Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5158
標題: 改質奈米碳管吸附水中二價鎳離子之研究
A study on the sorption of nickel(II) from water with purified carbon nanotubes
作者: 劉俊迪
Liu, Chun-Ti
關鍵字: Carbon nanotubes;奈米碳管;sorption;purification;Nickel;thermodynamics;activated carbons;desorption;二價鎳離子;次氯酸鈉;吸附;脫附;活性碳
出版社: 環境工程學系所
引用: 參考文獻 中文部份 成會明、張勁燕(2004),奈米碳管-奈米研究與應用系列,五南圖書出版股份有限公司,台北。 李元堯(2003),21 世紀尖端材料-奈米碳管,化工技術期刊-奈米材料與應用專輯, Vol. 11,No. 3,140-159. 李鑫濃(2004),奈米碳管合成技術及其污染防治應用,元智大學化學工程學系碩士論文 邱煥宗(2005),奈米碳管吸附水中二價鋅離子之研究,中興大學環境工程系碩士論 胡峰倪(2004),以稻殼製備活性碳及其表面改質對吸附影響之研究,國立台灣科技大學化學工程系碩士論文 劉雅瑄(2001),重金屬Cu2+,Cr3+,Pb2+於活性碳表面特性之研究,國立台灣大學環境工程研究所碩士論文 蔡正國(2005),複合奈米碳管吸附水溶重金屬污染物之應用研究,國立雲林科技大學環境與安全衛生工程系碩士論文 蔡永興(1994),以化學沉降法對重金屬離子共存時之處理控制探討,國立中興大學環境工程系碩士論文 蘇亮誌(2004),鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究,國立成功大學化學工程學系碩士論文 英文部分 Adewunmi, C.O., Becker, W., Kuehnast, O., and Oluwole, F. (1996)“Accumulation of copper, lead and cadmium in freshwater snails insouthwestern Nigeria ,” Science of the Total Environment., Vol. 193,69. Anoop Kapoora,T. Viraraghavana, D. Roy Cullimore(1999)., “Removal of heavy metals using the fungus Aspergillus niger,” Bioresource Technology, Vol 70, 95-104 Bandow, S., Rao, A. M., Williams, K. A., Thess, A. Smalley, R. E. Smalley and Eklund, P. C. (1997) “Purification of Single-Wall Carbon Nanotubes by Microfiltration” J. Phys. Chem. B, Vol. 101, 8839. Barrow, N. Y.,J. W. Bowden, A. M. Posener and J. P. Quirk(1980)., “Describing the Effect of Electrolyte on Adsorption of Phosphate by a Variable Charge Surface”,Aust. J. Soil Research, 18, 395-404. Belgin Bayat(2002)., “Comparative study of adsorption properties of Turkish fly ashes the case of nickel,coper and zinc,”J. of Hazardous Materials, Vol B95,251-273. Belin, T. and Epron, F. (2005), “Characterization Methods of Carbon Nanotubes: A Review.” Materials Science and Engineering , B 119, 105-118 Boehm, H.P.(1994), “ Some Aspects of The Surface Chemistry of Carbon Blacks and Other Carbons ”, Carbon, 32, p759. C. Namasivayam, K. Periasamy, “Removal of Nickel from aqueous solution and Nickel plating industry wastewater using an agricultural waste: peanut hulls,” Waste Mgmt., Vol.15, 63-68. Che, G., Lakshmi, B. B., Fisher, E. R., Martin, C. R. (1998) “Carbon nanotubule menbranes for electrochemical energy storage andproduction,” Nature, Vol. 393, 346. Chingombe, P.; Saha, B.; Wakeman, R.J.(2005) “Surface modification and characterization of a coal-based activated carbon.”, Carbon, 43, 3132-3143. Chiron, N., Guilet, R., and Dsydier, E. (2003) “Adsorption of Cu and Pb onto grafted silica: isotherms and kinetic moldes,” Water Research ,Vol. 37, 3079-3086. Chungsying Lu, Huantsung Chiu (2006), “Adsorption of zinc(II) from water with purified carbon nanotubes.” Chemical Engineering Science.,Vol 61, 1138-1145 Chungsying Lu,Huantsung Chiu and Chunti Liu (2006), “Removal of Zinc(II) from Aqueous Solution by Purified Carbon Nanotubes:Kinetics and Equilibrium Studies.”Ind. Eng. Chem. Res.,45,2850-2855 Chungsying Lu.,Chung, Y. L. and Chang, K. F. (2005) “ Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research,Vol. 39, 1183-1189. Collins, P. C., Arnold, M. S., Avouris, P. (2001) “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,”Science , Vol. 292, 706. Cui, J.,Wang, W. P.,You, Y. Z., Liu, C. and Wang, P. (2004) “Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization” Polymer ,Vol. 45, 8717-8721. Davis, W. M., Erickson, C. L. and Johnston, C. T. (1999) “Quantitative Fourier Transform Infrared Spectroscopic Investigation of Humic Substance Functional Group composition” Chemosphere, Vol. 38, 2913-2928. Dillon, A. C., Jones, K. M.,. Bekkendahl, T. A, Kiang, C. H., Bethune, D.S., Heben, M. J. (1997) “Storage