Please use this identifier to cite or link to this item:
標題: Tuf 基因序列用於乳酸菌之分子鑑定與定量及其與16S rRNA基因在雙歧桿菌親緣性分析之比較
Use of Tuf gene Sequences for the Qualitative and Quantitative Assay of Lactic Acid Bacteria and Comparison of Tuf with 16S rRNA gene for the Phylogenetic Analysis of Bifidobacterium
作者: 許勝傑
Sheu, Sen-Je
關鍵字: tuf gene;多套式PCR;Multiplex PCR;Denaturing gradient gel electrophoresis;Real-time PCR;變性梯度膠體電泳;即時聚合酶鏈反應
出版社: 食品暨應用生物科技學系所
引用: 林姿杏。2008。應用 PCR-DGGE 與即時定量 PCR 於飼料中益生菌之定性及定量檢測。碩士論文。國立中興大學。 張玉瓏、徐乃芝和許素菁。2003。生物技術。新文京開發出版。 陳信志。2008。應用聚合酶連鎖反應-變性梯度膠體電泳法檢測與鑑定乳酸桿菌、葡萄球菌與環脂酸芽孢桿菌。博士論文。國立中興大學。 廖啟成。1998。乳酸菌之分類及應用。食品工業月刊. 30:1-9. 廖啟成。2007。乳酸菌產業研發服務能量之建構。益生菌之益生機制與應用研討會。台灣乳酸菌協會。 趙縉君。2004。乳酸桿菌 rDNA 分子檢測技術之發展。碩士論文。國立中興大學。 劉振凰。2004。利用 tuf 基因及 PCR 技術於乳酸桿菌之檢測及乳酸菌之安全評估。碩士論文。國立中興大學。 蔡政志。2004。乳酸菌之分子鑑定及其特性與機能性評估。博士論文。國立中興大學。 Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. and Polz, M. F. 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186: 2629-2635. Akkermans, D. L. and de Vos, W. M. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 114-123. Albano, H., Reenen, C. A., Todorov, S. D., Cruz, D., Fraga, L., Hogg, T., Dicks, L. M. T. and Teixeira, P. 2009. Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheira”, a traditional fermented sausage produced in Portugal. Meat Sci. 82: 389-398. Amor, K. B., Vaughan, E. E. and de Vos, W. M. 2007. Advanced molecular tools for the identification of lactic acid bacteria. J. Nutri. 137: 741-747. Analie, L. H. and Viljoen, B. C. 2001. Yogurt as probiotic carrier food. Int. Dairy J. 11: 1-17. Ang, S., Lee, C. Z., Peck, K., Sindici, M., Martrubutham, U., Gleeson, M. A., and Wang, J. T. 2001. Acid-induced gene expression in Heliobacter pylori study in genomic scale by microarray. Infect. Immun. 69: 1679-1686. Ayers, S. H. and Mudge, C. S. 1921. Two organisms of a commercial lactic starter. J. Dairy Sci. 4: 240-249. Bano, N. and Hollibaugh, J. T. 2002. Phylogenetic composition of bacterioplankton assemblages from the Artic Ocean. Appl. Environ. Microbiol. 68: 505-518. Bengmark, S. 2002. Gut microbial ecology in critical illness: is there a role for prebiotics, probiotics, and synbiotics? Curr. Opin. Crit. Care. 8: 145-151. Betzl, D., Ludwig, W. and Schleifer, K. H. 1990. Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 56: 2927-2929. Beverley, S. M. 1988. Characterization of the unsual mobility of large circular DNA in pulsed field gel electrophoresis. Nuncleic Acids Res. 16: 925-939. Birren, B. and Lai, E. 1993. Pulsed field gel electrophoresis: a practical guide. Academic Prss, San Diego, Califonia. Blaiotta, G., Pennacchia, C., Ercolini, D., Moschetti, G. and Villani, F. 2003. Combining denaturing gradient gel electrophoresis of 16S rDNA V3 Region and 16S-23S rDNA spacer region polymorphism analyses for the identification of staphylococci from Italian fermented sausages. Syst. Appl. Microbiol. 26: 423-433. Blom, H. and Mörtvedt, C. 1991. Anti-microbial substances produced by food associated micro-organisms. Biochem. Soc. Trans. 19: 694-698. Borch, E., Molin, G. 1988. Numerical taxonomy of psychrotrophic lactic acid bacteria from prepacked meat and meat products. Antonie Van Leeuwenhoek. 54: 301-323. Brashears, M. M., Jaroni, D. and Trimble, J. 2003. Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J. Food Prot. 66: 355-363. Brooks, J. L., Moore, A. S., Patchett, R. A., Collins, M. D. and Kroll, R. G. 1992. Use of the polymerase chain reaction and oligonucleotise probes of the rapid detection and identication of Carnobacterium species from meat. J. Appl. Bacteriol. 72: 294-301. Candela, M., Vitalli, B., Matteuzzi, D. and Brigidi, P. 2004. Evaluation of the rrn operon copy number in Bifidobacterium using real-time PCR. Letter. Appl. Microbiol. 