Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5196
DC FieldValueLanguage
dc.contributor張禎祐zh_TW
dc.contributor盧至人zh_TW
dc.contributor吳志超zh_TW
dc.contributor.advisor謝永旭zh_TW
dc.contributor.author洪雲傑zh_TW
dc.contributor.authorHorng, Yun-Jyeen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T06:34:15Z-
dc.date.available2014-06-06T06:34:15Z-
dc.identifierU0005-2106200617091700zh_TW
dc.identifier.citation參考文獻 申洋文、車雲霞,無機化學叢書,第八卷,鈦分類,北京:科學出版社 (1998)。 吳紀聖,光觸媒的原理與應用發展,科學月刊第三十四卷第八期,科學月刊雜誌社(2003) 胡振國譯,半導體元件-物理與技術,全華圖書公司 (1989)。 高濂、鄭珊、張青紅著,奈米光觸媒,五南圖書公司(2004)。 陳耀茂譯,田口實驗計畫法,滄海書局 (1997)。 張季娜等譯,田口式品質工程導論,中華民國品質管制學會 (1989)。 葉志揚,以溶液凝膠法製備二氧化鈦觸媒及其性質鑑定,碩士論文,國立台灣大學化學工程研究所(1999)。 謝芳生、劉濱達譯,微電子學,東華書局 (1986)。 賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所 (2000)。 Annapragada, R., R. Leet, R. Changrani, and G. B. Raupp, “Vacuum Photocatalytic Oxidation of Trichloroethylene”, Environmental Science & Technology, Vol. 31, pp. 1898-1901 (1997)。 Araña, J., J. M. Dofia-Rodriguez, C. Garriga I Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pefia, G. Colon and J. A. Navio, “TiO2 activeation by using activated carbon al a support Part I. Surface characterization and decantability study”, Applied Catalysis B: Environmental, Vol. 44, pp. 161-172(2003)。 Barbeni, M., E. Pramauro, and E. Pelizzetti, “Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles”, Chemosphere, Vol. 14, No. 2, pp. 195-208 (1985)。 Carpio, E., P. Zuniga, S. Ponce, J. Solis, J. Rodriguez and W. Estrada, “Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon”, Journal of Molecular Catalysis A:Chemical, Vol. 228, pp. 293-298(2005)。 Childs, L. P. and D. F. Ollis, “Is Photocatalysis Catalytic?”, Journal of Catalysis, Vol. 66, pp. 383-390 (1980)。 Dibble, L. A., “Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated TiO2”, Ph. D. Dissertation, Arizona State Univ. (1989)。 Dibble, D. A. and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams”, Environmental Science & Technology, Vol. 26, pp. 492 -500(1992)。 Doede, C. M. and C. A. Walker, “Photochemical Engineering”, Chemical Engineering, Vol. 62, No. 2 , pp. 159-178 (1955)。 Finklea, H. O., “Semiconductor Electrode”, Elsevier Press, New York (1988)。 Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis”, Chemical Reviews, Vol. 93, pp. 341-350 (1993)。 Fu, P., Y. Luan and X. Dai, “Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity”, Journal of Molecular Catalysis A:Chemical, Vol. 221, pp. 81-88(2004)。 Gao, Y. and H. Liu, “Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film”, Materials Chemistry and Physics, Vol. 92, pp. 604-608(2005)。 Gratzel, M., Energy :Resources through Photochemistry and Catalysis,Acadamic Press lnc (1983)。 Hung, C. H. and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, Environmental Science & Technology, Vol. 31, pp. 562 -568(1997)。 Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces”, Chemical Reviews, Vol. 93, pp. 267-269 (1993)。 