Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5166
標題: 由砂石車活動強度與TSP監測結果探討砂石車行駛總量管制之可行性
Feasibility Assessment of Using Gravel Trucks' Activity Intensity And TSP Monitored Results to Establish Total Amount Control Policies of Gravel Trucks.
作者: 林隆儒
Lung-Ju, Lin
關鍵字: 總懸浮微粒;Total Suspended Particulates (TSP);活動強度;總量管制;砂石車;砂石疏濬;Activity Intensity;Control of Total Amount;Gravel Trucks;Gravel Dredging
出版社: 環境工程學系所
引用: [1] 行政院環境保護署,「大台北高雄地區空氣污染源排放資料調查及減量規劃」,1990年2月。 [2] 行政院環境保護署,「水泥業裸露礦區逸散塵粒污染特性分析及防制之研究」, 1997年7月。 [3] 行政院環境保護署,「固定污染源空氣污染物排放標準」,2002/07/03修正公布。 [4] 行政院環境保護署,「空氣污染防制法」,2002/06/19修正公布。 [5] 行政院環境保護署,「空氣品質標準」,2004/10/13修正公布。 [6] 行政院環境保護署,「空氣品質嚴重惡化緊急防制辦法」,2000/09/20修正公布。 [7] 行政院環境保護署網頁,http://taqm.epa.gov.tw/emc/default.aspx/,環境監測,空氣品質監測,2006年。 [8] 行政院環境保護署環境保護人員訓練所,「污染源排放特性與排放推估」,空氣污染防制專責人員訓練教材第四冊, 1996年10月。 [9] 行政院環境保護署環境檢驗所,(80)環署檢字第27038號公告NIEA S280.60T,1991年8月12日。 [10] 行政院環境保護署環境檢驗所,「空氣中粒狀污染物檢測法—高量採樣法(NIEA A102.11A)」,1999年。 [11] 李清華等,「南投縣砂石疏濬工程粒狀污染物空污費徵收合理性評估計畫」,南投縣政府環境保護局委託研究計畫,2006年2月。 [12] 李清華等,「南投縣砂石疏濬空污費費率合理性評估計畫」,南投縣政府環境保護局委託研究計畫,2005年4月。 [13] 林明德等,「92年度南投縣砂石場粒狀污染物空污費徵收可行性評估計畫」,南投縣政府環境保護局委託研究計畫,2004年4月。 [14] 南投縣政府,砂石車輛載運砂石92年9月~93年5月車流量點算紀錄總表,2004年 [15] 南投縣政府環境保護局,「93年度南投縣空氣污染防制工作綜合管理計畫」,期末報告,2005年4月。 [16] 南投縣政府環境保護局,「94年度南投縣空氣污染防制工作綜合管理計畫」,期末報告,2006年4月。 [17] 南投縣政府環境保護局,「南投縣91年度砂石場、瀝青拌合及預拌混凝土廠污染稽查管制計畫」,期末報告,2003年7月。 [18] 南投縣政府環境保護局,「南投縣92年度砂石場、瀝青拌合及預拌混凝土廠污染稽查管制計畫」,期末報告,2004年4月。 [19] 南投縣政府環境保護局,「南投縣93年度土石加工業及土石運輸道路污染稽查管制計畫」,期末報告,2005年5月。 [20] 南投縣政府環境保護局,「南投縣94年度土石加工業及土石運輸道路污染稽查管制計畫」,期末報告,2006年2月。 [21] 張時獻等,「93年度南投縣懸浮污染物暴露與居民健康之調查計畫」,南投縣政府環境保護局委託研究計畫,期末報告,2005年3月。 [22] 張時獻等,「94年度南投縣懸浮污染物暴露與居民健康之調查計畫」,南投縣政府環境保護局委託研究計畫,期末報告,2006年3月。 [23] 章裕民等,「營建工程逸散粉塵量推估及其污染防治措施評估」,行政院環境保護署委託研究計畫,EPA-85-11-01-09-45, p.7-13,1996年。 [24] Bagnold, R. A., “The physics of Blown Sand and Desert Dunes,” Methuen and Co., Ltd., London, 1954. [25] Gold, D. R., Damokosh, A. I., Pope, C. A. 3rd., Dockery, D. W., McDonnell, W. F., Serrano, P., Retama, A., and Castillejos, M. (1999) Particulate and ozone pollutant effects on the respiratory function of children in southwest Mexico City. Epidemiology, 10(1):8-16. [26] Gold, D. R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., Allen, G., Verrier, M., Cherry, R., and Verrier, R. (2000) Ambient pollution and heart rate variability. Circulation, 101(11):1267-1273. [27] Ibald-Mulli, A., Stieber, J., Wichmann, H. E., Koenig, W., and Peters, A. (2001) Effects of air pollution on blood pressure: a population-based approach. Am. J. Public Health, 91(4):571-577. [28] Lee, C.