Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5170
標題: 重金屬污染農地的淋洗處理與植栽分析
Leaching and Plantng Test of Heavy Metal Contaminated Farm Soil
作者: 陳奕文
Chen, Yi-Wen
關鍵字: contaminated soil;重金屬污染土壤;leaching;plant;heavy metal;淋洗;性質改變;植栽試驗;植體分析
出版社: 環境工程學系所
引用: 王一雄、陳尊賢、李達源,土壤污染學,國立空中大學,台北(1995)。 王銀波、劉黔蘭、吳正宗、王士坤,1998,“翻轉法應用於農田土壤污染改善之研究”,第二屆海峽兩岸土壤肥料學術研討會論文集,第四十卷,第1-16頁。 中華土壤肥料學會,1995,“土壤分析手冊”。 林景和,「腐植酸對土壤、磷礦石及鳥糞石養分有效性和作物養分吸收與錳毒害緩解之影響」,博士論文,國立臺灣大學農業化學研究所,台北 ( 2001 )。 行政院環境保護署,1991,“土壤中酸、鹼測定方法”。 行政院環境保護署,1994,“土壤中陽離子交換容量-醋酸鈉法”。 行政院環境保護署,2001a,“土壤污染管制標準”。 行政院環境保護署,2001b,“土壤污染監測基準”。 行政院環境保護署,2002a,“土壤水份含量測定方法-重量法”。 行政院環境保護署,2002b,“沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法”。 行政院環境保護署,2003,“土壤中重金屬檢測方法-王水消化法”。 行政院環境保護署,2004,“土壤及地下水污染整治雙年報”,行政院環境保護署土壤及地下水污染整治基金管理委員會,台北。 初建,1994,“臺灣數種污染土類土壤之重金屬型態及其釋放趨勢”,國立中興大學土壤環境科學系研究所,碩士論文。 初建、王敏昭,1999,“重金屬於其污染土壤之固相型態”,中國農業化學會誌,第三十七卷,第1期,第32-41頁。 翁序伯,2005,”重金屬污染農地淋洗處理及其土壤性質改變之研究”, 國立中興大學環境工程學系研究所,碩士論文 張仁福,土壤污染防治學,復文圖書出版社,高雄,第325-340頁(1998)。 張添晉,1993,“土壤物理化學復育之工程技術評估”,工業污染防治,第46期,第51-77頁。 陳育民,1999,“重金屬污染土壤利用鹽酸及檸檬酸之化學移除方法”,國立中興大學土壤環境科學系研究所碩士論文。 陳尊賢,2003,“受重金屬污染農地土壤之整治技術與相關問題分析”,台灣土壤及地下水環境保護協會簡訊,第9期,第2-9頁。 陳尊賢,2004,”台灣農田污染與油品污染之整治技術與問題分析”,國立台灣大學農藥化學究所污染土壤調查與整治課程 陳雍程,2000,“土壤樣品鉛、鎘的逐步萃取”,國立中興大學環境工程學系研究所,碩士論文。 陳慎德,2003,“淺論我國農地土壤重金屬污染處理之現況與問題”,台灣土壤及地下水環境保護協會簡訊,第9期,第10-17頁。 陳錕榮,2000,“重金屬污染場址調查與復育技術評估之研究”,國立雲林科技大學環境與安全工程技術研究所,碩士論文。 黃小林,2003,”土壤重金屬污染整治技術-再談植物復育法”,行政院環保署環保訓練出版品雙月刊第64期 黃俊憲,2004,“污染農地中鎘的去除”,國立中興大學環境工程學系研究所,碩士論文。 歐育憲,2000,“土壤中重金屬污染物之生物有效性意義研究”,逢甲大學環境工程與科學系研究所,碩士論文。 劉黔蘭,1998,“電鍍廢水污染土壤”,第二屆海峽兩岸土壤肥料學術研討會論文集,第四十三卷,第1-7頁。 賴俊成,2002,“混合酸淋洗處理重金屬污染土壤之研究”,國立雲林科技大學環境與安全工程技術研究所,碩士論文。 羅良慧,1997,“應用地理資訊系統於土壤鎘污染危害評估方法之研究”,國立中興大學資源管理研究所,碩士論文。 蘇惠靖,2003,“以萃取法復育受重金屬污染土壤之可行性評估”,國立屏東科技大學環境工程與科學系,碩士論文。 Alloway, B. J., 1995, “Soil processes and the behaviour of heavy metals”, In Heavy metals in soils , pp.11-35, John Wiley and Sons, New York. Ayrault S., Bonhomme P., Carrot F., Amblard G., Sciarretta M.D., Galsomies L., 2001, “Multianalysis of trace elements in mosses with inductively coupled plasma-mass spectrometry”, Biological Trace Element Research 179 177–184. Beckett, P. H. T., 1989, “The use of extractants in studies on trace metals in soils, sewage, sludge and sludge treated soil”, Advances in Soil Sciences 9: 143-176. Buchmann, J. H., de Souza Sarkis, J. E. and Rodrigues, C. 2000, ”Determination of metals in plant samples by using a sector field inductively coupled plasma mass spectrometer”, The Science of the Total Environment 263 221–229 Calmano, W., Forstner, U. and Kersten, M., 1986, “Metal associations in anoxic sediments and changes following upland disposal”, Environmental Toxicology and Chemistry 12 (3/4): 313-321. Chao, T. T. and Sanzolone, R. P., 1989, “Fractionation of soil selenium by sequential partial