Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/51794
DC FieldValueLanguage
dc.contributor.advisor金安兒zh_TW
dc.contributor.advisorV. An-Erl Kingen_US
dc.contributor.author曾政鴻zh_TW
dc.contributor.authorTsen, Jen-Horngen_US
dc.date2003zh_TW
dc.date.accessioned2014-06-06T08:54:56Z-
dc.date.available2014-06-06T08:54:56Z-
dc.identifier.urihttp://hdl.handle.net/11455/51794-
dc.description.abstract本研究使用香蕉作為原料來製備培養基,進行嗜酸乳酸桿菌的發 酵,並分別利用褐藻酸鈣及κ-紅藻膠凝膠所製備得之膠球來進行細胞 的包埋固定化,所得褐藻膠膠球之直徑約2.6 mm,κ-紅藻膠膠球直徑 約為3.0 mm,以嘗試提升嗜酸乳酸桿菌在香蕉培養基中的發酵效率。 所用香蕉原料包括綠香蕉及成熟香蕉,分別利用固定化及游離態菌體 來進行發酵80小時。在發酵過程中,不論是固定化或是游離態的嗜酸 乳酸桿菌發酵,成熟香蕉培養基中的活菌數均高於綠香蕉培養基。在 固定化菌體的發酵生長過程中,部份菌體會自包埋的膠球中脫離進入 培養基溶液中生長。在固定化菌體發酵實驗部份,培養基懸浮液中的 最終活菌數可達105 CFU/ml的程度,固定化膠球中的活菌體濃度可達 108 CFU/ml gel以上;而在游離態發酵組中,最終活菌為106 CFU/ml 的程度。固定化菌體能克服綠香蕉培養基中的不利條件,呈現出較佳 的生長。在發酵過程中,pH值與可滴定酸度的變化和菌株的生長情況 有明顯的關聯。成熟香蕉培養基經固定化嗜酸乳酸桿菌發酵後,其中 果寡醣的含量變化不大,可作為嗜酸乳酸桿菌之益菌物質,具有成為 良好synbiotics產品之潛力,其中褐藻酸鈣固定化者又優於κ-紅藻膠 固定化者。由成本分析的整體結果發現,褐藻酸鈣固定化要優於κ-紅 藻膠固定化。另一方面,將嗜酸乳酸桿菌分別以褐藻酸鈣及κ-紅藻膠 進行固定化,探討細胞固定化對菌體凍結及冷凍乾燥時存活的保護效 果,以及其對冷凍乾燥菌體在5℃、25℃、45℃、60℃、70℃等不同溫 度下之貯藏安定性的影響。實驗所用游離態及固定化菌體的初始濃度 均達1010 cells/ml層次的程度,結果發現褐藻酸鈣與κ-紅藻膠膠球的 固定化均能有效地提供保護效果,減少菌株在操作過程中所受到的傷 害。在所用的不同貯藏溫度下,不論是游離態或是固定化的菌體,其 Log D值與貯藏溫度間均具有極高的相關性,而由此二種狀態菌體所得 之二條Log D與貯藏溫度的迴歸直線所求出之z值間亦具顯著差異(p < 0.05),顯示細胞固定化能增加冷凍乾燥菌體在貯藏過程中對溫度的耐 受性,並且能減低溫度變化對冷凍乾燥菌體貯藏安定性的影響。zh_TW
dc.description.abstractBanana was used as the raw material for the preparation of fermentation media of Lactobacillus acidophilus, and cell immobilization was applied to improve the fermentation efficiency of L. acidophilus in banana media. Cell immobilization was performed using calcium alginate and κ-carrageenan as the entrapping matrix, and gel beads of diameters around 2.6 mm for the former and 3.0 mm for the latter were obtained. Both green and ripe bananas were used for the preparation of banana media, and both free and immobilized cells were used to conduct the fermentation for 80 hours. The viable cell number in ripe banana media was found to be higher than that in green ones during both free cell and immobilized cell fermentation. During the fermentation of immobilized cell, cells would leak out from the gel beads and grew in the medium solution. In immobilized cell fermentation, the final viable cell number could reach 105 CFU/ml in medium suspension and that in gel beads could become over 108 CFU/ml gel. In free cell fermentation, the final viable cell number was around 106 CFU/ml. Immobilized cell could overcome the unfavorable conditions in green banana media and improved results could be obtained. During the fermentation, the variation of pH and titratable acidity showed obvious relationships with the growth of cells. Variation of fructooligosaccharides contents in ripe banana media was not remarkable in immobilized cell fermentation compared to free cell. Immobilized L. acidophilus fermented banana medium was able to be used as a synbiotic product by combining the probiotic effect of L. acidophilus and the prebiotic effect of banana. The effect of Ca-alginate immobilization was