of hydrogen in singlewalled carbon nanotubes,” Nature, Vol. 386, 377. E. Demirbas,M. Kobya b,Oncel b,S. Sencan(2002) “Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies”Bioresource Technology, Vol 84.,291-293 Emine Malkoc , Yasar Nuhoglu (2005)., “Investigations of nickel(II) removal from aqueous solutions using tea factory waste,” Journal of Hazardous Materials.,Vol 127, 120-128. Faur-Brasquet, C., Reddad, Z. and Kadirvelu, K. (2002) “Modeling the adsorption of metal ions ( Cu+2, Ni+2, Pb+2 ) onto ACCs using surface complexation models,” Applied Surface Science, Vol. 196, 356-365. Forstner, U. and Wittmann, G.. T.(1981) “Metal Pollution in the Aquatic Environment,” Springer Verlag, New York Furuy, E.G.; Chang, H.T.; Miura, Y. and Noll, K.E.(1997), “A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activatd carbon”Separation and Purification Technology 11, 69-78. Gao, B., Kelinhammes, A., Tang, X. P., Bower, C., Wu, Y., Zhou, O.(1999)“Electrochemical intercalation of single-walled carbon nanotubeswith lithium,” Chem. Phys. Lett., Vol. 307, 153. Hamon, M. A., Hu H., Bhowmik P., Niyogi S., Zhao B., Itkis M. E. and Haddon R. C., (2001) “End-group and defect analysis of soluble single-walled carbon nanotubes.”, Chem. Phys. Lett., Vol347(1-3), 8-12. Haye, K. F. and J. O. Leckie(1987).,“Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface”,J. Colloid Interface SCi., 115, 564-572. Haye, K. F. and J. O. Leckie(1988).,“Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface”,J. Colloid Interface SCi., 125, 717-726. Ho, Y.S.; McKay, G.(2000) “The kinetics of sorption of divalent metal ions onto sphagnum moss peat.” Wat. Res., Vol.34, 735. Hone, J., Zettl, A. and Whitney, M. (1999) “Thermal conductivity of single-walled carbon Nanotubes” Synthetic Metals, Vol. 103, 2498-2499 Iijima, S (1991) “Helical microtubules of graphitic carbon,” Nature (London), Vol. 354, 56. Iijima, S. and Ichihashi, T. (1993) “Single-shell carbon nanotubes of 1-nm diameter,” Nature (London), Vol. 363, 603. Iijima, S., Ajayan, P. M., Ichihashi, T. (1992) “Growth model for carbon nanotubes,” Phys. Rev. Lett., Vol. 69, 3100. Ivanov, V., Nagy, J. B.,. Lambin, P. H., Lucas, A., Zhang, X. B., Zhang, X.F., Bernaerts, D., Tendeloo, G. V., Amelinckx, S., Landuyt, J. (1994)“ The study of carbon nanotubules produced by catalytic method,” Chem. Phys. Lett., Vol. 223, 329. Jackson K. K.,J.Catherine N.,Gerald M. Sawula (2004) “Speciation studies of nickel and chromium in wastewater from an electroplating plant,” Talanta,64, 54-59 Jae-Woon Shim, Soo-Jin Park, Seung-Kon Ryu (2001), “Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers”Carbon, Vol. 39,1635-1642. J. Paul Chen and Shunnian Wu (2004) “Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties,” Langmuir , 20, 2233-2242 K. Kadirvelu , K. Thamaraiselvi, C. Namasivayam(2001), “Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith,” Separation and Purification Technology, Vol 24.,497-505. Katoh R., Tasaka Y., Sekreta E., Yumura M., Ikazaki F., Kakudate Y. and Fujiwara S. (1999) “ Sonochemical production of a carbon nanotube” Ultrasonics Sonochemistry, Vol. 6, 185-187. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., Dai, H. (1998)“Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature (London), Vol. 395, 878. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E. (1985) “C60: buckminsterfullerene,” Nature, Vol. 318, 162. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y.,Zhao, R .A., Wang, G. (1996) “Large-scale synthesis of alignedcarbon Nanotubes,” Science, Vol. 274, 1701. Li, Y. H., Di, Z., Ding , Z., Wu, D., Luan, Z., Zhu, Y. (2005) “Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, ”Water Research, Vol. 39, 605-609. Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D. W. (2003) “Competitive adsorption of Pb2+ , Cu2+ , Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, Vol. 41, 2787-2792. Li, Y. H., Wang, S., Cao, A.(2001) “Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes,” Chemical Physics Letters, Vol. 350, 412-416. Li, Y. H., Wang, S., Luan, Z. (2003) “Adsorption of cadmium(Ⅱ)from aqueous solution by surface oxidized carbon nanotubes,” Carbon,Vol. 41, 1057-1062. Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, Cailu., Luan, Z., Wu, D., Wei,B.(2002) “Lead adsorption on carbon nanotubew,” Chemical Physics Letter, Vol. 357, 263-266. Li, Y. H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., Wu, D.(2003) “Adsorption of fluoride from water by aligned carbon nanotubes,” Materials Research Bulletin, Vol. 38, 469-476. Long, R. Q. and Yang, R. T. (2001) “Carbon Nanotubes as Superior Sorbent for Dioxin Removal,” J. Am. Chem. Soc. Vol. 123, 2058-2059. M. C. Basso, E. G. Cerrella, and A. L. Cukierman (2002) “Activated Carbons Developed from a Rapidly Renewable Biosource for Removal of Cadmium(II) and Nickel(II) Ions from Dilute Aqueous Solutions,” Ind. Eng. Chem. Res., 41, 180-189 Mohammad Ajmal, Rifaqat Ali Khan Rao, Rais Ahmad, Jameel Ahmad (2000)., “Adsorption studies on Citrus reticulata (fruit peel oforange) : removal and recovery of Ni II from electroplating wastewater,” Journal of Hazardous Materials, Vol 79, 117-131 Ovejero, G.; Sotelo, J.L.; Romero, M.D.; Rodr
摘要: 
本研究以奈米碳管吸附水中二價鎳離子,研究結果顯示。經由次氯酸鈉氧化改質後,奈米碳管表面的含氧官能基增加且表面呈負電性,所以奈米碳管親水性相對的提高而增加更多的吸附位址。在25oC下,Langmuir模式求取飽和吸附量,改質單壁奈米碳管碳管為47.85 mg/g,改質多壁奈米碳管為38.46 mg/g;其吸附量遠大於粉狀活性碳(16.29 mg/g)、粒狀活性碳 (14.53 mg/g)以及改質粒狀活性碳(26.39 mg/g)。在吸附動力學探討,符合擬二階動力模式(pseudo-second order kinetic model)。
不同pH值下,吸附量隨pH上升而提高。在不同溫度的吸附條件下,改質奈米碳管吸附量隨溫度上升而增加。而在熱力學的探討裡,改質奈米碳管的ΔHo <0、ΔSo >0、ΔGo <0,說明吸附屬於自發性吸熱反應,吸附過程以表面離子交換為主。經由初始濃度60 mg/L之鎳重金屬溶液吸附後碳管,以0.1M硝酸溶液在25oC下進行脫附再生,結果發現改質奈米碳管經10次脫附再生實驗後,改質單壁奈米碳管約有78.29%再生效率,為改質粒狀活性碳的6倍(12.94%),所以改質奈米碳管在脫附再生效能依然有很好的表現。綜合以上研究結果,奈米碳管對於處理水中二價鎳離子具有良好的應用潛力。

Single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) were purified by sodium
hypochlorite solutions and were employed as sorbents to study sorption characteristics of nickel (II) from aqueous solution. The surface properties of purified CNTs such as functional groups, total acidities and negatively charged surface carbon were greatly improved after purification and thus resulted in sorption of more Ni2+. The Ni2+ removal by CNTs quickly increased with initial solution pH in the range 1-12 and temperatures. The thermodynamic analysis revealed that the Ni2+ sorption by CNTs is endothermic and spontaneous. The sorption/desorption study showed that the Ni2+ could be easily removed from the CNTs surface by a 0.1 M HNO3 solution and the sorption capacity was maintained after 10 cycles of sorption/desorption process.
A comparative study on the Ni2+ sorption between CNTs and activated carbons was also conducted. The maximum Ni2+ sorption capacities of Purified-SWCNT, Purified-MWCNT, Purified-GAC, PAC and GAC calculated by the Langmuir model are 47.85, 38.46, 26.39, 16.29 and 14.53 mg/g, respectively, with an initial Ni2+ concentration range 10 - 80 mg/L. The shorter equilibrium time as well as the better sorption capacity as compared to activated carbons suggests that both possess highly potential applications for the removal of Ni2+ from aqueous solution.
URI: http://hdl.handle.net/11455/5158
其他識別: U0005-1506200602262900
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.