Korman, C., D. W. Bahnemann, and M. R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO and Desert Sand”, Environmental Science & Technology, Vol. 24, pp. 798-806 (1988)。 Legan, R. W., “Ultraviolet Light Takes on CPI Roles”, Chemical Engineering, January, pp. 95 -99(1982)。 Levenspiel, O., “Chemical Reaction Engineering”, New York (1972)。 Li, Y., X. Li, J. Li and J. Yin, “Photocatalytic Degradation of Methyl Orange by TiO2-Coated Activated Carbon and Kinetic Study”, Water Research, Vol. 40, pp. 1119-1126 (2006)。 Livage, J., S. Doeuff, M. Henry and C. Sanchez, “Hydrolysis of titanium alkoxides:Modification of the molecular precursor by acetic acid”, J. Non-cryst. Solids, Vol. 89, pp. 206-216(1987)。 Maron, S. H. and J. B. Lando, “Fundamentals of Physical Chemistry”, Macmillan Publishing Co. Inc., New York, p. 720 (1974)。 O11is, D. F., E. Pelizzetti, and N. Serpone,“Destruction of Water Contaminants”, Environmental Science & Technology, Vol. 25, No. 9 (1991)。 Peral, J. and D. F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation”, Journal of Catalysis, Vol. 136, pp. 554-565 (1992)。 Phadke, M. S., “Quality Engineering Using Robust Design.”, Prentice Hall, p. 291 (1989)。 Prengle, H. W. and C. E. Mauk,“New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection”, AIChE Symposium Series, Vol. 74, No. 178, pp. 228-244 (1978)。 Sampath, S., H. Uchida, and H. Yoneyama, “Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide”, Journal of Catalysis, Vol. 149, pp. 189-194 (1994)。 Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemistry B, pp. 829-832 (1990)。 Suri, R. P. S., J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water.”, Water Environment Research, Vol. 65, No. 5, pp. 665-669 (1993)。 Terabe, K. K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, “Microstructure and crystallization behaviour of TiO2 Precursor prepared by the sol-gel method using metal alkoxide”, J. Mater. Sci., Vol. 29, pp. 1617-1622(1994)。 Texier, I., J. Ouazzani, J. Delaire, and C. Giannotti, “Study of the Mechanisms of the Photodegradation of Atrazine in the Presence of Two Photocatalysts: TiO2 and Na4W10O32 Tetrahedron”, Vol. 55, Issue. 11, pp. 3401-3412 (1999)。 Torimoto, T., Y. Okawa, N. Takeda and H. Yoneyama, “Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane”, Journal of Photochemistry and Pohotbiology A:Chemistry, Vol. 103, pp. 153-157(1997)。 Tryba, B., A. W. Morawski and M. Inagaki, “Application of TiO2-mounted activated carbon to the removal of phenol from water”, Applied Catalysis B: Environmental, Vol. 41, pp. 427-433(2003)。 Turner, J.C.R.,”An introduction to the theory of catalytic reactors”, Catalysis Science and Technology, Vol. 1, pp. 43-86 (1981)。 Turro, N. J., “Molecular Photochemistry”, Columbia University, N. Y. p. 1 (1965)。 Yuan, R., J. Zheng, R. Guan and Y. Zhao, “Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers”, Colloids and Surface A:Physicoche. Eng.. Aspects, Vol. 254, pp. 131-136(2005)。 Zafiriou, O. C., J. J. Dubien, R. G. Zepp, and R. G. Zika, “Photochemistry of Natural Waters”, Environmental Science & Technology, Vol. 18, No. 12, pp. 358A -371A(1984)。 Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste”, Environmental Science & Technology, Vol. 22, No. 3, pp. 256 -259(1988)。 Zhang, X., M. Zhou and L. Lei, “Preparation of an Ag-TiO2 Photocatalyst coated on activated carbon by MOCVD.” Materials Chemistry and Physics, Vol. 91, pp. 73-79 (2005)。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5196-