dissolution”, Soil Science Society of America journal 53: 385-392. Deng, H., Ye, Z. H.and Wong, M. H., 2004, “Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China”, Environmental Pollution 132 29 - 40 Elliott, H. A., Dempsey, B. A. and Maille, P. J., 1990, “Content and fractionation of heavy metals in water treatment sludge”, Journal of environmental quality 19: 330-334. Hickey, M. G. and Kittrick, J. A., 1984, “Chemical Partition of Cadmium, Copper, Nickel and Zinc in Soils and Sediments Containing High Levels of Heavy Metal”, Journal of environmental quality 13 (3): 372-376. Jung, M. C. and Thornton, I., 1996, “Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea”, Applied Geochemistry, Vol. 11, pp. 53-59 Krachler, M., Mohl, C., Emons, H. and Shotyk, W., 2002, “Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry”, Spectrochimica Acta Part B: Atomic Spectroscopy 57 1277–1289 Krachler M., Radner H., Irgolic K.J., 1996, “Microwave digestion methods for the determination of trace elements in brain and liver samples by inductively coupled plasma mass spectrometry”, Fresenius'' Journal of Analytical Chemistry 355 120–128. Mann, M. J., 1999, “Full-scale and pilot-scale soil washing”, Journal of Hazardous Materials, 66 (1): 119-136. Nelson, D. W. and Sommers, L. E., 1982, “Total carbon, organic carbon and organic matter”, Method of soil analysis Part2: Chemical and microbiological properties, 2nd ed., p.539-580, Edited by Page, A.L., Miller, R. H., Keeney, D. R., American Society of Agronomy, Wisconsin. Peters, R. W. and Shem, L., 1995, “Treatment of soils contaminated with heavy metals”, Metal Speciation and Contamination of soil, pp. 255-274, Lewis Publishers. Salim, I. A., Miller C. J. and Howard, J. L., 1996, “Sorption isotherm-sequential extraction analysis of heavy metal retention in landfill liners”, Soil Science Society of America journal 60: 107-114. Sapkota, A., Krachler, M., Scholz, C., Cheburkin, A. K. and Shotyk, W., 2005, “Analytical procedures for the determination of selected major (Al, Ca, Fe, K, Mg, Na, and Ti) and trace (Li, Mn, Sr, and Zn) elements in peat and plant samples using inductively coupled plasma-optical emission spectrometry”, Analytica Chimica Acta 540 247–256 Tessier, A., Campbell, P. G. C. and Bisson, M., 1979, “Sequential Extraction Procedure for the Speciation of Particulate Trace Metals”, Analytical Chemistry 51 (7): 844-851. Tessier, A. and Campbell, P. G. C., 1988, “Partitioning of Trace Metals in Sediments”, Metal Speciation, Theory, Analysis and Application, pp. 183-199, Edited by Kramer, J.R. and H. E. Allen, Lewis Publishers. Ton, S., Delfino, J. J. and Odum, H. T., 1993, “Wetland retention of lead from a hazardous site”, Bulletin of Environmental contamination and Toxicology 51 (3): 430-437.