38: 229-232. Carr, F. J., Chill, D. and Maida, N. 2002. The Lactic acid bacteria: A literature survey. Crit. Rev. Microbiol. 28: 281-370. Chan, R. C., Reid, G., Irvin, R. T., Bruce, A. W. and Costerton, J. W. 1985. Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect. Immun. 47: 84-89. Chavagnat, F., Haueter, M., Jimeno, J. and Casey, M. G. 2002. Comparison of partial tuf gene sequences for the identification of lactobacilli. FEMS Microbiol. Lett. 217: 177-183. Chen, J. W., Wu, R., Yang, P. C., Huang, J. Y., Sher, Y. P., Han, M. H., Kao, W. C., Lee, P. J., Chiu, T. F., Chang, F., Chu, Y. W., Wu, C. W. and Peck, K. 1998. Profiling expression patterns and isolating differentially expressed genes by cDNA Microarray system with colorimetry detection. Genomics. 51: 312-324. Cho, K. M., Math, R. K., Islam, S. M. A., Lin, W. J., Hong, S. U., Yun, M. G., Cho, J. J. and Yun, H. D. 2009. Novel multiplex PCR for the detection of lactic acid bacteria during kimchi fermentation. Molecular and cellular probes. 23: 90-94. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. Cocolin, L., Dolci, P., Rantciou, K., Urso, R. Cantoni, C. and Comi G. 2009 Lactic acid bacteria ecology of three traditional fermented sausages produced in the North of Italy as determined by molecular methods. Meat Sci. 82: 125-132. Coeuret, V., Gueguen, M. and Vernoux, J. P. 2004. Numbers and strains of lactobacilli in some probiotic products . Int. J. Food Microbiol. 97: 147-156. Collado, M. C. and M., Hernández. 2007. Identification and differentiation of Lactobacillus, Sreptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiol. Res. 162: 86-92. Collado, M. C., Moreno, Y., Cobo, J. M. and Hernández, M. 2006. Microbiological evaluation and molecular of bifidobacteria strains in commercial fermented characterization milks. Eur. Food Res. Technol. 1-2: 112-117. Collins, M.D., Rodrigues, U., Ash, C., Aguirre, M. and Farrow, J.A.E., Martinez-Murcia, A., Phillips, B.A., Williams, A.M. and Wallbanks, S. 1991. Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA FEMS Microbiol. Lett. 77, 5-12. Crump, B. C., Kling, G. W., Bahar, M. and Hobbie, J. E. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69: 2253-2268. de Moreno de Leblanc, A. and Perdigon, G. 2005. Reduction of Glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell. 29: 15-24. Dellaglio F. and Felis G.E. 2005. Taxonomy of lactobacilli and bifidobacteria. In: Probiotics and Prebiotics: Scientific Aspects, pp. 25-50. Edited by G.W. Tannock, Caister Academic Press, Norfolk, UK. Denter, J. and Bisping, B. 1994. Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. Int. J. Food. Microbiol. 22: 23-31. DeRisi, J. L., Iyer, V. R. and Brown, P. O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 278: 680-686. Dong, X., Cheng, G., and Jian, W. 2000. Simultaneous identification of five bifidobacterium species isolated from human beings using multiple PCR primers. Syst. Appl. Microbiol. 23: 386-390. Dykes, G., von Holy, A. 1993. Taxonomy of lactic acid bacteria from spoiled, vacuum packaged vienna sausages by total soluble protein profiles. J. Basic Microbiol. 33: 169-77. Dziarski, R. 1991. Demonstration of peptidoglycan-binding sites on lymphocytes and macrophages by photoaffinity cross-linking. J. Biol. Chem. 266: 4713-4718. Ercolini, D. (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J. Microbiol. Methods 56: 297-314. Ercolini, D., Hill, P. J., Dodd, C. E. R. 2003. Bacterial community structure and location in Stilton cheese. Appl. Environ. Microbiol. 69: 3540-3548. Fasoli, S., Marzotto, M., Rizzotti, L., Rossi, F., Dellaglio, F. and Torriani, S. 2003. Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Int. J. Food Microbiol. 