Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/51945
標題: Anti-allergic effects of viable and heat-killed Enterococcus faecalis YM-73 on ovalbumin-sensitized BALB/c mice
活菌體與熱致死菌體 Enterococcus faecalis YM-73 對於卵白蛋白致敏小鼠之抗過敏影響
作者: 張亞如
Chang, Ya-Ju
關鍵字: viable lactic acid bacteria;活菌體乳酸菌;heat-killed treatment lactic acid bacteria;allergic rhinitis;IgE;IgG1;IgG2a;IFN-γ;IL-5;熱致死乳酸菌;過敏性鼻炎;IgE;IgG1;IgG2a;IFN-γ;IL-5
出版社: 食品暨應用生物科技學系所
引用: 徐叔雲、卞如濂,2006。藥理實驗方法學,第三版。人民衛生出版社。 莊家如,2007。活菌體與熱致死乳酸菌對免疫調節影響之比較。中興大學食品暨應用生物科技學系碩士論文。 Bach, J.F. (2002). The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347, 911-920. Baecher-Allan, C., Brown, J.A., Freeman, G.J., and Hafler, D.A. (2001). CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167, 1245-1253. Banasaz, M., Norin, E., Holma, R., and Midtvedt, T. (2002). Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG. Appl Environ Microbiol 68, 3031-3034. Brashears, M.M., Gilliland, S.E., and Buck, L.M. (1998). Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J Dairy Sci 81, 2103-2110. Calder, P.C. (2007). Immunological parameters: what do they mean? J Nutr 137, 773S-780S. Chu, R.S., Targoni, O.S., Krieg, A.M., Lehmann, P.V., and Harding, C.V. (1997). CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 186, 1623-1631. Coconnier, M.H., Klaenhammer, T.R., Kerneis, S., Bernet, M.F., and Servin, A.L. (1992). Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl Environ Microbiol 58, 2034-2039. Cortes-Perez, N.G., Ah-Leung, S., Bermudez-Humaran, L.G., Corthier, G., Langella, P., Wal, J.M., and Adel-Patient, K. (2009). Allergy therapy by intranasal administration with recombinant Lactococcus lactis Producing bovine beta-lactoglobulin. Int Arch Allergy Immunol 150, 25-31. Cross, M.L., Stevenson, L.M., and Gill, H.S. (2001). Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int Immunopharmacol 1, 891-901. DiMeo, D., Tian, J., Zhang, J., Narushima, S., and Berg, D.J. (2008). Increased interleukin-10 production and Th2 skewing in the absence of 5-lipoxygenase. Immunology 123, 250-262. Firon, N., Ofek, I., and Sharon, N. (1984). Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect Immun 43, 1088-1090. Food and Health Agricultural Organization of the United Nations and World Health Organization. (2002). Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Fuller, R. (1989). Probiotics in man and animals. J Appl Bacteriol 66, 365-378. Furuse, M., Itoh, M., Hirase, T., Nagafuchi, A., Yonemura, S., and Tsukita, S. (1994). Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127, 1617-1626. Galdeano, C.M., and Perdigon, G. (2004). Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. J Appl Microbiol 97, 673-681. Gill, H.S., Rutherfurd, K.J., Prasad, J., and Gopal, P.K. (2000). Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr 83, 167-176. Goldin, B.R., and Gorbach, S.L. (1984). The effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr 39, 756-761. Haller, D., Bode, C., Hammes, W.P., Pfeifer, A.M., Schiffrin, E.J., and Blum, S. (2000). Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47, 79-87. Hartl, D., Koller, B., Mehlhorn, A.T., Reinhardt, D., Nicolai, T., Schendel, D.J., Griese, M., and Krauss-Etschmann, S. (2007). Quantitative and functional impairment of pulmonary CD4+CD25high regulatory T cells in pediatric asthma. J Allergy Clin Immunol 119, 1258-1266. Havenaar R, and Husis In’tv Veld, J.H.J. (1992). Probiotics: A general view. The lactic acid bacteria 99:151-170. Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061. Hougee, S., Vriesema, A.J., Wijering, S.C., Knippels, L.M., Folkerts, G., Nijkamp, F.P., Knol, J., and Garssen, J. (2010). Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol 151, 107-117. Hussain, I., Jain, V.V., Kitagaki, K., Businga, T.R., O''Shaughnessy, P., and Kline, J.N. (2002). Modulation of murine allergic rhinosinusitis by CpG oligodeoxynucleotides. Laryngoscope 112, 1819-1826. Kaila, M., Isolauri, E., Saxelin, M., Arvilommi, H., and Vesikari, T. (1995). Viable versus inactivated Lactobacillus strain GG in acute rotavirus diarrhoea. Arch Dis Child 72, 51-53. Kalliomaki, M., Kirjavainen, P., Eerola, E., Kero, P., Salminen, S., and Isolauri, E. (2001). Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 107, 129-134. Kato, I., Tanaka, K., and Yokokura, T. (1999). Lactic acid bacterium potently induces the production of interleukin-12 and interferon-gamma by mouse splenocytes. Int J Immunopharmacol 21, 121-131. Kengatharan, M., De Kimpe, S.J., and Thiemermann, C. (1996). Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages. Br J Pharmacol 117, 1163-1170. Lammers, K.M., Brigidi, P., Vitali, B., Gionchetti, P., Rizzello, F., Caramelli, E., Matteuzzi, D., and Campieri, M. (2003). Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 38, 165-172. Lim, L.H., Li, H.Y., Huang, C.H., Lee, B.W., Lee, Y.K., and Chua, K.Y. (2009). The effects of heat-killed wild-type Lactobacillus casei Shirota on allergic immune responses in an allergy mouse model. Int Arch Allergy Immunol 148, 297-304. Ling, E.M., Smith, T., Nguyen, X.D., Pridgeon, C., Dallman, M., Arbery, J., Carr, V.A., and Robinson, D.S. (2004). Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363, 608-615. Matsuzaki, T. (1998). Immunomodulation by treatment with Lactobacillus casei strain Shirota. Int J Food Microbiol 41, 133-140. Montalto, M., Maggiano, N., Ricci, R., Curigliano, V., Santoro, L., Di Nicuolo, F., Vecchio, F.M., Gasbarrini, A., and Gasbarrini, G. (2004). Lactobacillus acidophilus protects tight junctions from aspirin damage in HT-29 cells. Digestion 69, 225-228. Mukherjee, S., Ahmed, A., and Nandi, D. (2005). CTLA4-CD80/CD86 interactions on primary mouse CD4+ T cells integrate signal-strength information to modulate activation with Concanavalin A. J Leukoc Biol 78, 144-157. Murosaki, S., Yamamoto, Y., Ito, K., Inokuchi, T., Kusaka, H., Ikeda, H., and Yoshikai, Y. (1998). Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J Allergy Clin Immunol 102, 57-64. Murray, C.S., Tannock, G.W., Simon, M.A., Harmsen, H.J., Welling, G.W., Custovic, A., and Woodcock, A. (2005). Fecal microbiota in sensitized wheezy and non-sensitized non-wheezy children: a nested case-control study. Clin Exp Allergy 35, 741-745. Neutra, M.R. (1998). Current concepts in mucosal immunity. V Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol 274, G785-791. Novak, N., Kraft, S., and Bieber, T. (2001). IgE receptors. Curr Opin Immunol 13, 721-726. Nusrat, A., Turner, J.R., and Madara, J.L. (2000). Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279, G851-857. Ou, C.C., Lin, S.L., Tsai, J.J., and Lin, M.Y. (2011). Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. Journal of Food Science 76, 260-267. Ouwehand, A.C. (2007). Antiallergic effects of probiotics. J Nutr 137, 794S-797S. Ouwehand, A.C., Isolauri, E., He, F., Hashimoto, H., Benno, Y., and Salminen, S. (2001). Differences in Bifidobacterium flora composition in allergic and healthy infants. J Allergy Clin Immunol 108, 144-145. Ozdemir, O. (2010). Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data. Clin Exp Immunol 160, 295-304. Perdigon, G., Vintini, E., Alvarez, S., Medina, M., and Medici, M. (1999). Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J Dairy Sci 82, 1108-1114. Prescott, S.L., and Bjorksten, B. (2007). Probiotics for the prevention or treatment of allergic diseases. J Allergy Clin Immunol 120, 255-262. Prescott, S.L., Macaubas, C., Holt, B.J., Smallacombe, T.B., Loh, R., Sly, P.D., and Holt, P.G. (1998). Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol 160, 4730-4737. Qureshi, O.S., Zheng, Y., Manzotti, C.N., Walker,L.S., Samson, D.M. (2008). Regulatory T cells use CTLA-4 to remove CD86 from the surface of dendritic cells. Immunology 125, (Suppl.) 99. Romagnani, S. (1994). Regulation of the development of type 2 T-helper cells in allergy. Curr Opin Immunol 6, 838-846. Roselli, M., Finamore, A., Britti, M.S., Konstantinov, S.R., Smidt, H., Vos, W.M.d., and Mengheri, E. (2007). The Novel Porcine Lactobacillus sobrius Strain Protects Intestinal Cells from Enterotoxigenic Escherichia coli K88 Infection and Prevents Membrane Barrier Damage. The Journal of Nutrition 137, 8. Ryu, Y.H., Baik, J.E., Yang, J.S., Kang, S.S., Im, J., Yun, C.H., Kim, D.W., Lee, K., Chung, D.K., Ju, H.R., et al. (2009). Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol 9, 127-133. Saito, H., Howie, K., Wattie, J., Denburg, A., Ellis, R., Inman, M.D., and Denburg, J.A. (2001). Allergen-induced murine upper airway inflammation: local and systemic changes in murine experimental allergic rhinitis. Immunology 104, 226-234. Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562. Sashihara, T., Sueki, N., and Ikegami, S. (2006). An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J Dairy Sci 89, 2846-2855. Scheinbach, S. (1998). Probiotics: functionality and commercial status. Biotechnol Adv 16, 581-608. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C.J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274, 17406-17409. Sepp, E., Julge, K., Mikelsaar, M., and Bjorksten, B. (2005). Intestinal microbiota and immunoglobulin E responses in 5-year-old Estonian children. Clin Exp Allergy 35, 1141-1146. Shida, K., Makino, K., Morishita, A., Takamizawa, K., Hachimura, S., Ametani, A., Sato, T., Kumagai, Y., Habu, S., and Kaminogawa, S. (1998). Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int Arch Allergy Immunol 115, 278-287. Shimada, T., Cheng, L., Ide, M., Fukuda, S., Enomoto, T., and Shirakawa, T. (2003). Effect of lysed Enterococcus faecalis FK-23 (LFK) on allergen-induced peritoneal accumulation of eosinophils in mice. Clin Exp Allergy 33, 684-687. Shimada, T., Cheng, L., Shi, H.B., Hayashi, A., Motonaga, C., Tang, J., Enomoto, K., and Enomoto, T. (2007). Effect of lysed Enterococcus faecalis FK-23 on allergen-induced immune responses and intestinal microflora in antibiotic-treated weaning mice. J Investig Allergol Clin Immunol 17, 70-76. Shimada, T., Cheng, L., Yamasaki, A., Ide, M., Motonaga, C., Yasueda, H., Enomoto, K., Enomoto, T., and Shirakawa, T. (2004). Effects of lysed Enterococcus faecalis FK-23 on allergen-induced serum antibody responses and active cutaneous anaphylaxis in mice. Clin Exp Allergy 34, 1784-1788. Sillanpaa, J., Martinez, B., Antikainen, J., Toba, T., Kalkkinen, N., Tankka, S., Lounatmaa, K., Keranen, J., Hook, M., Westerlund-Wikstrom, B., et al. (2000). Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J Bacteriol 182, 6440-6450. Smits, H.H., Engering, A., van der Kleij, D., de Jong, E.C., Schipper, K., van Capel, T.M., Zaat, B.A., Yazdanbakhsh, M., Wierenga, E.A., van Kooyk, Y., et al. (2005). Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115, 1260-1267. Strachan, D.P. (1989). Hay fever, hygiene, and household size. BMJ 299, 1259-1260. Takahashi, T., Kushiro, A., Nomoto, K., Uchida, K., Morotomi, M., Yokokura, T., and Akaza, H. (2001). Antitumor effects of the intravesical instillation of heat killed cells of the Lactobacillus casei strain Shirota on the murine orthotopic bladder tumor MBT-2. J Urol 166, 2506-2511. Tejada-Simon, M.V., Ustunol, Z., and Pestka, J.J. (1999). Ex vivo effects of Lactobacilli, Streptococci, and Bifidobacteria ingestion on cytokine and nitric oxide production in a murine model. J Food Prot 62, 162-169. Tobita, K., Yanaka, H., and Otani, H. (2010). Anti-allergic effects of Lactobacillus crispatus KT-11 strain on ovalbumin-sensitized BALB/c mice. Anim Sci J 81, 699-705. Tsukita, S., Furuse, M., and Itoh, M. (2001). Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2, 285-293. Usman, and Hosono, A. (2001). Hypocholesterolemic effect of Lactobacillus gasseri SBT0270 in rats fed a cholesterol-enriched diet. J Dairy Res 68, 617-624. van Loosdrecht, M.C., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A.J. (1987). The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53, 1893-1897. Warner, J.O., Kaliner, M.A., Crisci, C.D., Del Giacco, S., Frew, A.J., Liu, G.H., Maspero, J., Moon, H.B., Nakagawa, T., Potter, P.C., et al. (2006). Allergy practice worldwide: a report by the World Allergy Organization Specialty and Training Council. Int Arch Allergy Immunol 139, 166-174. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., and Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271-275. Woodfolk, J.A. (2007). T-cell responses to allergens. J Allergy Clin Immunol 119, 280-294; quiz 295-286. Yamaguchi, D.J., Yan, F., Polk, D.B. (2003). Probiotic Lactobacillus rhamnosus GG stimulates proliferation during intestinal epithelial cell wound repair. J Pediatr Gastroenterol Nutr. 37,395. Yasui, H., Shida, K., Matsuzaki, T., and Yokokura, T. (1999). Immunomodulatory function of lactic acid bacteria. Antonie Van Leeuwenhoek 76, 383-389. Yazdanbakhsh, M., Kremsner, P.G., and van Ree, R. (2002). Allergy, parasites, and the hygiene hypothesis. Science 296, 490-494.
