Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/51964
標題: 薑活性成分抑制人類肝癌細胞侵入及轉移作用分子機轉之研究
Molecular mechanisms of active compounds of ginger on the suppressions of invasion and metastasis in human hepatocarcinoma cells
作者: Chou, Chai-Ping
周儕坪
關鍵字: 6-gingerol;基質金屬蛋白酶血管新生;6-shogaol;angiogenesis;hepatocarcinoma;metastasis;matrix metalloproteinases;uPA;薑酚;薑烯酚;轉移;肝癌;尿激酶
出版社: 食品暨應用生物科技學系所
引用: 參考文獻 台灣地區 2010 年主要死因統計 (2011)。2011 年 6 月 18 日,取自:行政院衛生署衛生統計資訊網,http://www.doh.gov.tw 。 李岩、王艷玲,肝癌防治錦囊,大作出版,1999:68-69。 周寬基編撰。2006。Angiogenesis and Tumor Metastasis。 Afzal, M., Al-Hadidi, D., Menon, M., Pesek, J. and Dhami, M. S. 2001. Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol. Drug Interact. 18: 159-190. Aggarwal, B. B. and Shishodia, S. 2006. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 71: 1397-1421. Ahn, K. S., Sethi, G., Sung, B., Goel, A., Ralhan, R. and Aggarwal, B. B. 2008. Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res. 68: 4406-4415. Akiba, J., Yano, H., Ogasawara, S., Higaki, K. and Kojiro, M. 2001. Expression and function of interleukin-8 in human hepatocellular carcinoma. Int. J. Oncol. 18: 257-264. Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J. and Eberhardt W. 2003. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol. 23:4901-16. Alisi, A. and Balsano, C. 2007. Enhancing the efficacy of hepatocellular carcinoma chemotherapeutics with natural anticancer agents. Nutr. Rev. 65: 550-553. Amalinei, C., Caruntu, I. D. and Balan, R. A. 2007. Biology of metalloproteinases. Rom. J. Morphol. Embryol. 48: 323-334. Amos, S., Redpath, G. T., Dipierro, C. G., Carpenter, J. E. and Hussaini, I. M. 2010. Epidermal growth factor receptor-mediated regulation of urokinase plasminogen activator expression and glioblastoma invasion via C-SRC/MAPK/AP-1 signaling pathways. J. Neuropathol. Exp. Neurol. 69: 582-592. Aravindaram, K. and Yang, N. S. 2010. Anti-inflammatory plant natural products for cancer therapy. Planta Med. 76: 1103-1117. Arnaoutova, I., George, J., Kleinman, H. K. and Benton, G. 2009. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12: 267-274. Arnaoutova, I. and Kleinman, H. K. 2010. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 5: 628-635. Auerbach, R., Lewis, R., Shinners, B., Kubai, L. and Akhtar, N. 2003. Angiogenesis assays: a critical overview. Clin. Chem. 49: 32-40. Bajou, K. 2002. Role of PAI-1 plasminogen activator inhibitor in tumor invasion and angiogenesis]. Bull. Mem. Acad. R. Med. Belg. 157: 313-318. Behzadian, M. A., Windsor, L. J., Ghaly, N., Liou, G., Tsai, N. T. and Caldwell, R. B. 2003. VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J. 17: 752-754. Bernhaus, A., Fritzer-Szekeres, M., Grusch, M., Saiko, P., Krupitza, G., Venkateswarlu, S., Trimurtulu, G., Jaeger, W. and Szekeres, T. 2009. Digalloylresveratrol, a new phenolic acid derivative induces apoptosis and cell cycle arrest in human HT-29 colon cancer cells. Cancer Lett. 274: 299-304. Bertram, J. S., Kolonel, L. N. and Meyskens, F. L.,Jr. 1987. Rationale and strategies for chemoprevention of cancer in humans. Cancer Res. 47: 3012-3031. Bhattarai, S., Tran, V. H. and Duke, C. C. 2007. Stability of [6]-gingerol and [6]-shogaol in simulated gastric and intestinal fluids. J. Pharm. Biomed. Anal. 45: 648-653. Bijman, M. N., van Nieuw Amerongen, G. P., Laurens, N., van Hinsbergh, V. W. and Boven, E. 2006. Microtubule-targeting agents inhibit angiogenesis at subtoxic concentrations, a process associated with inhibition of Rac1 and Cdc42 activity and changes in the endothelial cytoskeleton. Mol. Cancer. Ther. 5: 2348-2357. Billroth T. Lectures on surgical pathology and therapeutics. In: A handbook for students and practitioners. London: The New Sydenham Society; 1877-1871;1878 Bonilla Guerrero, R. and Roberts, L. R. 2005. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J. Hepatol. 42: 760-777. Boyland, E. and Chasseaud, L. F. 1968. Enzymes catalysing conjugations of glutathione with alpha-beta-unsaturated carbonyl compounds. Biochem. J. 109: 651-661. Bressac, B., Galvin, K. M., Liang, T. J., Isselbacher, K. J., Wands, J. R. and Ozturk, M. 1990. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc. Natl. Acad. Sci. U. S. A. 87: 1973-1977. Brinckerhoff, C. E. and Matrisian, L. M. 2002. Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev. Mol. Cell Biol. 3: 207-214. Brown, A. C., Shah, C., Liu, J., Pham, J. T., Zhang, J. G. and Jadus, M. R. 2009. Ginger''s (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro. Phytother. Res. 23: 640-645. Bruce A., Alexander J., Julian L., MartinR., Keith R. and Peter W. 2002. Molecular Biology of the Cell – Fourth Edition. Garland Science. New York. Burbridge, M. F. and West, D. C. 2001. Rat Aortic Ring : 3D Model of Angiogenesis In Vitro. Methods Mol. Med. 46: 185-204. Butturini, E., Cavalieri, E., Carcereri de Prati, A., Darra, E., Rigo, A., Shoji, K., Murayama, N., Yamazaki, H., Watanabe, Y., Suzuki, H. and Mariotto, S. 2011. Two Naturally Occurring Terpenes, Dehydrocostuslactone and Costunolide, Decrease Intracellular GSH Content and Inhibit STAT3 Activation. PLoS One 6: e20174. Cabebe, E. and Wakelee, H. 2007. Role of anti-angiogenesis agents in treating NSCLC: focus on bevacizumab and VEGFR tyrosine kinase inhibitors. Curr. Treat. Options Oncol. 8: 15-27. Cabrera, R. and Nelson, D. R. 2010. Review article: the management of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 31: 461-476. Cauwe, B. and Opdenakker, G. 2010. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 45: 351-423. Caviston, J. P. and Holzbaur, E. L. 2006. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16: 530-537. Chaturvedi, M. M., Sung, B., Yadav, V. R., Kannappan, R. and Aggarwal, B. B. 2011. NF-kappaB addiction and its role in cancer: ''one size does not fit all''. Oncogene 30: 1615-1630. Chen, K. F., Tai, W. T., Liu, T. H., Huang, H. P., Lin, Y. C., Shiau, C. W., Li, P. K., Chen, P. J. and Cheng, A. L. 2010. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res. 16: 5189-99. Chen, S. M., Meng, L. H. and Ding, J. 2010. New microtubule-inhibiting anticancer agents. Expert Opin. Investig. Drugs 19: 329-343. Chen, Y. J., Chen, P. H., Lin, S. Y. and Chang, J. G. 1999. Analysis of aberrant transcription of TSG101 in hepatocellular carcinomas. Eur. J. Cancer 35: 302-308. Chen, Z. and Han, Z. C. 2008. STAT3: a critical transcription activator in angiogenesis. Med. Res. Rev. 28: 185-200. Chrubasik, S., Pittler, M. H. and Roufogalis, B. D. 2005. Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 12: 684-701. Chung, A. S., Lee, J. and Ferrara, N. 2010. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer. 10: 505-514. Chung, T. W., Lee, Y. C. and Kim, C. H. 2004. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J. 18: 1123-1125. Chung, T. W., Moon, S. K., Lee, Y. C., Kim, J. G., Ko, J. H. and Kim, C. H. 2002. Enhanced expression of matrix metalloproteinase-9 by hepatitis B virus infection in liver cells. Arch. Biochem. Biophys. 408: 147-154. Clark, I. M., Swingler, T. E., Sampieri, C. L. and Edwards, D. R. 2008. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell Biol. 40: 1362-1378. Condeelis, J. and Segall, J. E. 2003. Intravital imaging of cell movement in tumours. Nat. Rev. Cance .3: 921-930. Cos, P., Rajan, P., Vedernikova, I., Calomme, M., Pieters, L., Vlietinck, A. J., Augustyns, K., Haemers, A. and Vanden Berghe, D. 2002. In vitro antioxidant profile of phenolic acid derivatives. Free Radic. Res. 36: 711-716. Coulon, S., Heindryckx, F., Geerts, A., Van Steenkiste, C., Colle, I. and Van Vlierberghe, H. 2011. Angiogenesis in chronic liver disease and its complications. Liver Int. 31: 146-162. Croucher, D. R., Saunders, D. N., Lobov, S. and Ranson, M. 2008. Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat. Rev. Cancer. 8: 535-545. Dass, K., Ahmad, A., Azmi, A. S., Sarkar, S. H. and Sarkar, F. H. 2008. Evolving role of uPA/uPAR system in human cancers. Cancer Treat. Rev. 34: 122-136. Decker, T. and Kovarik, P. 2000. Serine phosphorylation of STATs. Oncogene 19: 2628-2637. Dey, A., Tergaonkar, V. and Lane, D. P. 2008. Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat. Rev. Drug Discov. 7: 1031-1040. Dorai, T. and Aggarwal, B. B. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett. 215: 129-140. Duffy, M. J. and Duggan, C. 2004. The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin. Biochem. 37: 541-548. Duffy, M. J., McGowan, P. M. and Gallagher, W. M. 2008. Cancer invasion and metastasis: changing views. J. Pathol. 214: 283-293. Dumontet, C. and Jordan, M. A. 2010. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 9: 790-803. Eferl, R. and Wagner, E. F. 2003. AP-1: a double-edged sword in tumorigenesis. Nat.Rev Cancer. 3: 194-200. El-Serag, H. B. and Rudolph, K. L. 2007. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557-2576. Faivre, S., Bouattour, M. and Raymond, E. 2011. Novel molecular therapies in hepatocellular carcinoma. Liver Int. 31 Suppl 1: 151-160. Fernando, R. I., Castillo, M. D., Litzinger, M., Hamilton, D. H. and Palena, C. 2011. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. Ferrara, N. 2010. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 21: 21-26. Fidler, I. J. 2001. Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. J. Natl. Cancer Inst. 93: 1040-1041. Folgueras, A. R., Pendas, A. M., Sanchez, L. M. and Lopez-Otin, C. 2004. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int. J. Dev. Biol. 48: 411-424. Folkman, J. 2007. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6: 273-286. Folkman, J. 2006. Angiogenesis. Annu. Rev. Med. 57: 1-18. Fujita, Y. 2011. Interface between normal and transformed epithelial cells-A road to a novel type of cancer prevention and treatment. Cancer. Sci. Garner, R. C., Miller, E. C. and Miller, J. A. 1972. Liver microsomal metabolism of aflatoxin B 1 to a reactive derivative toxic to Salmonella typhimurium TA 1530. Cancer Res. 32: 2058-2066. Go, R. S. and Owen, W. G. 2003. The rat aortic ring assay for in vitro study of angiogenesis. Methods Mol. Med. 85: 59-64. Gomaa, A. I., Khan, S. A., Toledano, M. B., Waked, I. and Taylor-Robinson, S. D. 2008. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J. Gastroenterol. 14: 4300-4308. Gonzalez-Lamothe, R., Mitchell, G., Gattuso, M., Diarra, M. S., Malouin, F. and Bouarab, K. 2009. Plant antimicrobial agents and their effects on plant and human pathogens. Int. J. Mol. Sci. 10: 3400-3419. Gorantla, B., Asuthkar, S., Rao, J. S., Patel, J. and Gondi, C. S. 2011. Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol. Cancer. Res. 9: 377-389. Greten, T. F., Korangy, F., Manns, M. P. and Malek, N. P. 2009. Molecular therapy for the treatment of hepatocellular carcinoma. Br. J. Cancer 100: 19-23. Grivennikov, S. I., Greten, F. R. and Karin, M. 2010. Immunity, inflammation, and cancer. Cell 140: 883-899. Grivennikov, S. I. and Karin, M. 2010. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21: 11-19. Hadler-Olsen, E., Fadnes, B., Sylte, I., Uhlin-Hansen, L. and Winberg, J. O. 2011. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 278: 28-45. Han, S. S., Yun, H., Son, D. J., Tompkins, V. S., Peng, L., Chung, S. T., Kim, J. S., Park, E. S. and Janz, S. 2010. NF-kappaB/STAT3/PI3K signaling crosstalk in iMyc E mu B lymphoma. Mol. Cancer. 9: 97. Hay, N. and Sonenberg, N. 2004. Upstream and downstream of mTOR. Genes Dev. 18: 1926-1945. He, G. and Karin, M. 2011. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res. 21: 159-168. Ho, H. H., Chang, C. S., Ho, W. C., Liao, S. Y., Wu, C. H. and Wang, C. J. 2010. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-kappaB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem. Toxicol. 48: 2508-2516. Hrabec, E., Naduk, J., Strek, M. and Hrabec, Z. 2007. Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors. Postepy Biochem. 53: 37-45. Huang, S. 2007. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin. Cancer Res. 13: 1362-1366. Hussein, H. S. and Brasel, J. M. 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167: 101-134. Huynh, H. 2010. Molecularly targeted therapy in hepatocellular carcinoma. Biochem. Pharmacol. 