Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5180
標題: 高溫性細菌分解有機污泥及光合作用細菌利用污泥分解物生成氫氣之研究
Degradation of waste activate sludge by thermophilic bacteria and photobiological hydrogen production from digested sludge supernatant by purple nonsulfur bacteria
作者: 陳菀貽
Chen, Wan-Yi
關鍵字: thermophilic bacteria;高溫菌;purple nonsulfur bacteria;sludge;photobiological hydrogen production;紫色不含硫菌;污泥分解;光合產氫
出版社: 環境工程學系所
引用: Akkerman I., Janssen M., Rocha J., Wijffels R. H., 2002., Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy. 27, 1195-1208. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D., 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letters in Applied Microbiology. 13, 202-206. Arcana A., Sasikala C., Ramana C. V., 2003. Augmentation of H2 photoproduction in Rhodopseudomonas palustris by N-heterocyclic aromatic compounds. Biotechnology Letters. 25, 79-82. Baier U., and Zwiefelhofer H. D., 1991. Sludge stabilization, effects of aerobic thermophilic pretreatment. Water Science and Technology. 3, 56-61. Barreto L. A., Makihira A. Riahia K., 2003. The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy. 28, 267-284 Bolliger R., Zürrer H., Bachofen R., 1985. Photoproduction of molecular hydrogen from waste water of a sugar refinery by photosynthetic bacteria. Applied and Microbiology Biotechnology. 23, 147-151. Boušková A., Dohányos M., Schmidt J. E., Angelidaki I., 2005. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge. Water Reasearch. 39, 1481-1488 Carlozzi P., and Sacchi A., 2001. Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photoreactor. Journal of Biotechnology. 88, 239-249. Chu A., Mavinic D. S., Ramey W. D., Kelly H. G., 1994. Volatile fatty acid production in thermophilic aerobic digestion of sludge. Water Research. 28, 1513-1522. Chu A., Mavinic D. S., Ramey W. D., Kelly H. G., 1996. A biochemical model describing volatile fatty acid metabolism in thermophilic aerobic design of wastewater sludge. Water Research. 30, 1759-1770. Chu C. P., Lee D. J., Huang C., 1998. Role of ionic surfactants in compression dewatering of alum sludge. Journal of Colloid and Interface Science. 206, 181. Claasen P., Vrije A., Budde M. T. , Koukios M. A. W., Glynos E. G. A., Rěczey K., 2004. Biological hydrogen production from sweet sorghum by thermophilic bacteria, 2nd world conference and technology exhibition on biomass for energy, industry and climate protection. Rome, Italy. Claus D., Berkeley R. C. W., 1986. Genus Bacillus 1872. In Bergey’s Manual of Systematic Bacteriology 2. pp.1105-1139. Williams and Wilkins. David R. D., Hall J. E., 1997. Production, treatment and disposal of wastewater sludge in Europe from a UK perspective. European Water Pollution Control. 7(2), 9-17. Debabrata D., Veziroğlu T. N., 2001. Hydrogen production by biological process:a survey of literature. International Journal of Hydrogen Energy. 26, 13-28. Deliang H., Butel Y., Magnin J. P., Roux C., Willison J. C., 2005. Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. Journal of Power Sources. 141, 19-23. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F., 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry. 28, 350-356. Eroğlu E., Gündüz U., Yücel M., Türker L., Eroğlu İ., 2004. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. International Journal of Hydrogen Energy. 29, 163-171. Fascetti E., D''addario E., Todini O., Robertiello A., 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International Journal of Hydrogen Energy. 23, 753-760. Fiβler J., Schirra C. G., Kohring W., Giffhorn F., 1995. Enhanced hydrogen production from aromatic acid by immobilized cell of Rhodopseudomonas palustris. Applied Microbiology and Biotechnology. 