摘要: 
Lactic acid bacteria (LAB) are identified as probiotics which can exert a beneficial health effect on the host, including immunomodulation and anti-allergy effects. Currently, their benefits is not only viable cells but also heat-killed treatment LAB exhibit immunomodulatory properties. Heat-killed treatment LAB have the advantages of allowing a longer shelf-life, easier storage, and transportation. According to previous research, we selected most potential immunomodulatory properties of lactic acid bacteria, which were selected for their ability to induce a strong Th1 immune response and improved the Th1/Th2 balance by enhancing IFN-γ and IL-12p70 and inhibiting IL-13 production by human peripheral blood mononuclear cells (hPBMCs) from 11 strains of heat-killed treatment LAB. Based on the results of this screening, we selected Enterococcus faecalis YM-73 as a potent inhibitor of Th2 cytokines production, and investigated the anti-allergic effect of oral adiministration of viable and heat-killed treatment Enterococcus faecalis YM-73 in ovalbumin-sensitized BALB/c mice for two consecutive months. The serum of total IgE, IgG1, IgG2a and OVA-specific IgE, IgG1, IgG2a were determined by sandwich-ELISA assay. We also investigated the effect of the mice splenocyte treated with ConA, PHA, LPS and OVA by measure the vability of splenocyte and production of IFN-γ and IL-5. Furthermore, we investigate the effects of allergic rhinitis on OVA-sensitized BALB/c mice fed with viable and heat-killed treatment Enterococcus faecalis YM-73. The results showed that heat-killed treatment LAB can reduce the IgE, IgG1 and increase IgG2a from serm, enhance the production of IFN-γ and reduce IL-5 from splenocyte more than viable LAB. Viable Enterococcus faecalis YM-73 can reduce the allergic rhinitis symptom more than heat-killed treatment LAB. Thus, heat-killed treatment Enterococcus faecalis YM-73 could be have anti-allergic ability by improve the Th1/Th2 balance.

乳酸菌已被認定為有助於宿主身體健康的益生菌,在免疫調節及抗過敏上也具有相當的功效。現今,乳酸菌的益生功效已經不侷限於活菌型態,熱致死的乳酸菌也具有免疫調節的效果,並且有著保存期限較長、運輸便利及容易儲存等優點。根據先前的研究,我們從 11 株經過熱致死處理的乳酸菌,於體外試驗中挑選出調節免疫功能最具潛力的乳酸菌菌株,其能夠藉由刺激人類周邊免疫單核球細胞 (hPBMCs) 產生 IFN-γ、IL-12p70 及抑制 IL-13,進而誘導較強的 Th1 免疫反應並改善 Th1/Th2 免疫反應的平衡;因此我們選擇 Enterococcus faecalis YM-73 菌株,以活菌及熱致死型態菌體餵食經卵白蛋白致敏 (ovalbumin-sensitized) 的小鼠,持續兩個月,探討其抗過敏的影響。餵食期間檢測小鼠血清中總免疫球蛋白 IgE、IgG1、IgG2a 及特異性免疫球蛋白 OVA-specific IgE、IgG1、IgG2a 的含量;另一方面,將小鼠脾臟細胞,使用 ConA、PHA、LPS、OVA 刺激,培養 48 小時後,檢測脾臟細胞的增生反應及分泌 IFN-γ、IL-5的能力;並且探討餵食 Enterococcus faecalis YM-73 對於過敏性鼻炎的影響。實驗結果顯示,熱致死型態乳酸菌較活菌體型態更能夠降低 OVA 致敏小鼠血清中 IgE、IgG1 以及增加 IgG2a 含量,並誘發脾臟細胞分泌更高的 IFN-γ 及抑制 IL-5。而小鼠過敏性鼻炎的模式中,以活菌型態乳酸菌降低過敏的現象較為顯著,熱致死型態乳酸菌則為其次。因此,熱致死菌 Enterococcus faecalis YM-73 可以藉由改善 Th1/Th2 免疫反應的平衡,而達到抗過敏的效果。
URI: http://hdl.handle.net/11455/51945
其他識別: U0005-1208201115562500
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.