination in Water by Highly Disordered Monometallic Nanoiron, ” Chem Mater, Vol. 17, pp. 5315-5322. Zhang. W. X., Wang1. C. B., Lien. H. L. (1998), “ Treatment of chlorinated organic contaminants with nanoscale bimetallic particles, ” Catalysis Today Vol. 40, pp. 387-395.
摘要: 
含氯有機化合物被廣泛使用於工業中,但常因處理不當而污染土壤及地下水,其中三氯乙烯為污染場址中最常見且含量最高之污染物,而傳統之生物及物化處理方法各具有其優缺點。本研究分別擬試以生物固體物(Biosolid)做為受三氯乙烯污染土壤復育添加劑;此外,將具有還原脫氯能力之菌種與奈米零價鐵(NZVI)合併處理受三氯乙烯污染水體。
分別以數組不同的生物固體物對土壤之添加比(MBS)進行土壤三氯乙烯復育試驗。共代謝之批次結果顯示,添加三氯乙烯(65μg/g-soil)與甲苯(749μg/g-soil)之土壤進行生物降解試驗,經過6天後相對於原土壤組只有約10%的降解率,添加生物固體物實驗組的降解率分別高出原土壤組66%至85%不等。兩污染物降解實驗結果均顯示,當MBS添加比為0.3 : 1時,即可達到良好的污染物生物分解效果。
若於非共代謝實驗下添加生物固體物後,於150天後的降解率只分別高出原土壤組7%至19%不等,由結果顯示於此條件下,生物固體物對促進土壤中三氯乙烯降解效果不如共代謝下快速。此外,實驗又以生物強化與基質添加做為改善因子,其結果發現若植種具脫氯能力菌種-M524後,最高可降解85%之等濃度三氯乙烯;另一方面,基質添加實驗結果卻只有79%降解率。但添加糖蜜可大幅縮短厭氧菌的遲滯期,故於同時間進行下之實驗結果顯示,三氯乙烯降解率會比未添加組高出40%至50%不等。
地下水生物復育探討試驗分別以M524、氫自營菌、奈米鐵(0.5克)以及併同等多種方法進行三氯乙烯(5.5 mg/L)之處理。實驗結果顯示添加奈米鐵之組別皆具有很好的三氯乙烯降解率外,生物及金屬兩者合併後在本批次實驗條件下對三氯乙烯之脫氯速率較金屬及M524個別實驗組幾乎相等,但由於氫細菌與奈米鐵同時利用氫氣,造成氫氣供應量不足,因此反應速率與奈米鐵組差異不大。奈米鐵降解不完全所產生之氯乙烯可再被生物脫氯之現象,可見兩者合併後對脫氯效果具有加成作用。另外並以分子生物技術PCR、DGGE等方法,觀察本實驗中微生物混合族群變化、優勢菌種以及微生物共生現象等後做更詳細的探討。

Chlorinated compounds are widely used in industrial process. One of the most common contaminants is Trichloroethylene (TCE). This study focused on exploring the effect of the addition of biosolids on the bioremediation of organic-contaminated soils. This research developed a more practicable and feasible method for the treatment TCE with a combined biological and chemical processes based on synergetic dechlorination reactions by microorganisms and Nano-Zero-Valent Iron.
A series of soil batch reactors was conducted to determine the degradation rate of the contaminant in the soil and the mixture of biosolid and soil (MBS). The MBS was prepared with different soil to biosolid ratios of 1:0.1, 1:0.2, 1:0.3, and 1:0.5. For cometabolism experiments, the removals of toluene (749μg/ g-soil) and TCE (65μg/ g-soil) for the four MSB tests were significantly enhanced from 66% to 85%, respectively. However, the TCE removal was only 10% for soils without the addition of biosolid .
Besides, comparing the results of anaerobic biodegradation for the soil control test in 150 days, the TCE removals for the three MSB tests with ratios of 1:0.1, 1:0.3, and 1:0.5 were significantly enhanced by 7%, 11% and 19%, respectively. In addition, seeding TCE degrading bacterium- M524 significantly increased the removal efficiency of TCE. The maximum removals efficiency was 85%. Continuously, the result of TCE removals was 79% for the molasses-added reactor. The process of molasses also decreased the log period for TCE removals.
The TCE-removal experiments were also carried out by using a combined NZVI, M524, and autotrophic hydrogen-bacteria. The results suggested that hydrogen promoted the biological dechlorination for the biological system. TCE (5.5 mg/L) was dechlorinated to ethene principally without chlorinated intermediates. Besides, the dechlorination rate of TCE by NZVI, M524, and the complex were about the concentration. Eventually, the microbial community changes in biodegradation process by the PCR-DGGE. Different environmental conditions would change the structure of the microbial community.
URI: http://hdl.handle.net/11455/5154
其他識別: U0005-1408200609280500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.