44, 43-46. Gest H., and Kamen M. D., 1949. Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science. 109, 558-559. Gottschalk G., 1979. Bacterial Metabolism. Spirnger-Verlag Inc. APHA, 1985. Standard methods for the examination of water and wastewater, 16th edition, pp. 537. American public health association, Washington. Hallenbeck P. C., 1983. Nitrogenase reduction by electron carriers: Influence of redox potential on activity and ATP/2e- ratio. Archives of Biochemistry and Biophysics. 220, 657-660. Hallenbeck, P. C., Benemann J. R., 2002. Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy. 27, 1185-1193. Hamer G., 1987. Fundamental aspect of aerobic thermophilic aerobic digestion and processing requirements for land filling. pp. 2-19. Elsevier Applied Science. Hasegawa S., Shiota N., Katsura K., Akashi A., 2000. Solubilization of organic sludge by thermophilic aerobic bacteria as pretreatment for anaerobic digestion. Water Science and Technology. 41, 163-169. Hillmer, P., Gest H., 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata:H2 production by growing cultures. Journal of Bacteriology. 129, 724-731. Hirotani H., Ohigashi H., Kobayashi M., Koshimizu K., 1991. Inactivation of T5 phage by an antivirus substance from R. capsulata. FEMS Microbiology Letters. 77, 13-18. Imhoff J. F., Trüper H. G., 1992. The genus Rhodospirillum and related Genera., In The Prokaryotes. pp. 2141-2155. Springer-Verlag Inc. Jowitt Z. L., Mavinic S. D., Harlan G. K., 2003. Pilot-scale operation of thermophilic aerobic digestion for volatile fatty acid production and distribution. Journal of Environmental Engineering Science. 2(3), 187-197 Kambhu K., Andrew J. F., 1969. Aerobic thermophilic process for the treatment of wastes-simulation studies. Journal of the Water. 41, 127-141. Keeney D. R., Nelson D. W., 1982. Indophenol-blue method. Chemical and microbiological properties. pp. 674-676. Khatipov E., Miyake M., Miyake J., Asada Y., 1998. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrate. FEMS Microbiology Letters. 162, 39-45. Kim Y. K., Kwak M. S., Lee S. B., Lee W. H., Choi J. W., 2002a. Effects of Pretreatments on Thermophilic Aerobic Digestion. Journal of Environmental Engineering. 128(8), 755-763. Kim Y. K., Bae J. H., Oh B. K., Lee W. H., Choi J. W., 2002b. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process. Bioresource Technology. 82, 157-164. Kobayashi M., 1995. Waste remediation and treatment using anoxygenic phototrophic bacteria., In Anoxygenic photosynthetic bacteria. Kluwer Academic Publisher. Koku H., Eróglu I., Gunduz U., Yucel M. Türker L., 2002. Aspect of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy. 27, 1315-1329. Koku H., Eróglu I., Gündüz U., Yücel M., Türker L., 2003. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy. 28, 381-388. LaPara T., Alleman J., 1999. Thermophilic aerobic biological wastewater treatment. Water Research. 33:895-908. Lee C. M., Chen P. C., Wang C. C., Tung Y. C., 2002. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy. 27, 1309-1313. Li D. H., Ganczarczyk J. J., 1989. Fractal geometry of particle aggregates generated in water and wastewater treatment process. Environmental Science and Technology. 23, 1385. Li D. H., Ganczarczyk J. J., 1990. Structure of activated sludge flocs. Biotechnology & Bioengineering. 35, 57. Madigan M. T., Martinko J. M., Parker J., 2006. Brock biology of microorganisms. Pearson Education, Inc. Mason C. A., 1986. Microbial death lysis and ''cryptic'' growth: Fundamental and applied. Swiss Federal Institute of Technology. Mason C. A., Hamer G., Fleischmann T., Lang C., 1987., Aerobic thermophilic biodegradation of microbial cells:some effects of dissolved oxygen and temperature. Applied and Microbiology Biotechnology. 