dc.description.abstract本研究是探討以活性碳(AC)擔持TiO2光觸媒的製備方式及其特性。TiO2的來源是經由Sol-Gel法的製備,並採用實驗計劃法找到其最佳製備條件,而TiO2/AC之複合式觸媒,則是由方法I及方法II兩種披覆方式搭配PAC及GAC兩種活性碳所組合而成。 實驗結果顯示,將TTIP、IPA及HAc之莫耳數比控制在1:2:8,並且經過500 ℃鍛燒90 min後,可得到光催化活性最佳之TiO2光觸媒,而且利用方法II將TiO2光觸媒披覆在PAC上的組合,是方便且較佳的選擇。 由SEM、ESCA、XRD等表面分析結果可知,TiO2顆粒的大小約為17 nm,結晶構造為Anatase晶型,而且當其披覆在AC上後,並不會對TiO2光觸媒的特性造成改變,但是經由光催化實驗及觸媒沈降實驗證實,TiO2/AC之複合式觸媒可提升15%~20%之沈降效果,並且促進光催化反應之進行。從動力分析的結果得知,TiO2/AC之複合式觸媒於光催化反應的系統中,是較符合階數變動之反應模式,且由擬一階反應速率之比較可知,當PAC在複合式觸媒中所佔的比例在4%以上時,對TiO2的光催化反應速率是有增加的。zh_TW
dc.description.abstractThis investigation aimed at the preparation and characteristics of activated carbon supported TiO2 photocatalyst. TiO2 photocatalyst was prepared by Sol-Gel method, together with Taguchi method in order to find the optimum preparing parameters. In addition, TiO2/AC was prepared by method I and II with PAC and GAC. The experiment results indicated that TiO2 photocatalyst could show the best photocatalytic activity, when TTIP, IPA and HAc were mixed in the molar ratio of 1: 2: 8, and calcined at 500℃ for 90 minutes. Furthermore, using PAC supported TiO2 photocatalyst by means of method II would be a more convenient and better choice. From the external analysis of SEM, ESCA and XRD, the results showed that the grain size of TiO2 was about 17 nm and mainly anatase structure. Then, after AC was coated with TiO2, the characteristics of TiO2 photocatalyst were not altered either. However, through the experiment results of photocatalytic reaction and catalyst subsiding, it was suggested that TiO2/AC made the subsiding increase 15~20 percent in effect and promoted the photocatalytic reaction. According to the kinetic analysis, TiO2/AC in the system of photocatalytic reaction conformed more to the reaction model of order-changes. Besides, in comparison with the pseudo first-order reaction rate constant, it showed that photocatalytic reaction rate would be increased, when the ratio of PAC in catalyst was more than 4 percent.en_US
dc.description.tableofcontents目錄 摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 研究動機 1 1-2 研究內容與目的 2 第二章 文獻回顧 3 2-1 實驗計劃法 3 2-1-1 實驗計劃法簡介 3 2-1-2 實驗計劃法與傳統實驗的差異 4 2-1-3 實驗計劃法中直交表的運用 6 2-2半導體的本質與光化學反應 8 2-2-1半導體的基本性質 8 2-2-2 光化學反應 12 2-3 TiO2的本質及光誘導特性 17 2-3-1 TiO2的基本性質 17 2-3-2 TiO2的光誘導特性 19 2-4 TiO2粉體的製備方法 27 2-4-1 四氯化鈦(TiCl4)水解法 27 2-4-2 水熱法 28 2-4-3 氣相法 29 2-4-4 微乳液法 30 2-4-5 溶液凝膠(Sol-Gel)法 31 2-5光催化反應器之種類 33 2-6半導體觸媒改質 33 2-6-1 改質方式 33 2-6-2 結合TiO2光觸媒與AC之相關文獻 35 第三章 材料與方法 39 3-1 實驗藥品與配製 39 3-1-1 實驗藥品 39 3-1-2 藥品配製 40 3-2 實驗設備 40 3-2-1 TiO2粉體及複合式觸媒之製備 40 3-2-2 光催化實驗 41 3-3 實驗方法 42 3-3-1 TiO2粉體之製備 42 3-3-2 TiO2/AC複合式觸媒之製備 