better than κ-carrageenan. Based on the overall results of cost analysis, Ca-alginate immobilization was a better choice compared toκ-carrageenan immobilization. On the other hand, L. acidophilus was immobilized using Ca-alginate andκ-carrageenan, and protection effects of cell immobilization on the viability of the bacteria after freezing and freeze-drying were studied, and its influence on the storage stability of the freeze-dried cells at 5℃, 25℃, 45℃, 60℃, 70℃ was also investigated. Initial concentration of both free and immobilized cells used for experiments all reached the level of 1010 cells/ml. Results indicated that the immobilization in Ca-alginate gel beads andκ-carrageenan gel beads could provide effective protection to reduce the damage of bacteria under operations. High correlations were obtained between Log D values and storage temperatures for both free and immobilized cells under those various storage temperatures used. the z value which derived from the linear regression equation of Log D and storage temperature for free and immobilized cells were significantly different (p < 0.05). Cell immobilization could enhance temperature tolerance of the freeze-dried bacteria during storage and diminish the influence of temperature variation on the storage stability of freeze-dried cells.en_US
dc.description.tableofcontents前言………………………………………………………………………...1 文獻整理…………………………………………………………………...4 一、乳酸菌的益生特性…………………………………………………...4 (一)乳酸菌的定義與分類…………………………………….……………4 (二)益生菌(probiotics)的介紹………………………………………….5 (1)益生菌的概念………………………..…………………………………5 (2)益生菌的發展…………………………………………………………..6 (3)益生菌的特性…………………………………………………………..7 (4)益生菌的條件…………………………….……………………………13 (5)益生菌的機能性…………………………….…………………………14 (三)乳酸菌的益生特性…………………………………………………..21 (四)嗜酸乳酸桿菌(L. acidophilus)……………………………….….25 二、細胞固定化(Cell Immobilization) …………………………..…34 (一)固定化技術概論……………………………………………………..34 (1)固定化技術之歷史……………………………………………….……34 (2)固定化之意義……………………………………………………….…34 (3)固定化之優缺點……………………………………………….………35 (4)固定化技術……………………………………………………….……35 (二)細胞固定化的優點…………………………………………………..45 (三)細胞固定化的保護作用……………………………………………..46 (1)菌體發酵或冷凍乾燥過程中的保護作用 ……………………….….46 (2)菌體貯藏期間的保護作用………………………………………….…47 (3)對菌體通過腸胃道的保護……………………………………….……47 三、益菌物質(Prebiotics)之介紹………………………………………48 (一)益菌物質的定義…………………………………..…………………48 (二)益菌物質之條件……………………………………………………..48 (三)益菌物質之機能性…………………………………………………..48 (四)目前所認定之益菌物質的種類……………………………………..50 (五)Synbiotics (Conbiotics)……………………………….…………51 (六)果寡醣(Fructooligosaccharides)…………………………………51 (1)果寡醣的來源……………………………………………………...…52 (2)果寡醣的結構及特性…………………………………………….……52 1.化學結構………………………………………………………….…….52 2.物化特性…………………………………………………………….….52 四、香蕉……………………………………………………………..……52 (一)概論…………………………………………………………………..52 (二)香蕉的加工…………………………………………………………..60 (1)褐變之原因及防止法…………………………………………….……62 (2)殺菁(blanching)處理…………………………………………………63 (三)香蕉中的益菌物質…………………………………………………..64 材料與方法…………………………………………………………….….70 一、實驗材料……………………………………………………………..70 (一)菌株………………………………………………………..…………70 (二)培養基………………………………………………………………..70 (三)原料香蕉……………………………………………………………..70 (四)菌體固定化材料……………………………………………………..70 (1)褐藻酸鈣包覆基質(matrix of Ca-alginate)………………………70 (2)κ-紅藻膠包覆基質(matrix of κ-carrageenan)……………………70 (五)貯藏用積層袋..