摘要: 
本研究針對重金屬污染農地土壤進行酸淋洗,並於淋洗後混土稀釋至一般農地標準值之下;研究中討論淋洗前後土壤基本性質改變,肥力變化及重金屬存在型態,並添加土壤改良劑,隨後進行植栽試驗與其植體分析,並且建立初步植體消化分析方法。
淋洗試驗供試土樣為彰化和美土,此土樣除了鉛(250 ± 1 mg/kg)以外,鎘(46 ± 1 mg/kg)、銅(3982 ± 90 mg/kg)、鋅(7867 ± 20 mg/kg)三種金屬均屬於高度污染,超過土壤管制標準值(鎘超過監測基準值)。
在小管柱淋洗中選擇用以評估去除效率的試劑有 0.1 M HCl、0.1 M HCl + 4.8 mM Citric Acid(檸檬酸)以及0.02 M Citric Acid + 0.05 M CaCl2等三種;實驗中先以小管柱進行淋洗,並比較淋洗效果以及土壤基本性質與肥力的改變。其次,採用花槽淋洗,將土中重金屬濃度降至法規標準後,添加肥料並進行植栽試驗,藉以評估土壤處理方式對於作物的影響。
實驗結果顯示,0.1 M HCl/4.8 mM Citric Acid的混合試劑對於重金屬之去除效果較佳;三種淋洗試劑對於土壤基本性質均不會造成顯著的改變但pH值改變較大。小管柱與花槽之淋洗,效果相一致。以0.1 M HCl萃取法分析土中的基本肥力,結果顯示三種淋洗試劑對於K、Mg、Ca等營養元素均會造成流失,因此土壤淋洗後先以苦土石灰調整pH值至6.5 – 7之間,再添加Mg、Ca等營養元素以及有機肥料,進行蔬菜植栽試驗,記錄作物生長情形與分析植體重金屬含量。
植體消化重金屬分析方法之確認方面,利用密閉微波法消化植體並測定重金屬含量,以不同消化試劑與溫度評估兩種因子對於鎘、銅、鉛、鋅的影響。先以市售蔬菜樣品進行消化因子的影響評估,選定兩種溫度(112 ℃ 與 190 ℃)和消化試劑(HClO4:HNO3 與 王水試劑)作影響的探討。結果顯示選定兩種溫度和消化試劑對於消化結果並無明顯差異。再以標準參考樣品 NIST 1547 進行消化試劑影響確認。結果顯示,HClO4 + HNO3試劑與標準參考樣品參考值比較介於 95 % - 105 % 之間,相對於王水試劑有較佳的實驗結果。

In this study, the contaminated soil with heavy metal is leached by acid reagents and reduces the concentration of heavy metal to the regulation standard by diluting. Changes of properties, fertility and the distribution of metal speciation are investigated. The treated soil adding manure is used to planting test and to distribute analysis of Cd、Cu、Pb、Zn in plant sample.
In leaching teat, the 0.1 M HCl + 4.8 mM Citric Acid sample highly contaminated by Cd ( 46 ± 1 mg/kg ), Cu ( 3982 ± 90 mg/kg )and Zn ( 7867 ± 20 mg/kg ) form Hemei, Changhua exceed regulation standard except Pb.
Three reagents ,0.1 M HCl, 0.1 M HCl + 4.8 mM citric acid and 0.02 M citric acid + 0.05 M CaCl2 , is used to estimate leaching efficiency in column test and to compare with changes of properties and fertility. Firther, leaching test with large column (flowerpot) and planting test with adding manure are used to estimate the influence of treatment on plant.
The results show 0.1 M HCl + 4.8 mM citric acid is better reagent to reduce the concentration of heavy metal. Three reagents do not change properties of soil except pH. The same result is between small and large column test. The concentration of K, Mg and Ca , nutrition of plat, with 0.1 M HCl extraction is reduced within leaching. Consequently adding CaCO3 ‧ MgCO3 and manure enhances nutrition before plating test.
A microwave heated high pressure autoclave was used to digest plant sample to confirm concentrations of Cd、Cu、Pb、Zn in plant sample with different acid mixtures digestion reagent and temperature. Plant samples from general market estimates influences with different acid mixtures including HClO4:HNO3= 1:4 V/V and aqua regia and temperature including 190 ℃ and 112 ℃. Results show no significant difference in digestion reagent and temperature. Digesting certainly reference materials(NIST 1547 Peach Leaves)with two reagents confirms influences of digestion reagents. Results show that HClO4 + HNO3 with results between 95 % - 105 % comparing with reference materials is better digestion reagent than aqua regia.
URI: http://hdl.handle.net/11455/5170
其他識別: U0005-1708200617191600
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.