Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5166
DC FieldValueLanguage
dc.contributor李清華zh_TW
dc.contributorChing-Hwa,Leeen_US
dc.contributor鄭曼婷zh_TW
dc.contributorMan-Ting,Chengen_US
dc.contributor.advisor林明德zh_TW
dc.contributor.advisorMin-Der,Linen_US
dc.contributor.author林隆儒zh_TW
dc.contributor.authorLung-Ju, Linen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T06:34:11Z-
dc.date.available2014-06-06T06:34:11Z-
dc.identifierU0005-1708200614004000zh_TW
dc.identifier.citation[1] 行政院環境保護署,「大台北高雄地區空氣污染源排放資料調查及減量規劃」,1990年2月。 [2] 行政院環境保護署,「水泥業裸露礦區逸散塵粒污染特性分析及防制之研究」, 1997年7月。 [3] 行政院環境保護署,「固定污染源空氣污染物排放標準」,2002/07/03修正公布。 [4] 行政院環境保護署,「空氣污染防制法」,2002/06/19修正公布。 [5] 行政院環境保護署,「空氣品質標準」,2004/10/13修正公布。 [6] 行政院環境保護署,「空氣品質嚴重惡化緊急防制辦法」,2000/09/20修正公布。 [7] 行政院環境保護署網頁,http://taqm.epa.gov.tw/emc/default.aspx/,環境監測,空氣品質監測,2006年。 [8] 行政院環境保護署環境保護人員訓練所,「污染源排放特性與排放推估」,空氣污染防制專責人員訓練教材第四冊, 1996年10月。 [9] 行政院環境保護署環境檢驗所,(80)環署檢字第27038號公告NIEA S280.60T,1991年8月12日。 [10] 行政院環境保護署環境檢驗所,「空氣中粒狀污染物檢測法—高量採樣法(NIEA A102.11A)」,1999年。 [11] 李清華等,「南投縣砂石疏濬工程粒狀污染物空污費徵收合理性評估計畫」,南投縣政府環境保護局委託研究計畫,2006年2月。 [12] 李清華等,「南投縣砂石疏濬空污費費率合理性評估計畫」,南投縣政府環境保護局委託研究計畫,2005年4月。 [13] 林明德等,「92年度南投縣砂石場粒狀污染物空污費徵收可行性評估計畫」,南投縣政府環境保護局委託研究計畫,2004年4月。 [14] 南投縣政府,砂石車輛載運砂石92年9月~93年5月車流量點算紀錄總表,2004年 [15] 南投縣政府環境保護局,「93年度南投縣空氣污染防制工作綜合管理計畫」,期末報告,2005年4月。 [16] 南投縣政府環境保護局,「94年度南投縣空氣污染防制工作綜合管理計畫」,期末報告,2006年4月。 [17] 南投縣政府環境保護局,「南投縣91年度砂石場、瀝青拌合及預拌混凝土廠污染稽查管制計畫」,期末報告,2003年7月。 [18] 南投縣政府環境保護局,「南投縣92年度砂石場、瀝青拌合及預拌混凝土廠污染稽查管制計畫」,期末報告,2004年4月。 [19] 南投縣政府環境保護局,「南投縣93年度土石加工業及土石運輸道路污染稽查管制計畫」,期末報告,2005年5月。 [20] 南投縣政府環境保護局,「南投縣94年度土石加工業及土石運輸道路污染稽查管制計畫」,期末報告,2006年2月。 [21] 張時獻等,「93年度南投縣懸浮污染物暴露與居民健康之調查計畫」,南投縣政府環境保護局委託研究計畫,期末報告,2005年3月。 [22] 張時獻等,「94年度南投縣懸浮污染物暴露與居民健康之調查計畫」,南投縣政府環境保護局委託研究計畫,期末報告,2006年3月。 [23] 章裕民等,「營建工程逸散粉塵量推估及其污染防治措施評估」,行政院環境保護署委託研究計畫,EPA-85-11-01-09-45, p.7-13,1996年。 [24] Bagnold, R. A., “The physics of Blown Sand and Desert Dunes,” Methuen and Co., Ltd., London, 1954. [25] Gold, D. R., Damokosh, A. I., Pope, C. A. 3rd., Dockery, D. W., McDonnell, W. F., Serrano, P., Retama, A., and Castillejos, M. (1999) Particulate and ozone pollutant effects on the respiratory function of children in southwest Mexico City. Epidemiology, 10(1):8-16. [26] Gold, D. R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., Allen, G., Verrier, M., Cherry, R., and Verrier, R. (2000) Ambient pollution and heart rate variability. Circulation, 101(11):1267-1273. [27] Ibald-Mulli, A., Stieber, J., Wichmann, H. E., Koenig, W., and Peters, A. (2001) Effects of air pollution on blood pressure: a population-based approach. Am. J. Public Health, 91(4):571-577. [28] Lee, C.-H., L.-W. Tang, and C.-T. Chang, “Modeling of Fugitive Dust Emission for Construction Sand and Gravel Processing Plant,” Environ. Sci. Technol., 35, pp.2073-2077, 2001. [29] Morris, R. D. (2001) Airborne particulates and hospital admissions for cardiovascular disease: a quantitative review of the evidence. Environ. Health Perspect., 109(Suppl 4):495-500. [30] Peters, A., Perz, S., Doring, A., Stieber, J., Koenig, W., and Wichmann, H. E. (1999) Increases in heart rate during an air pollution episode. Am. J Epidemiol., 150(10):1094-1098. [31] Pope, C. A, 3rd., Schwartz, J., and