-H., L.-W. Tang, and C.-T. Chang, “Modeling of Fugitive Dust Emission for Construction Sand and Gravel Processing Plant,” Environ. Sci. Technol., 35, pp.2073-2077, 2001. [29] Morris, R. D. (2001) Airborne particulates and hospital admissions for cardiovascular disease: a quantitative review of the evidence. Environ. Health Perspect., 109(Suppl 4):495-500. [30] Peters, A., Perz, S., Doring, A., Stieber, J., Koenig, W., and Wichmann, H. E. (1999) Increases in heart rate during an air pollution episode. Am. J Epidemiol., 150(10):1094-1098. [31] Pope, C. A, 3rd., Schwartz, J., and Ransom, M. R. (1992) Daily mortality and PM10 pollution in Utah Valley. Arch. Environ. Health, 47(3):211-217. [32] Pope, C. A. 3rd., Dockery, D. W., Kanner, R. E., Villegas, G. M., and Schwartz, J. (1999) Oxygen saturation, pulse rate, and particulate air pollution: A daily time-series panel study. Am. J. Respir. Crit. Care Med., 159(2):365-372. [33] Ransom, M. R., and Pope, C. A. 3rd. (1992) Elementary school absences and PM10 pollution in Utah Valley. Environ. Res., 58(2): 204-219. [34] Schwartz, J. (1996) Air pollution and hospital admissions for respiratory disease. Epidemiology, 7(1):20-28. [35] Schwartz, J., Slater, D., Larson, T. V., Pierson, W. E., and Koenig, J. Q. (1993) Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am. Rev. Respir. Dis., 147(4):826-831. [36] Stone, P. H., and Godleski, J. J. (1999) First steps toward understanding the pathophysiologic link between air pollution and cardiac mortality. Am. Heart J., 138(5 Pt 1):804-807. [37] Studnicka, M. J., Frischer, T., Meinert, R., Studnicka-Benke, A., Hajek, K., Spengler, J. D., and Neumann, M. G. (1995) Acidic particles and lung function in children. A summer camp study in the Austrian Alps. Am. J. Respir. Crit. Care Med., 151(2 Pt 1):423-430. [38] US EPA. AP-42, Fifth Edition, Compilation of Air Pollutant Emission Factors, vol. I Chapter 13: Miscellaneous Sources. , 2003 [39] US EPA.「AP-42」, 5th, Research Triangle Park, 1996.9. [40] Wang, T. N., Ko, Y. C., Chao, Y. Y., Huang, C. C., and Lin, R.S. (1999) Association between indoor and outdoor air pollution and adolescent asthma from 1995 to 1996 in Taiwan. Environ. Res., 81(3):239-247. [41] Yang, C. Y., Wang, J. D., Chan, C. C., Hwang, J. S., and Chen, P. C. (1998) Respiratory symptoms of primary school children living in a petrochemical polluted area in Taiwan. Pediatr. Pulmonol., 25(5):299- 303.