80: 550-560. Ii, M., Yamamoto, H., Adachi, Y., Maruyama, Y. and Shinomura, Y. 2006. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp. Biol. Med. (Maywood) 231: 20-27. Ippoushi, K., Azuma, K., Ito, H., Horie, H. and Higashio, H. 2003. [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci. 73: 3427-3437. Iredale, J.P. Regulating hepatic inflammation: pathogen-associated molecular patterns take their toll. 2003. Hepatology.37:979-82. Ishiguro, K., Ando, T., Maeda, O., Ohmiya, N., Niwa, Y., Kadomatsu, K. and Goto, H. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. 2007. Biochem Biophys Res Commun. 362:218-23. Ishiguro, K., Ando, T., Watanabe, O. and Goto, H. 2008. Specific reaction of alpha,beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage. FEBS Lett. 582: 3531-3536. Ishii, Y., Sakamoto, T., Ito, R. and Yanaga, K. 2010. Anti-angiogenic therapy on hepatocellular carcinoma development and progression. J Surg Res. 158:69-76. Jaffe, R. B. 2000. Importance of angiogenesis in reproductive physiology. Semin. Perinatol. 24: 79-81. Jie, S., Li, H., Tian, Y., Guo, D., Zhu, J., Gao, S. and Jiang, L. 2011. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. J. Gastroenterol. Hepatol. 26: 179-185. Jimenez, J. A., Kao, C., Raikwar, S. and Gardner, T. A. 2006. Current status of anti-angiogenesis therapy for prostate cancer. Urol. Oncol. 24: 260-268. Joyce, J. A. and Pollard, J. W. 2009. Microenvironmental regulation of metastasis. Nat. Rev. Cancer. 9: 239-252. Jung, J. E., Kim, H. S., Lee, C. S., Park, D. H., Kim, Y. N., Lee, M. J., Lee, J. W., Park, J. W., Kim, M. S., Ye, S. K. and Chung, M. H. 2007. Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 28: 1780-1787. Kampa, M., Alexaki, V. I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., Bakogeorgou, E., Kouimtzoglou, E., Blekas, G., Boskou, D., Gravanis, A. and Castanas, E. 2004. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res. 6: R63-74. Kang, N. J., Lee, K. W., Kim, B. H., Bode, A. M., Lee, H. J., Heo, Y. S., Boardman, L., Limburg, P., Lee, H. J. and Dong, Z. 2011. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Carcinogenesis 32: 921-928. Kaplowitz, N. 2000. Mechanisms of liver cell injury. J. Hepatol. 32: 39-47. Karagiannis, E. D. and Popel, A. S. 2008. A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 105: 13775-13780. Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature. 441: 431-436. Karin, M. and Greten, F. R. 2005. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5: 749-759. Kaseb, A. O., Hanbali, A., Cotant, M., Hassan, M. M., Wollner, I. and Philip, P. A. 2009. Vascular endothelial growth factor in the management of hepatocellular carcinoma: a review of literature. Cancer 115: 4895-4906. Ker, C.-G., Chen, H.-Y., Juan, C.-C., Tseng, C.-S., Sun, M.-S., Lo, H.-W.,Shih, T.-F. and Lo W.-C. 2006. Expression of vascular endothelialgrowth factor in hepatocellular carcinoma cell lines and patients. Formos. J. Surg. 39:126-132. Kim, E. C., Min, J. K., Kim, T. Y., Lee, S. J., Yang, H. O., Han, S., Kim, Y. M. and Kwon, Y. G. 2005. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem. Biophys. Res. Commun. 335: 300-308. Klein, T. and Bischoff, R. 2011. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41: 271-290. Konstantinopoulos, P. A., Vandoros, G. P., Karamouzis, M. V., Gkermpesi, M., Sotiropoulou-Bonikou, G. and Papavassiliou, A. G. 2007. EGF-R is expressed and AP-1 and NF-kappaB are activated in stromal myofibroblasts surrounding colon adenocarcinomas paralleling expression of COX-2 and VEGF. Cell. Oncol. 29: 477-482. Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H. and Yu, H. 2008. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest. 118: 3367-3377. Kunnumakkara, A. B., Nair, A. S., Sung, B., Pandey, M. K. and Aggarwal, B. B. 2009. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol. Cancer. Res. 7: 118-128. Kuo, T. C. and Chao, C. C. 2010. Hepatitis B virus X protein prevents apoptosis of hepatocellular carcinoma cells by upregulating SATB1 and HURP expression. Biochem. Pharmacol. 