Ransom, M. R. (1992) Daily mortality and PM10 pollution in Utah Valley. Arch. Environ. Health, 47(3):211-217. [32] Pope, C. A. 3rd., Dockery, D. W., Kanner, R. E., Villegas, G. M., and Schwartz, J. (1999) Oxygen saturation, pulse rate, and particulate air pollution: A daily time-series panel study. Am. J. Respir. Crit. Care Med., 159(2):365-372. [33] Ransom, M. R., and Pope, C. A. 3rd. (1992) Elementary school absences and PM10 pollution in Utah Valley. Environ. Res., 58(2): 204-219. [34] Schwartz, J. (1996) Air pollution and hospital admissions for respiratory disease. Epidemiology, 7(1):20-28. [35] Schwartz, J., Slater, D., Larson, T. V., Pierson, W. E., and Koenig, J. Q. (1993) Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am. Rev. Respir. Dis., 147(4):826-831. [36] Stone, P. H., and Godleski, J. J. (1999) First steps toward understanding the pathophysiologic link between air pollution and cardiac mortality. Am. Heart J., 138(5 Pt 1):804-807. [37] Studnicka, M. J., Frischer, T., Meinert, R., Studnicka-Benke, A., Hajek, K., Spengler, J. D., and Neumann, M. G. (1995) Acidic particles and lung function in children. A summer camp study in the Austrian Alps. Am. J. Respir. Crit. Care Med., 151(2 Pt 1):423-430. [38] US EPA. AP-42, Fifth Edition, Compilation of Air Pollutant Emission Factors, vol. I Chapter 13: Miscellaneous Sources. , 2003 [39] US EPA.「AP-42」, 5th, Research Triangle Park, 1996.9. [40] Wang, T. N., Ko, Y. C., Chao, Y. Y., Huang, C. C., and Lin, R.S. (1999) Association between indoor and outdoor air pollution and adolescent asthma from 1995 to 1996 in Taiwan. Environ. Res., 81(3):239-247. [41] Yang, C. Y., Wang, J. D., Chan, C. C., Hwang, J. S., and Chen, P. C. (1998) Respiratory symptoms of primary school children living in a petrochemical polluted area in Taiwan. Pediatr. Pulmonol., 25(5):299- 303.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5166-
dc.description.abstract自921地震及桃茲颱風以後,南投縣各主要河川即陸續展開土石疏濬及標售工程,統計自90年至94年度所發包疏濬之工程即達100件次。總疏濬土石方數量高達23,927,688立方公尺,如以35噸總重之砂石車載運約須高達171萬車次方能全部輸運完畢,平均每月有高達2萬8500輛次砂石車往來穿梭於境內主要道路。如此龐大的疏濬及土石標售數量,除了土石開採、洗選加工過程會排放粒狀污染物之外,日以千計之砂石車輛來回奔跑於縣內主要公路,所產生之土方掉落、車行揚塵、廢氣排放等是最主要之污染來源,嚴重衝擊當地環境空氣品質及影響居民身體健康。 本研究根據南投縣政府環境保護局於92年至94年三年間委託學術單位在疏濬工程土石運輸動線上實地監測TSP及砂石車流量調查結果,利用EXCEL軟體做回歸統計工具,以線性及指數二種回歸分析方法得到線性及指數二種方程式,並將有關TSP之各項法規標準值(例如:「固定污染源空氣污染物排放標準」中之周界粒狀物排放標準…等)置於方程式中,預測分析土石運輸動線上砂石車每小時或每日最高行駛總量,並探討限制砂石車行駛總量之可行性,以減輕砂石車輛運輸對環境空氣品質之衝擊。 綜觀所有預測方程式,以93年度台16線俊祥修車廠及龍泉宮這二個監測地點所回歸之方程式【Y =1.5229 X +152.64,R2 = 0.32;Y =132.35e0.0046 X,R2 = 0.55】最具代表性,該地點不僅因為監測點數最多(達68點次)、地點也非常合適(為所有砂石車必經路段)、砂石車車速具有代表性、同時初始濃度(截距)亦相當接近該地點之TSP監測背景值。另外,亦發現所有回歸方程式中以指數回歸曲線比較符合常理,預測砂石車流量採用指數回歸曲線優於線性回歸曲線。 經由以上代表性監測地點之監測資料分析,當土石運輸動線上懸浮微粒濃度達緊急空氣品質惡化警告發布限值,得禁止或限制交通工具之使用時,預測砂石車行駛總量之上限為每小時500輛,相當於每日5000輛(假設砂石車行駛時間每日為10個小時),即單向車道入境砂石車每日不得多於2500輛,亦即每天最多僅能同意2500輛砂石車進入南投縣境內輸運砂石。最後,本研究研擬實施砂石車行駛總量管制之配套措施,提供施政之參考。zh_TW