25, 568-576. McIntosh K. B., Oleszkiewicz J. A., 1997. Volatile fatty acid production in aerobic thermophilic pre-treatment of primary sludge. Water Science and Technology. 36, 189-196. Messenger J. R., Villiers H. A., Laubscher H. A., Kenmuir S. J. A., Ekama K. G. A., 1993a. Evaluation of dual digestion system: Part 1:Overview of the Milnerton experience. Water SA. 19, 185-191. Messenger J. R., Villiers H. A., Ekama G. A., 1993b. Evaluation of dual digestion system: Part 2: Operation and performance of pure oxygen aerobic reactor. Water SA. 19, 193-200. Miyake J., Miyake M. Asada Y., 1999. Biotechnological hydrogen production: research for efficient light energy conversion. Journal of Biotechnology. 70, 89-101. Mueller J. A., 2000. Pretreatment processes for the recycling and reuse of sewage sludge. Water Science and Technology. 42, 167. Mueller J. A., Winter A., Struenkmann G., 2004. Investigation and assessment of sludge pre-treatment processes. Water Science and Technology. 49(10),97-104 Nazina T. N., Tourova T. P., Poltaraus A. B., Novikova E. V., Grigoryan A. A., Ivanova A. E., Lysenko A. M., V., Petrunyaka G. A. O. V., Belyaev S. S., Ivanov M. V., 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermo-catenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. International Journal of Systematic and Evolutionary Microbiology. 51, 433-446. Nazina T. N., Sokolova D. S., Grigoryana A. A., Shestakova N. M., Mikhailova E. M., Poltaraus A. B., Tourova T. P., Lysenko A. M., Osipov G. A., Belyaev S. S., 2005. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Systematic and Applied Microbiology. 28, 43-53. Pfennig N., 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology. 28, 283-288. Odom J. M., and Wall D. J., 1983. Photoproduction of H2 from cellulose by anaerobic bacterial coculture. Applied and Environmental Microbiology. 45, 1300-1305. Sachdeva V., Tyagi R. D., Valero J. R., 1999. Factors affecting the production of Bacillus thuringiensis biopesticides. Recent Research Developments in Microbiology. 3, 363-375. Sakai Y., Aoyagi T., Shiota N., Akashi A., Hasegawa S., 2000. Complete decomposition of biological waste sludge by thermophilic aerobic bacteria. Water Science and Technology. 42, 81-88. Sasikala C., Ramana C. V., Rao P. R., 1991. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy. 16, 597-601. Sasikala C., Ramana C. V., Rao P. R., 1995. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy. 20, 123-126. Scheminski A., Krull R., Hempel D. C., 2000. Oxidative treatment of digested sewage sludge with ozone. Water Science and Technology. 42(9), 151-158. Shiota N., Akashi A., Hasegawa S., 2002. A strategy in wastewater treatment process for significant reduction of excess sludge production. Water Science and Technology. 45, 127-134. Shi X. Y., Yu H. Q., 2005a. Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulate. Process Biochemistry. 40, 2475-2481. Shi X. Y., Yu H. Q., 2005b. Optimization of volatile fatty acid compositions for hydrogen production. by Rhodopseudomonas capsulata. Journal Chemistry Technology Biotechnology. 80, 1198-1203. Sims R. E. H., 2003. Renewable Energy Potential In 2003 International Bioenergy Symposium. Taipei, Taiwan. Singh S. P., Srivastava S. C., Pandey K. D., 1994. Hydrogen production by Rhodopseudomonas at the expence of vegetable starch, sugarcene juice and whey. International Journal of Hydrogen Energy. 