80: 1093-1102. Kusaba, M., Nakao, K., Goto, T., Nishimura, D., Kawashimo, H., Shibata, H., Motoyoshi, Y., Taura, N., Ichikawa, T., Hamasaki, K. and Eguchi, K. 2007. Abrogation of constitutive STAT3 activity sensitizes human hepatoma cells to TRAIL-mediated apoptosis. J Hepatol.47: 546-55. Kwaan, H. C. 1992. The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev. 11: 291-311. Kwaan, H. C. and McMahon, B. 2009. The role of plasminogen-plasmin system in cancer. Cancer Treat. Res. 148: 43-66. Lalu, M. M. 2011. Matrix metalloproteinases: from tadpole tails to critical illness. Crit. Care Med. 39: 413-414. Lambert, V., Wielockx, B., Munaut, C., Galopin, C., Jost, M., Itoh, T., Werb, Z., Baker, A., Libert, C., Krell, H. W., Foidart, J. M., Noel, A. and Rakic, J. M. 2003. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. 17: 2290-2292. Lantz, R. C., Chen, G. J., Sarihan, M., Solyom, A. M., Jolad, S. D. and Timmermann, B. N. 2007. The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine 14: 123-128. Lee, C. C., Liu, J. Y., Lin, J. K., Chu, J. S. and Shew, J. Y. 1998. p53 point mutation enhanced by hepatic regeneration in aflatoxin B1-induced rat liver tumors and preneoplastic lesions. Cancer Lett. 125: 1-7. Lee, H. S., Seo, E. Y., Kang, N. E. and Kim, W. K. 2008. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutr. Biochem. 19: 313-319. Lee, K. W., Bode, A. M. and Dong, Z. 2011. Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer. 11: 211-218. Levy, D. E. and Darnell, J. E.,Jr. 2002. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3: 651-662. Li, Q. and Verma, I. M. 2002. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2: 725-734. Lijnen, H. R. 2001. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost. 86: 324-333. Lin, C. C., Huang, C. Y., Mong, M. C., Chan, C. Y. and Yin, M. C. 2011. Antiangiogenic potential of three triterpenic acids in human liver cancer cells. J. Agric. Food Chem. 59: 755-762. Lin, M. H., Wu, P. Y., Tsai, S. T., Lin, C. L., Chen, T. W. and Hwang, S. J. 2004. Hospice palliative care for patients with hepatocellular carcinoma in Taiwan. Palliat. Med. 18: 93-99. Ling, H., Yang, H., Tan, S. H., Chui, W. K. and Chew, E. H. 2010. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kappaB activation. Br. J. Pharmacol. 161: 1763-1777. Liotta, L. A., Steeg, P. S. and Stetler-Stevenson, W. G. 1991. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 64: 327-336. Liu, T. Z., Chen, P. Y., Chiu, D. T., Wei, J. S., Chang, K. S. and Lin, K. H. 1994. Detection of a novel lactate dehydrogenase isozyme and an apparent differentiation-associated shift in isozyme profile in hepatoma cell lines. Cancer Lett. 87: 193-198. Liu, Y., Liu, A., Li, H., Li, C. and Lin, J. 2011. Celecoxib Inhibits Interleukin-6/Interleukin-6 Receptor-Induced JAK2/STAT3 Phosphorylation in Human Hepatocellular Carcinoma Cells. Cancer. Prev. Res. (Phila) Lopez-Bergami, P., Lau, E. and Ronai, Z. 2010. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat. Rev. Cancer. 10: 65-76. Lowrie, A. G., Salter, D. M. and Ross, J. A. 2004. Latent effects of fibronectin, alpha5beta1 integrin, alphaVbeta5 integrin and the cytoskeleton regulate pancreatic carcinoma cell IL-8 secretion. Br. J. Cancer. 91: 1327-1334. Lu, X. and Kang, Y. 2010. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin. Cancer Res. 16: 5928-5935. Luqman, S. and Pezzuto, J. M. 2010. NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother. Res. 24: 949-963. Ma, J., Chen, C. S., Blute, T. and Waxman, D. J. 2011. Antiangiogenesis enhances intratumoral drug retention. Cancer Res. 71: 2675-2685. Martinez, A., Oh, H. R., Unsworth, E. J., Bregonzio, C., Saavedra, J. M., Stetler-Stevenson, W. G. and Cuttitta, F. 2004. Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem. J. 383: 413-418. Mason, S. D. and Joyce, J. A. 2011. Proteolytic networks in cancer. Trends Cell Biol. 21: 228-237. McMahon, B. and Kwaan, H. C. 2008. The plasminogen activator system and cancer. Pathophysiol. Haemost. Thromb. 