dc.description.abstractAfter earthquake 921 and typhoon Tao-tz, Nantou County's main rivers began gradually to dredge and sell gravel. Since 2001 to 2005, there were 100 times of dredging to be done and yielded gravel up to 23927688 cubic meters. If these gravel transported by 3.5-ton gravel truck, it needs 1.71 million times to finish the work. In this condition, there will be 28500 gravel trucks shuttling on Nantou County's main roads. Under such large amount of gravel dredging and selling, in addition to emission lots of particulates caused by the procession of mining and washing gravel, there are lots of falling gravel, driving dust, exhaust gas caused by thousands of gravel trucks shuttling on the county's roads forming the most resources of pollutants daily that impact the air quality and damage people health. This research according to an academic institution's study result concerning about monitoring TSP and total amount of gravel trucks on gravel dredge as well as its transporting during 2003 to 2005 that commissioned by the Environmental Protection Bureau of Nantou County, using Excel for statistic method to get both Line's equation and Index's equation, and put relative regulations standard value of TSP (such as the emission standard of particulates in the emission standard of fixed air pollutant resources, etc.) into the equations in order to pre-analyze the total amount of transporting gravel trucks per hour or each day, and feasibility assessment to establish total amount control of gravel trucks reducing the impact of transporting gravel trucks again the air quality. Among all prediction equations, the Gin-Siang Garage & Long-Cheng Temple monitor station located on road 16 in 2004 is the most representative. This station not only has the most monitoring spots (up to 68 spots), situated in the most suitable site (every gravel truck must pass by this site), but also their initial concentration(intercept) approach the monitor background value of TSP in this site. Besides, Index's curve is more reasonable, so that adopt Index's curve is better than adopt Line's curve to predict the total amount of transporting gravel trucks. Analyzing monitor data from the mentioned representative spots, when concentration of suspension particulates reach the limit value of announcing a warning for emergency deterioration of air quality to forbid or confine the use of transportation tools; the maximum total amount of gravel trucks driving in Nantou County is 5000 vehicles each day. That is not more than 2500 gravel trucks driving in the same direction into Nantou County each day. In other words, there are 2500 gravel trucks can be allowed driving in the same direction into Nantou County for transporting gravel each day only. Finally through this research, we can draw relative accessory regulations for total amount control of gravel trucks offering the authorities for references.en_US
dc.description.tableofcontents第一章 前言.......................................................1 1-1 研究動機.....................................................1 1-2 研究目的.....................................................1 1-3 研究項目.....................................................2 1-4 研究架構.....................................................2 第二章 研究背景資料...............................................4 2-1 南投縣基本資料...............................................4 2-1-1 地理環境與氣候...........................................4 2-1-2 空氣品質現況.............................................5 2-1-3 