………………………………………………………71 二、實驗方法…………………………………………………………..…71 (一)實驗菌株的前處理與製備………………………………………..…71 (二)菌體的固定化………………………………………………………..72 (1)褐藻酸鈣之菌體固定化………………………………………….……72 (2)κ-紅藻膠之菌體固定化……..…………………………………….…72 (三)游離態菌體之乳酸菌數的測定……………………………………..72 (四)固定化菌體之乳酸菌數的測定……………………………………..75 (1)褐藻酸鈣固定化菌體之菌數測定……………………………….……75 (2)κ-紅藻膠固定化菌體之菌數測定…...………………………………75 (五)香蕉培養基的發酵…………………………………………………..75 (1)香蕉培養基之製備……………………………………………….……75 (2)游離態菌體與固定化菌體之發酵……………………………….……77 (3)分析方法…………………………………………………………….…77 (六)菌體的冷凍乾燥及貯藏試驗………………………………………..78 (1)濃厚菌體懸浮液及固定化菌體的製備………………………….……78 (2)凍結實驗………………………………………………………….……78 (3)冷凍乾燥實驗…………………………………………………….……79 (4)貯藏實驗………………………………………………………….……80 (5)菌落培養計數…………………………………………………….……80 (七)統計分析……………………………………………………………..80 結果與討論…………………………………………………………….….81 一、固定化嗜酸乳酸桿菌的香蕉培養基發酵……………………….….81 (一)固定化載體的凝膠機制……………………………………….…….81 (1)褐藻膠的凝膠…………………………………………………….……81 1.來源……………………………………………………………………..81 2.化學結構………………………………………………………………..81 3.凝膠性質………………………………………………………………..83 4.食品上之應用…………………………………………………………..85 (2)κ-紅藻膠的凝膠………………………………………………….……85 1.來源……………………………………………………………………..85 2.凝膠性質………………………………………………………………..88 3.食品上之應用…………………………………………………………..91 (二)原料香蕉之成份分析………………………………………………..91 (三)褐藻酸鈣固定化菌體的發酵………………………………………..94 (1)固定化乳酸菌與游離態乳酸菌對香蕉培養基發酵作用的影響….…94 (2)不同香蕉培養基對發酵過程中固定化與游離態乳酸菌生長的影響 ……………………………………………………………………………..94 (3)不同香蕉培養基在固定化與游離態乳酸菌發酵過程中酸度的變化 ……………………………………………………………………………..98 (4)不同香蕉培養基在固定化與游離態乳酸菌發酵過程中還原糖量的變 化……………………………………………………………………….98 (四)κ-紅藻膠固定化菌體的發酵……………………………………...101 (1)固定化乳酸菌與游離態乳酸菌對香蕉培養基發酵作用的影響…..101 (2)不同香蕉培養基對發酵過程中固定化與游離態乳酸菌生長的影響… …………...………………………………………………………………101 (3)不同香蕉培養基在固定化與游離態乳酸菌發酵過程中還原糖量的… 變化……………………………………………………………………...104 (4)不同香蕉培養基在固定化與游離態乳酸菌發酵過程中酸度的變化… ...…………………………………………………………………………104 二、固定化嗜酸乳酸桿菌的冷凍乾燥…..………………………….…106 (一)褐藻酸鈣固定化菌體的冷凍乾燥……..…………………….…..106 (1)游離態菌體與固定化菌體凍結與冷凍乾燥結果的比較…………..106 (2)貯藏安定性的探討…………………………………………………..110 (二)κ-紅藻膠固定化菌體的冷凍乾燥………………………………….113 (1)游離態菌體與固定化菌體凍結與冷凍乾燥結果的比較………....113 (2)貯藏安定性的探討………………………………………..…………115 三、綜合討論…….………………………………………………………118 (一)發酵過程中果寡醣含量的變化…………………...………………118 (二)成本分析…………………………………………………….………123 (1)不同synbiotics生產模式之建立……………………………………123 (2)可能生產模式之成本分析…………………………………………..125 結論.…………………………………………………………………..…128 中文摘要.………………………………………………………………..130 英文摘要……….…………………………………………………………132 參考文獻.………………………………………………………………..135zh_TW
dc.language.isoen_USzh_TW
dc.publisher食品科學系zh_TW
dc.subjectBananaen_US
dc.subject香蕉zh_TW
dc.subjectLactobacillus acidophilusen_US
dc.subjectCell immobilizationen_US
dc.subjectFermentationen_US
dc.subjectProbioticen_US
dc.subjectPrebioticen_US
dc.subjectFructooligosaccharidesen_US
dc.subjectSynbioticen_US
dc.subject嗜酸乳酸桿菌zh_TW
dc.subject細胞固定化zh_TW
dc.subject發酵zh_TW
dc.subject益生菌zh_TW
dc.subject益菌物質zh_TW
dc.subject果寡醣zh_TW
dc.subject合生素zh_TW
dc.title固定化乳酸菌香蕉發酵的研究zh_TW
dc.titleFermentation of Banana by Immobilized Lactic Acid Bacteriaen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
Appears in Collections:食品暨應用生物科技學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.