摘要: 
自921地震及桃茲颱風以後,南投縣各主要河川即陸續展開土石疏濬及標售工程,統計自90年至94年度所發包疏濬之工程即達100件次。總疏濬土石方數量高達23,927,688立方公尺,如以35噸總重之砂石車載運約須高達171萬車次方能全部輸運完畢,平均每月有高達2萬8500輛次砂石車往來穿梭於境內主要道路。如此龐大的疏濬及土石標售數量,除了土石開採、洗選加工過程會排放粒狀污染物之外,日以千計之砂石車輛來回奔跑於縣內主要公路,所產生之土方掉落、車行揚塵、廢氣排放等是最主要之污染來源,嚴重衝擊當地環境空氣品質及影響居民身體健康。
本研究根據南投縣政府環境保護局於92年至94年三年間委託學術單位在疏濬工程土石運輸動線上實地監測TSP及砂石車流量調查結果,利用EXCEL軟體做回歸統計工具,以線性及指數二種回歸分析方法得到線性及指數二種方程式,並將有關TSP之各項法規標準值(例如:「固定污染源空氣污染物排放標準」中之周界粒狀物排放標準…等)置於方程式中,預測分析土石運輸動線上砂石車每小時或每日最高行駛總量,並探討限制砂石車行駛總量之可行性,以減輕砂石車輛運輸對環境空氣品質之衝擊。
綜觀所有預測方程式,以93年度台16線俊祥修車廠及龍泉宮這二個監測地點所回歸之方程式【Y =1.5229 X +152.64,R2 = 0.32;Y =132.35e0.0046 X,R2 = 0.55】最具代表性,該地點不僅因為監測點數最多(達68點次)、地點也非常合適(為所有砂石車必經路段)、砂石車車速具有代表性、同時初始濃度(截距)亦相當接近該地點之TSP監測背景值。另外,亦發現所有回歸方程式中以指數回歸曲線比較符合常理,預測砂石車流量採用指數回歸曲線優於線性回歸曲線。
經由以上代表性監測地點之監測資料分析,當土石運輸動線上懸浮微粒濃度達緊急空氣品質惡化警告發布限值,得禁止或限制交通工具之使用時,預測砂石車行駛總量之上限為每小時500輛,相當於每日5000輛(假設砂石車行駛時間每日為10個小時),即單向車道入境砂石車每日不得多於2500輛,亦即每天最多僅能同意2500輛砂石車進入南投縣境內輸運砂石。最後,本研究研擬實施砂石車行駛總量管制之配套措施,提供施政之參考。

After earthquake 921 and typhoon Tao-tz, Nantou County's main rivers began gradually to dredge and sell gravel. Since 2001 to 2005, there were 100 times of dredging to be done and yielded gravel up to 23927688 cubic meters. If these gravel transported by 3.5-ton gravel truck, it needs 1.71 million times to finish the work. In this condition, there will be 28500 gravel trucks shuttling on Nantou County's main roads. Under such large amount of gravel dredging and selling, in addition to emission lots of particulates caused by the procession of mining and washing gravel, there are lots of falling gravel, driving dust, exhaust gas caused by thousands of gravel trucks shuttling on the county's roads forming the most resources of pollutants daily that impact the air quality and damage people health.
This research according to an academic institution's study result concerning about monitoring TSP and total amount of gravel trucks on gravel dredge as well as its transporting during 2003 to 2005 that commissioned by the Environmental Protection Bureau of Nantou County, using Excel for statistic method to get both Line's equation and Index's equation, and put relative regulations standard value of TSP (such as the emission standard of particulates in the emission standard of fixed air pollutant resources, etc.) into the equations in order to pre-analyze the total amount of transporting gravel trucks per hour or each day, and feasibility assessment to establish total amount control of gravel trucks reducing the impact of transporting gravel trucks again the air quality.
Among all prediction equations, the Gin-Siang Garage & Long-Cheng Temple monitor station located on road 16 in 2004 is the most representative. This station not only has the most monitoring spots (up to 68 spots), situated in the most suitable site (every gravel truck must pass by this site), but also their initial concentration(intercept) approach the monitor background value of TSP in this site. Besides, Index's curve is more reasonable, so that adopt Index's curve is better than adopt Line's curve to predict the total amount of transporting gravel trucks.
Analyzing monitor data from the mentioned representative spots, when concentration of suspension particulates reach the limit value of announcing a warning for emergency deterioration of air quality to forbid or confine the use of transportation tools; the maximum total amount of gravel trucks driving in Nantou County is 5000 vehicles each day. That is not more than 2500 gravel trucks driving in the same direction into Nantou County each day. In other words, there are 2500 gravel trucks can be allowed driving in the same direction into Nantou County for transporting gravel each day only.
Finally through this research, we can draw relative accessory regulations for total amount control of gravel trucks offering the authorities for references.
URI: http://hdl.handle.net/11455/5166
其他識別: U0005-1708200614004000
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.