19, 437-440. Stevens P., Vos C. V. P., Ley J., 1984. The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulata strains. Biotechnology Letters. 6, 277-282. Tangaraj A., Kulandaivelu G., 1994. Biological hydrogen photoproduction using dairy and sugarcene wastewater. Bioresource Technology. 48, 9-12. Tomita K., Ikeda N., Ueno A., 2003. Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnology Letters. 25(20), 1743-1746. Türkarslan S., Yigit D. Ö., Aslan K., Eroğlu I., Gündüz U., 1997. Photobiological hydrogen production by Rhodobacter sphaeroides O.U. 001 by utilization of waste water from milk industry. International Conference on Biological Hydrogen Production. Waikoloa, Hawaii. Rainey F. A., Fritze D., Stackebrandt E., 1994. The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbial. Lett. 115, 205-211 US EPA. 1993. Standard for Use or Disposal of Sewage Sludge:Final Rules. Part 503. Ugwuanyi J. O., Harvey L. M., McNeil B., 2005a. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technology. 96, 707-719. Ugwuanyi J. O., Harvey L. M., McNeil B., 2005b. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste. Bioresource Technology. 96, 721-730. Watanabe H., Kitsrnura T., Ochi S., Ozaki M., 1997. Inactive of pathogenic bacteria under mesophilic and thermophilic condiction. Water Science Technology. 36, 25-1997 Welker, N. E., 1988. Transduction in Bacillus stearothermophilus. Journal of Bacteriology. 170(8), 3761-3764. White D., Sharp R. J., Priest F. G., 1993. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Leeuwenhoek. 64, 357-386. Yetis M., Gündüz U., Eroglu I., Yücel M., Türker L., 1999. Identification of by-products in hydrogen producing bacteria Rhodobacter sphaeroides O.U. 001 grown in the wastewater of a sugar refinery. Journal of Biotechnology. 70, 125-131. Yetis M., Gündüz U., Eroglu I., Yücel M., Türker L., 2000. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy. 25, 1035-1041. Zeigler D. R., 2001. The Genus Geabacillus. Bacillus Genetic Stock Center Catalog of Strains. Zhu H., Suzuki T., Tsygankov A. A., Asada Y., Miyake J., 1999a. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy. 24, 305-310. Zhu H., Wakayama T., Suzuki T., Asada Y., Miyake J., 1999b. Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence of NH4+. Journal of Bioscience and Bioengineering. 88, 507-512. Zhu H., Ueda S., Asada Y., Miyake J., 2002. Hydrogen production as a novel process of wastewater treatment-studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. International Journal of Hydrogen Energy. 27, 1349-1357. Zürrer H., and Bachhofen R., 1982. Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass. 2, 165-174. 王炳南。2005。厭氧醱酵產氫與光合產氫之反應槽串聯可行性評估。碩士論文。國立中興大學。台中。 白明德,蕭嘉榕。2005。生物產氫技術發展現況。能源季刊。第35卷第4期,頁數114 – 127。 林正祥。2003。日本超臨界高溫高壓氧化高COD廢液與下水污泥處理技術介紹。工安環保報導。第18 卷。頁數17-18。 李季眉。1988。以紫色含硫光合作用細菌Amoebobacter pedifirmis strain CML 2 處理豬糞尿廢水之硫化氫。Proc 13th Conf on Wastewater Treatment Technology in ROC, pp. 206-215。 李季眉。1990。以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫。Proc 15th Conf on Wastewater Treatment Technology in ROC, pp. 313-327。 李季眉。1991。以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫-連續流程試驗。 Proc 16th Conf on Wastewater Treatment Technology in ROC, pp. 157-168。 柯賢文。2006。未來的氫能經濟。科學發展。第399期。頁數68 – 75。 吳幸娟,鄭宏德,翁志聖,黃孝信。2001。台灣地區工業廢棄物產生現況及處理需求分析研究。工安環保報導。第1期。頁數30-32。 洪仁陽。2003。污泥水解減量技術。化工資訊與商情。第12卷第4期。頁數66-73。 洪國展。2004。光合產氫之程序組合及應用。碩士論文。國立中興大學。台中。 郁揆民。2003。紫色不含硫光合作用細菌產氫限制因子之研究。碩士論文。國立中興大學。台中。 涂良君。1999。產氫光合作用細菌之分離與篩選。碩士論文。國立中興大學。台中。 黃鈺淳。2006。高溫性細菌分解有機污泥之研究。大專學生參與專題研究計劃研究成果報告。行政院國家科學委員會。 謝孟廷。2005。高溫性細菌分解有機污泥之研究。碩士論文。國立中興大學。台中。 蕭景庭。2000。產氫光合作用細菌之生理特性研究。碩士論文。國立中興大學。台中。 環境資訊中心 http://e-info.org.tw/tags/600 美國能源部微生物基因體計劃 http://www.microbialgenome.org/announcement/seq2005.shtml http://www.aist.go.jp/aist_e/latest_research/2004/20040728/20040728.html 能源政策白皮書http://www.moeaec.gov.tw/policy/EnergyWhitePaper/94/main/main.html