河川疏濬現況.............................................7 2-1-4 河川疏濬污染特性.........................................7 2-1-5 土石運輸動線TSP背景值...................................9 2-2 TSP與人體健康...............................................11 2-3 河川疏濬TSP產生源及防制措施................................13 2-4 河川疏濬TSP逸散排放之影響因素..............................14 2-5 河川疏濬TSP排放量推估相關文獻..............................16 第三章 研究方法..................................................22 3-1 土石運輸動線砂石車活動強度及TSP調查規劃彙整................22 3-1-1 調查監測位置選址考量....................................22 3-1-2 土石運輸動線砂石車活動強度調查方法及程序................28 3-1-3 土石運輸動線TSP監測方法及程序..........................31 3-2 與TSP相關之法規與指標......................................40 3-2-1 固定污染源空氣污染物排放標準............................41 3-2-2 空氣品質標準............................................41 3-2-3 空氣污染指標(PSI).....................................41 3-3 空氣品質嚴重惡化緊急防制辦法................................43 3-4 迴歸分析....................................................45 第四章 結果與討論................................................47 4-1 92年河川疏濬土石運輸動線TSP監測結果........................47 4-1-1 鋪面道路砂石車活動強度調查結果..........................47 4-1-2 鋪面道路TSP監測結果....................................47 4-1-3 監測結果分析與討論......................................48 4-2 93年河川疏濬土石運輸動線TSP監測結果........................48 4-2-1 鋪面道路砂石車活動強度調查結果..........................48 4-2-2 鋪面道路TSP監測結果....................................49 4-2-3 監測結果分析與討論......................................49 4-3 94年河川疏濬土石運輸動線TSP監測結果........................50 4-3-1 鋪面道路砂石車活動強度調查結果..........................50 4-3-2 鋪面道路TSP監測結果....................................50 4-3-3 監測結果分析與討論......................................51 4-4 探討砂石車行駛總量管制之可行性..............................53 4-4-1 監測資料迴歸分析結果....................................53 4-4-2 與排放標準比較..........................................64 4-4-3 與空氣品質標準比較......................................65 4-4-4 與空氣污染指標(PSI)比較...............................66 4-4-5 與空氣品質嚴重惡化緊急防制辦法比較......................69 4-4-6 砂石車行駛總量管制可行性綜合分析........................70 4-5 砂石車行駛總量管制配套措施..................................74 第五章 結論與建議................................................76 5-1 結論........................................................76 5-2 建議........................................................77 參考文獻..........................................................78 附錄..............................................................81 附錄一、土石運輸動線TSP假日監測背景值..........................82 附錄二、土石運輸動線TSP現場監測情形圖..........................84 附錄三、砂石車活動強度及TSP監測結果表..........................96zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708200614004000en_US
dc.subject總懸浮微粒zh_TW
dc.subjectTotal Suspended Particulates (TSP)en_US
dc.subject活動強度zh_TW
dc.subject總量管制zh_TW
dc.subject砂石車zh_TW
dc.subject砂石疏濬zh_TW
dc.subjectActivity Intensityen_US
dc.subjectControl of Total Amounten_US
dc.subjectGravel Trucksen_US
dc.subjectGravel Dredgingen_US
dc.title由砂石車活動強度與TSP監測結果探討砂石車行駛總量管制之可行性zh_TW
dc.titleFeasibility Assessment of Using Gravel Trucks' Activity Intensity And TSP Monitored Results to Establish Total Amount Control Policies of Gravel Trucks.en_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.