36: 184-194. Medcalf, R. L. and Stasinopoulos, S. J. 2005. The undecided serpin. The ins and outs of plasminogen activator inhibitor type 2. FEBS J. 272: 4858-4867. Merritt, W. M., Lin, Y. G., Spannuth, W. A., Fletcher, M. S., Kamat, A. A., Han, L. Y., Landen, C. N., Jennings, N., De Geest, K., Langley, R. R., Villares, G., Sanguino, A., Lutgendorf, S. K., Lopez-Berestein, G., Bar-Eli, M. M. and Sood, A. K. 2008. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J. Natl. Cancer Inst. 100: 359-372. Michaluk, P. and Kaczmarek, L. 2007. Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction. Cell Death Differ. 14: 1255-1258. Mollinedo, F. and Gajate, C. 2003. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8: 413-450. Montuori, N., Visconte, V., Rossi, G. and Ragno, P. 2005. Soluble and cleaved forms of the urokinase-receptor: degradation products or active molecules? Thromb. Haemost. 93: 192-198. Mosmann, T. 1983. Rapid colorimetric assay for cellulargrowth and survival: Application to proliferation andcytotoxicity assays. J. Immunol. Methods. 65: 55-63. Myohanen, H. and Vaheri, A. 2004. Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol. Life Sci. 61: 2840-2858. Nagamine, Y. 2008. Transcriptional regulation of the plasminogen activator inhibitor type 1--with an emphasis on negative regulation. Thromb. Haemost. 100: 1007-1013. Nagamine, Y., Medcalf, R. L. and Munoz-Canoves, P. 2005. Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb. Haemost. 93: 661-675. Nair, S., Li, W. and Kong, A. N. 2007. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol. Sin. 28: 459-472. Ng, S. A. and Lee, C. 2011. Hepatitis B virus X gene and hepatocarcinogenesis. J. Gastroenterol. Niu, G., Wright, K. L., Huang, M., Song, L., Haura, E., Turkson, J., Zhang, S., Wang, T., Sinibaldi, D., Coppola, D., Heller, R., Ellis, L. M., Karras, J., Bromberg, J., Pardoll, D., Jove, R. and Yu, H. 2002. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 21: 2000-2008. Ogino, S., Tsuruma, K., Uehara, T. and Nomura, Y. 2004. Herbimycin A abrogates nuclear factor-kappaB activation by interacting preferentially with the IkappaB kinase beta subunit. Mol. Pharmacol. 65: 1344-1351. Oyagbemi, A. A., Saba, A. B. and Azeez, O. I. 2010. Molecular targets of [6]-gingerol: Its potential roles in cancer chemoprevention. Biofactors. 36: 169-178. Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., Inoue, M., Bergers, G., Hanahan, D. and Casanovas, O. 2009. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer. Cell. 15: 220-231. Parks, W. C., Wilson, C. L. and Lopez-Boado, Y. S. 2004. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 4: 617-629. Pew, T., Zou, M., Brickley, D. R. and Conzen, S. D. 2008. Glucocorticoid (GC)-mediated down-regulation of urokinase plasminogen activator expression via the serum and GC regulated kinase-1/forkhead box O3a pathway. Endocrinology. 149: 2637-2645. Ploug, M., Rahbek-Nielsen, H., Nielsen, P. F., Roepstorff, P. and Dano, K. 1998. Glycosylation profile of a recombinant urokinase-type plasminogen activator receptor expressed in Chinese hamster ovary cells. J. Biol. Chem. 273: 13933-13943. Quesada, V., Ordonez, G. R., Sanchez, L. M., Puente, X. S. and Lopez-Otin, C. 2009. The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res. 37: D239-43. Raghu, H., Lakka, S. S., Gondi, C. S., Mohanam, S., Dinh, D. H., Gujrati, M. and Rao, J. S. 2010. Suppression of uPA and uPAR attenuates angiogenin mediated angiogenesis in endothelial and glioblastoma cell lines. PLoS One. 5: e12458. Ramachandran, P. V., Yip-Schneider, M. and Schmidt, C. M. 2009. Natural and synthetic alpha,beta-unsaturated carbonyls for NF-kappaB inhibition. Future Med. Chem. 1: 179-200. Reich, N. C. 2009. STAT3 revs up the powerhouse. Sci. Signal. 2: pe61. Rhode, J., Fogoros, S., Zick, S., Wahl, H., Griffith, K. A., Huang, J. and Liu, J. R. 2007. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement. Altern. Med. 7: 44. Ribatti, D. 2008. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int. Rev. Cell. Mol. Biol. 270: 181-224. Rao, J. S. 2003. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 3:489-501. Ruggieri, A., Murdolo, M., Harada, T., Miyamura, T. and Rapicetta, M. 2004. Cell cycle perturbation in a human hepatoblastoma cell line constitutively expressing Hepatitis C virus core protein. Arch. Virol. 149: 61-74. Rundhaug, J. E. 2005. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 9: 267-285. Sa, G. and Das, T. 2008. Anti cancer effects of curcumin: cycle of life and death. Cell. Div. 3: 14. Sang, S., Hong, J., Wu, H., Liu, J., Yang, C. S., Pan, M. H., Badmaev, V. and Ho, C. T. 2009. Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. J. Agric. Food Chem. 57: 10645-10650. Schneller, D., Machat, G., Sousek, A., Proell, V., van Zijl, F., Zulehner, G., Huber, H., Mair, M., Muellner, M. K., Nijman, S. M., Eferl, R., Moriggl, R. and Mikulits, W. 2011. p19(ARF) /p14(ARF) controls oncogenic functions of Stat3 in hepatocellular carcinoma. Hepatology. Schultz, J. D., Rotunno, S., Erben, P., Sommer, J. U., Anders, C., Stern-Straeter, J., Hofheinz, R. D., Hormann, K. and Sauter, A. 2011. Down-regulation of MMP-2 expression due to inhibition of receptor tyrosine kinases by imatinib and carboplatin in HNSCC. Oncol. Rep. Semela, D. and Dufour, J. F. 2004. Angiogenesis and hepatocellular carcinoma. J. Hepatol. 41: 864-880. Severi, T., van Malenstein, H., Verslype, C. and van Pelt, J. F. 2010. Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol. Sin. 31: 1409-1420. Shahidi, F. 2000. Antioxidants in food and food antioxidants. Nahrung 44: 158-163. Shaulian, E. and Karin, M. 2002. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4: E131-6. Shehzad, A., Wahid, F. and Lee, Y. S. 2010. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm. (Weinheim) 343: 489-499. Shen, G., Jeong, W. S., Hu, R. and Kong, A. N. 2005. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxid. Redox Signal. 7: 1648-1663. Shu, L., Cheung, K. L., Khor, T. O., Chen, C. and Kong, A. N. 2010. Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev. 29: 483-502. Soleas, G. J., Diamandis, E. P. and Goldberg, D. M. 1997. Resveratrol: amolecule whose time has come? And gone? Clin. Biochem. 30:91-113. Smith, H. W. and Marshall, C. J. 2010. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. 11: 23-36. Sohail, A., Sun, Q., Zhao, H., Bernardo, M. M., Cho, J. A. and Fridman, R. 2008. MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev. 27: 289-302. Stanton, R. A., Gernert, K. M., Nettles, J. H. and Aneja, R. 2011. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev. 31: 443-481. Stepanova, V., Lebedeva, T., Kuo, A., Yarovoi, S., Tkachuk, S., Zaitsev, S., Bdeir, K., Dumler, I., Marks, M. S., Parfyonova, Y., Tkachuk, V. A., Higazi, A. A. and Cines, D. B. 2008. Nuclear translocation of urokinase-type plasminogen activator. Blood. 112: 100-110. Strongin, A. Y. 2010. Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. Biochim. Biophys. Acta. 1803: 133-141. Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A. and Goldberg, G. I. 1995. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270: 5331-5338. Sun, H. C. and Tang, Z. Y. 2004. Angiogenesis in hepatocellular carcinoma: the retrospectives and perspectives. J. Cancer Res. Clin. Oncol. 130: 307-319. Surh, Y. J. and Lee, S. S. 1992. Enzymatic reduction of shogaol: a novel biotransformation pathway for the alpha,beta-unsaturated ketone system. Biochem. Int. 27: 179-187. Tanaka, S. and Arii, S. 2011. Molecular targeted therapy for hepatocellular carcinoma in the current and potential next strategies. J. Gastroenterol. Taub, R. 2004. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol. 5: 836-847. Thomas, M. B. and Zhu, A. X. 2005. Hepatocellular carcinoma: the need for progress. J. Clin. Oncol. 23: 2892-2899. Thomson, M., Al-Qattan, K. K., Al-Sawan, S. M., Alnaqeeb, M. A., Khan, I. and Ali, M. 2002. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot. Essent.