摘要: 
高溫好氧消化系統是一項可以有效達到污泥減量的處理程序。當系統中的氧氣受到限制時,導致槽內有機酸的累積。而有機酸亦為紫色不含硫光合作用細菌產生氫氣之重要基質,若能結合污泥減量及光合產氫的程序,則可將廢棄污泥以能源方式回收,是一項對環境友善之技術。第一部份為以批次實驗探討污泥消化槽之最適污泥分解及累積有機酸的操作條件並尋找最適污泥來源,結果指出在污泥消化槽內添加細菌Geobacillus thermocatenulatus S2,污泥消化槽最適操作條件為接種 7.5 % 的菌量、控制污泥在pH為6.5 ~ 7.5之間及曝氣速率為0.25 vvm時,有最高的有機酸累積量448 mg/L。若控制在此適當操作條件下,測試不同來源的污泥之分解及有機酸累積情形時,發現所得到的有機酸累積量很有限,因此以產酸速率、VSS/SS及VFAs/sCOD等數值來檢視各個條件下的污泥是否適合累積有機酸。結果指出造紙廠的廢棄污泥在0.25 vvm的曝氣速率下,VFAs/sCOD可達0.24為所有污泥中最高,且可累積400 mg/L的有機酸達30 h,因此為最適合累積有機酸的來源。第二部份為提升污泥消化槽之有機酸累積量,並做進一步的測試,批次實驗之結果顯示,添加菌種於污泥消化槽內確實可以有效累積有機酸,且有機酸的主要來源亦為污泥的固體物,而非液體物。以連續進流污泥至CSTR的高溫好氧消化槽中,探討有機酸累積量是否會增加,其結果指出,連續進流污泥可使有機酸累積約達800 mg/L,且添加的菌株不會因此流失,還能不斷作用。第三部份為光合菌Rhodopseudomonas palustris WP3-5利用前述實驗中的污泥水解物做為基質,進行產氫的測試。將批次實驗所得的污泥水解產物做為光合菌WP3-5的產氫基質,發現不管產物以水稀釋幾倍都沒有產氫情形。以buffer稀釋污泥水解物並添加酵素cofactor,觀察其產氫情形,結果仍然沒有產氫,推測可能是有機酸濃度不足與氨氮濃度太高所致。以不同策略控制氨氮對光合菌之影響並觀察其產氫的情形,結果顯示光合菌WP3-5會將添加的有機酸用來生長,後期處於低氨氮環境下也會因為批次反應瓶內有機酸已耗盡而不產氫。批次實驗之結果指出,污泥水解物可供光合菌WP3-5生長,但無法產生氫氣,若能進一步處理污泥水解物,使污泥水解物成為低氨氮濃度、高有機酸之廢水,或許可使光合菌產氫,以期達廢棄物資源化之目的。

Thermophilic aerobic digestion (TAD) which applies thermotolerant microbes and their extracellular enzymes to degrade waste activated sludge (WAS) is a considerably new and dynamic technique. It is no doubt that if TAD process is modified to be operated under microaerobic condition, the accumulation of volatile fatty acids (VFAs) is expected. VFAs are suitable substrates for purple nonsulfur bacteria to grow and produce hydrogen. Thus, combining the modified TAD process with photohydrogen production makes sludge removal and energy recycle possible.
In order to decide the best operating strategies of the TAD reactor, the factor of inoculation, initial pH, aeration rate and several kinds of sludge would be investigated. The optimum initial pH and inoculation of Geobacillus thermocatenulatus S2 were 6.5 ~ 7.5 and 7.5 %, respectively. Under microaerobic condition (0.25 vvm), 2L paper sludge were digested for 58 h, 65 ℃. The result indicated that the removal efficiencies of SS and VSS were 42.40 and 52.73 %, respectively. The final concentration of VFAs in the liquid phase of the digested sludge were 530 mg/L. It was observed that the liquid phase of sludge was contributed to VFAs. Subsequently, inoculation of Geobacillus stearothermophilus J was discussed, and there was no significant influence. Furthermore, 2 L TAD reactor was operated in a continuous model at 65℃. The result indicated that the higher concentration of VFAs was investigated. The result of hydrogen production by strain Rhodopseudomonas palustris WP3-5 with different dilution ratios of the digested liquid revealed that no hydrogen was produced in all dilution solution ( 0.4X, 0.6X, 0.8X ,non-dilute ). Three kinds of chemicals (Fe, buffer, Fe and buffer) were added respectively, the experiment results showed that, strain WP3-5 could grow in the presence of higher NH4+ concentration, but there was still no hydrogen production. An tempt was made to find the effect of C/N ratio, the experiment results illustrated that, the lower NH4+ concentration, the higher pH value, when C/N was 1: 7, production of hydrogen was not improved. Thus, for photohydrogen production by WP3-5, it seems that there was higher VFAs content and lower NH4+ concentration, hydrogen might be produced.
URI: http://hdl.handle.net/11455/5180
其他識別: U0005-1907200618255500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.