47 3-3-3 UV/ TiO2氧化程序 48 3-3-4 觸媒沈降實驗 49 3-4 分析項目與方法 50 3-4-1 光觸媒定性分析 50 3-4-2 色度分析 56 3-4-3 濁度分析 57 第四章 結果與討論 59 4-1 TiO2的最佳製備條件實驗 59 4-1-1 直交表實驗 59 4-1-2 重複實驗 69 4-2 TiO2/AC披覆實驗 71 4-2-1 觸媒特性分析 71 4-2-2 光活性測試 93 4-2-3 觸媒沈降實驗 99 4-2-4 小結 101 4-3 不同披覆比例實驗 102 4-3-1 不同披覆比例之吸附實驗 102 4-3-2 不同披覆比例之光催化實驗 104 4-3-3 觸媒沈降實驗 106 4-4 反應動力分析 107 4-4-1 TiO2光催化反應動力模式 107 4-4-2 TiO2/ PAC光催化反應動力模式 108 第五章 結論與建議 113 5-1 結論 113 5-2 建議 114 參考文獻 115 附 錄 121 附錄一 JCPDS資料庫--TiO2(Anatase) 123 附錄二 JCPDS資料庫--TiO2(Rutile) 124 附錄三 Handbook of X-Ray Photoelectron Spectroscopy—O 125 附錄四 Handbook of X-Ray Photoelectron Spectroscopy—Ti 127 附錄五 MB檢量線 129 圖目錄 圖2-1 三種固體之能帶圖 10 圖2-2 電子-電洞之移動 11 圖2-3 電子與電洞能量之關係圖 11 圖2-4 構成TiO2的基本單元[TiO6]8-的組成 18 圖2-5 TiO6結構單元的連接 18 圖2-6 (a)Anatase (b)Rutile結構圖 18 圖2-7 半導體受光激發後電子電洞生成及界面反應示意圖 20 圖2-8 TiO2表面之防霧測試 25 圖2-9 材料表面性質與水滴接觸之關系 26 圖2-10 TiO2表面受光激發後呈現親油、親水雙特性 26 圖3-1 實驗架構圖 43 圖3-2乙酸與Ti(OC3H7)4反應(a)chelating form(b)bridging form 44 圖3-3 批次式光催化反應裝飛置 49 圖3-4化學分析電子能譜儀原理 54 圖4-1 L9直交表之MB異相光催化實驗結果 63 圖4-2 控制變因A(異丙醇添加量)之回應圖 67 圖4-3 控制變因B(乙酸添加量)之回應圖 67 圖4-4 控制變因C(鍛燒溫度)之回應圖 68 圖4-5 控制變因D(鍛燒時間)之回應圖 68 圖4-6 利用Sol-Gel法製備TiO2之重複實驗 69 圖4-7 利用Sol-Gel法製備TiO2光觸媒之SEM圖 73 圖4-8 GAC之SEM圖 74 圖4-9 PAC之SEM圖 74 圖4-10 IGT25之SEM圖 75 圖4-11 IIGT25之SEM圖 75 圖4-12 IPT25之SEM圖 76 圖4-13 IIPT25之SEM圖 76 圖4-14 利用Sol-Gel法製備TiO2光觸媒之SEM-EDS圖 77 圖4-15 GAC之SEM-EDS圖 78 圖4-16 PAC之SEM-EDS圖 78 圖4-17 IGT25之SEM-EDS圖 79 圖4-18 IIGT25之SEM-EDS圖 79 圖4-19 IPT25之SEM-EDS圖 80 圖4-20 IIPT25之SEM-EDS圖 80 圖4-21 利用Sol-Gel法製備TiO2光觸媒之全能譜圖 82 圖4-22 IGT25之全能譜圖 82 圖4-23 IIGT25之全能譜圖 83 圖4-24 IPT25之全能譜圖 83 圖4-25 IIPT25之全能譜圖 84 圖4-26 利用Sol-Gel法製備TiO2光觸媒之O能譜圖 84 圖4-27 IGT25之O能譜圖 85 圖4-28 IIGT25之O能譜圖 85 圖4-29 IPT25之O能譜圖 86 圖4-30 IIPT25之O能譜圖 86 圖4-31 利用Sol-Gel法製備TiO2光觸媒之Ti能譜圖 87 圖4-32 IGT25之Ti能譜圖 87 圖4-33 IIGT25之Ti能譜圖 88 圖4-34 IPT25之Ti能譜圖 88 圖4-35 IIPT25之Ti能譜圖 89 圖4-36 利用Sol-Gel法製備TiO2光觸媒之XRD圖譜 90 圖4-37 IGT之XRD圖譜 90 圖4-38 IIGT之XRD圖譜 91 圖4-39 IPT之XRD圖譜 91 圖4-40 IIPT之XRD圖譜 92 圖4-41 直接光解實驗 94 圖4-42 TiO2吸附實驗 95 圖4-43 不同組合之光催化實驗 96 圖4-44 IIPT25之吸附與光催化實驗比較 98 圖4-45 表面積、TiO2披覆量相同時,光催化實驗之比較 99 圖4-46 觸媒沈降實驗 100 圖4-47 不同披覆比例之吸附實驗 103 圖4-48 不同披覆比例之光催化實驗 105 圖4-49 不同披覆比例觸媒沈降實驗 106 圖4-50 TiO2光催化之擬一階反應動力模式 107 圖4-51 不同披覆比例光催化之階數變動反應模式 110 表目錄 表2-1 實驗計劃法-傳統式與田口式之比較 6 表2-2 L9直交表 7 表2-3 化學鍵的斷裂能量 12 表2-4 TiO2中Anatase和Rutile結構特性的比較 19 表2-5 氧化物種之相對氧化能力 22 表2-6 各種光催化反應器的優劣 34 表3-1 製備TiO2粉體及複合式觸媒所需藥品 39 表3-2 光催化實驗所需藥品 40 表3-3 L9直交表之各控制因素操作條件 46 表3-4 L9直交表 47 表4-1 直交表中各控制變因之變數配置圖 62 表4-2 Sol-Gel法製備TiO2光觸媒L9直交表實驗結果 64 表4-3 變異數分析表 65 表4-4 L9直交表中各因素之回應值 66 表4-5 重複實驗之統計分析結果 70 表4-6 比表面積分析 93 表4-7 擬一階反應速率常數比較 112zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2106200617091700en_US
dc.subjecttitanium Dioxideen_US
dc.subject二氧化鈦zh_TW
dc.subjectActivated Carbonen_US
dc.subjectPhotocatalyticen_US
dc.subject活性碳zh_TW
dc.subject光催化zh_TW
dc.title以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究zh_TW
dc.titleStudy on the Preparation and Characterization of Activated Carbon Supported TiO2 Photocatalysten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.