摘要: 
薑活性成分之 6-gingerol 與 6-shogaol 屬植物之酚類化合物,其生理活性已被廣泛研究。文獻指出,薑活性成分對於抑制癌細胞增生、癌細胞侵入轉移與促使癌細胞凋亡等,具有化學預防 (chemoprevention) 之功效。雖然薑活性成分已知具有抗癌細胞轉移之活性,但對抑制人類肝癌細胞侵入轉移及抗血管新生作用仍未十分清楚,同時亦少有文獻比較兩者抗癌之效力。因此本研究探討薑活性成分之抗癌活性分成兩部分:(一) 薑活性成分對人類 Hep3B 肝癌細胞侵入轉移之抑制效應及釐清其分子機轉;(二) 評估薑活性成分抗血管新生之能力。
研究結果顯示,6-gingerol 及 6-shogaol 可藉由抑制訊息傳遞路徑 MAPKs 及 PI3K/AKT/mTOR 磷酸化,同時抑制 IκBα 磷酸化及降解作用,進而減少 NF-κB (nuclear factor-kappa B) 被活化成度,而無法被釋放進入細胞核內,以降低 NF-κB 之轉錄活性。因 NF-κB 活性受到抑制,減少了 uPA (urokinase plasminogen activator) 之基因及蛋白表現,並降低胞外 uPA 之活性,及其下游基質金屬蛋白酶 (matrix metalloproteinase) 2 與 9 之酵素活性,進而抑制人類 Hep3B 肝癌細胞侵入轉移能力。此外,薑活性成分亦可透過抑制核內轉錄因子 STAT3 (signal transducer and activator of transcription 3) 之活化,降低基質金屬蛋白酶 2 與 9 之基因轉錄活性,及增加 uPA 專一性抑制物 PAI (plasminogen activator inhibitor) -1 之基因及蛋白表現量,減少肝癌細胞之 uPA 及基質金屬蛋白酶之酵素活性。
利用人類肝癌細胞株 Hep3B 進行血管新生因子分泌之評估。薑活性成分 6-gingerol 可抑制 Hep3B 細胞分泌促血管新生因子 IL-8 (interleukin-8),而 6-shogaol 則可降低 Hep3B 細胞分泌促血管新生因子 VEGF (vascular endothelial growth factor)。當以抗血管新生模式評估時,薑活性成分可抑制人類臍帶靜脈內皮細胞 (human umbilical vein endothelial cells, HUVEC) 及大鼠動脈環 (rat aortic rings) 兩者之脈管生成 (tube formation)。而於雞胚胎絨毛尿囊膜 (chicken chorioallantoic membrance, CAM) 之體內模式中,以 6-gingerol 及 6-shogaol 培養可顯著抑制體內絨毛尿囊膜生成血管。
綜合上述,6-gingerol 及 6-shogaol 可藉由抑制訊息傳遞路徑 MAPKs 及 PI3K/AKT/mTOR,調降 NF-κB 及 STAT3 的活化,降低人類 Hep3B 肝癌細胞外 uPA、基質金屬蛋白酶 2 與 9 之酵素活性,而減緩肝癌細胞侵入轉移之能力。此外,6-gingerol 及 6-shogaol 分別可降低肝癌細胞分泌促血管新生因子 IL-8 與 VEGF。研究結果顯示,兩種薑活性分於體內及體外血管新生模式中,皆具有抗血管新生之能力。其中,具 α, β 不飽和羰基 (α, β-unsaturated carbonyl group) 之 6-shogaol,其抗轉移及抑制血管新生作用之能力,顯著優於 6-gingerol。

6-Gingerol and 6-shogaol are phenolic compounds in ginger, which possess chemopreventive properties such as anti-proliferation, anti-invasion, anti-metastasis and pro-apoptosis. However, the inhibitory effects of 6-gingerol and 6-shogaol on invasion, metastasis and angiogenesis of hepatocellular carcinoma remain unclear. In this study, we employed human hepatocarcinoma Hep3B cells as a model and investigated the inhibitory effects and molecular mechanisms of these two compounds on invasion and metastasis of the cells as well as angiogenesis in vivo and in vitro.
The results showed that 6-gingerol and 6-shogaol suppressed the activation of NF-κB (nuclear factor-kappa B) via inhibiting the signaling of MAPKs and PI3K/AKT/mTOR and the phosphorylation and degradation of IκBα in Hep3B cells. By suppressing the activity of NF-κB, the mRNA and protein levels of uPA (urokinase plasminogen activator) and the activities of uPA and MMP (matrix metalloproteinase) -2/-9 were further decreased. Additionally, we found that the decrease of activity and transcriptional activities of uPA and MMP-2/-9 by 6-gingerol and 6-shogaol were also through inhibiting the activation of nuclear STAT3 (signal transducer and activator of transcription 3), and increasing the mRNA and protein levels of PAI-1.
The results of the angiogenic evaluation indicated that the secretions of IL-8 (interleukin-8) and VEGF (vascular endothelial growth factor) in Hep3B cells were suppressed by the treatment with 6-gingerol and 6-shogaol, respectively. The tube formation of HUVEC (human umbilical vein endothelial cells) cells and rat aortic rings both were decreased by the treatment with 6-gingerol and 6-shogaol. 6-Gingerol and 6-shogaol also have the capability to inhibit the growth of blood vessels of CAM (chicken chorioallantoic membrance) in vivo.
Taken together, 6-gingerol and 6-shogaol decrease the enzyme and transcriptional activities of uPA and MMP-2/-9 through inhibiting MAPKs and PI3K/AKT/mTOR signaling pathways and inactivating NF-κB and STAT3. Moreover, 6-gingerol and 6-shogaol inhibit the secretions of IL-8 and VEGF, respectively, and suppress the angiogenesis. Consequently, the invasion and metastasis of Hep3B cells were reduced. Chemically, it is presumed that the 6-shogaol exhibited a stronger effect on the suppressions of invasion and angiogenesis than 6-gingerol might be resulted from the α, β-unsaturated carbonyl group in the structure.
URI: http://hdl.handle.net/11455/51964
其他識別: U0005-1808201100132700
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.