82: 59-70. Felis, G. E., Dellaglio, F., Mizzi, L. and Torriani, S. 2001. Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int. J. Syst. Evol. Microbiol. 51: 2113-2117. Felis, G.E. and Dellaglio, F. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 8, 44-61. Ferris, M. J., Muyzer, G. and Ward, D. M. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346. Fisher, S. G. and Lerman, L. S. 1983. DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. U. S. A. 80: 1579-1583. Food and Drug Administration. 1995. Bacteriological Analytical Manual, 8th edn. Arlington, VA, USA: Association Official Analytical Chemists. Fox, G. E., Wisotzkey, J. D. and Jurtshuk, P. 1992. How close isclose : 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42: 166-170. Furet, J. P., Quénéé, P. and Tailliez , P. 2004. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 97: 197-207. Gancheva, A., Pot, B., Vanhonacker, K., Hoste, B. and Kersters, K. (1999) A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst. Appl. Microbiol. 22: 573-585. Gevers, D., Huys, G. and Swings, J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. 205: 31-36. Gray, N. D., Miskin, I. P., Kornilova, O., Curtis, T. P. and Head, I. M. 2002. Occurrence and activity of Archea in areated activated sludge wastewater treatment plants. Environ. Microbiol. 4: 158-168. Grill, J. P., Cayuela, C., Antoine, J. M. and Schneider, F. 2000 Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett Appl. Microbiol. 31: 154-156. Grimont, F. and Grimont, P. A. D. 1992. Identification and typing by rRNA gene restriction patterns, in Proceedings of the Conference on Taxonomy and Automated Identification of Bacteria (J. Schindler, ed.), Czeochoslvak Soc. Microbiol. Prague. pp: 15-18. Groisillier, A. and Lonvaud-Funel, A. 1999. Comparison of partial malolactic enzyme gene sequences for phylogenetic analysis of some lactic acid bacteria species and relationships with the malic enzyme. Int. J. Syst. Bacteriol. 49: 1417-1428. Gueimonde, M., Delgado, S., Mayo, B., Ruas-Madiedo, P., Margolles, A. and de los Reyes-Madiedo, C. G. 2004. Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res. Int. 37: 839-850. Gürtler, V., Stanisich, V. A. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiol. 142: 3-16. Haarman, M and J. Knol. 2005. Quantitative real-time PCR assays to identify and quantify fecal bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71: 2318-2324. Haarman, M and J. Knol. 2006. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 72: 2359-2365. Hacia, J.G. 1999. Resequencing and mutational analysis using oligonucleotide microarrays. Nature Genet. 21: 42-47. Hamilton-Miller, J.M. 2003. The role of probioticsin the treatment and prevention of Helicobacter pylori infection. Int. J. Antimicrob. Agents 22: 360-366. Hammes, W.P. and Hertel, C. 2003. The Genera Lactobacillus and Carnobacterium. In: The Prokaryotes Release 3.15, Editor Martin Dworkin. Hans G.H., Heilig, J., Zoetendal, E.G., Vaughan, E.E., Marteau, P., Akkermans, A.D.L. and de Vos. W.M. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 114-123. Hatakka, K., Savilahti, E., Ponka, A., Meurman, J. H., Poussa, T., Nase, L., Saxelin, M. and Korpela, R. 2001. Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ 322, 1327. Havenaar, R. and Husis In’t Veld, J. H. J. 1992. The lactic acid bacteria. (Wood, B. J. B. ed.). Vol. 1, 99: 151-170. Haza, A. I., Zabala, A. and Morales, P. 2003 Protective effect and cytokine production of a Lactobacillus plantarum strain isolated from ewes’ milk cheese. Int. Dairy J. 14: 29-38. Heilig, H.G.H.J., Zoetendal, E.G., Vaughan, E.E., Marteau, P., Akkermans, A.D.L. and de Vos W.M. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 114-123. Heumann, D., Barras, C., Severin, A., Glauser, M.P. and Tomasz, A. 1994. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 62: 2715-2721. Hirayama, K. and Rafter, J. 2000. The role of probiotic bacteria in cancer prevention. Microbes Infect. 2: 681-686. Holzapfel, W-H., Schillinger, U., du Toit, M. and Dicks, L. 1997. Systematics of probiotic lactic acid bacteria with reference to modern phenotypic and genomic methods. Microecol Therapy. 26:1-10. Hu, C.C., Hsiao, C.H., Huang, S.Y., Fu, S.H., Lai, C.C., Hong, T.M., Chen, H.H. and Lu, F.J. 2004. Antioxidant activity of fermented soybean extract. J. Agric. Food Chem. 52: 5735-5739. Huys, G., Vancanneyt, M., D''Haene, K., Vankerckhoven, V., Goossens, H. and Swings, J. 2006. Accuracy of species identity of commercial bacterial cultures intended for probiotic or nutritional use. Res. Microbiol. 157: 803-810. Israel, D. A., Salama, N., Arnold, C. N., Moss, S. F., Ando, T., Wirth, H.P., Tham, K. T., Camorlinga, M., Blaser, M. J., Falkow, S., and Peed Jr, R. M. 2001. Heliobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J. Clin. Invest. 107: 611-620. Jayamanne, V. S. and M. R. Adams. 2006. Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurt. Lett. Appl. Microbiol. 42: 189-194. Jijon, H., Backer, J., Diaz, H., Yeung, H., Thiel, D., Mckaigney, C., De Simone, C. and Madsen, K. 2004. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology. 126: 1358-1373. Johansson, M.-L., Molin, G., Pettersson, B., Uhlén, M., and Ahrné, S. 1995. Characterization and species recognition of Lactobacillus plantarum strains by restriction fragment length polymorphism (RFLP) of the 16S rRNA gene. J. Appl. Bacteriol. 79: 536-541. Johnson, T. R. and Case, C. L. 1995. Laboratory experiments in microbiology. 4th edition. The Benjamin / Cummings Publoshing Co. Inc. Kado, C.I. and Liu, S.T. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-73. Kandler, O. and Weiss, N. 1986. Genus Lactobacillus Beijerinck 1901, p. 1209-1234. In P. H. A. Sneath, N. S. Mairm, M. E. Sharpe. (ed.), Bergey’s manual of systematic bacteriology, vol. 2. Williams and J. G. Holt Wilkins, Baltimore, Md. Ke, D., Boissinot, M., Huletsky, A., Picard, F.J., Frenette, J., Ouellette, M., Roy, P.H. and Bergeron, M.G. 2000. Evidence for horizontal gene transfer in evolution of elongation factor Tu in enterococci. J. Bacteriol. 182: 6913-6920. Ke, D., Picard, F. J. F., Martineau, C., Ménard, P. H., Roy, Ouellette, M. and Bergeron, M. G. 1999. Development of a PCR assay for rapid detedtion of enterococci. J. Clin. Microbiol. 37: 3497-3503. Kim, T. W., Lee, J. H., Kim, S. E., Park, M. H., Chang, H. C. and Kim, H. Y. 2009. Analysis of microbial communities in, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J Food Microbiol. 131: 265-271. Klaver, F.A. and van der Meer, R. 1993)The assumed asimilation of cholsterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59, 1120-1124. Kleppe, K., Ohtsuka, E., Kleppe, R., Molineus, R., and Khorana, H.G. 1971. Studies on polynucleotides. XCVI. Repair replication of short synthetic DNA’s as catalyzed by DNA polymerase. J. Molecul. Biol. 56: 341-361. Klijn, N., Weekamp, A.H., and de Vos, W.M. 1991. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Appl. Environ. Microbiol. 57: 3390-3393. Kloos, W.E. and Schleifer, K.H. 1975. Simplified scheme for routine identification of human Staphylococcus species. J. Clin. Microbiol. 1, 82-88. Kullen, M.J., Brady, L.J., O''Sullivan, D.J., 1997. Evaluation of using a short region of the recA gene for the rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiol. Lett. 154: 377–383. Kurtzman, C. P. 1992. rRNA sequence comparisons for assessing phylogenetic relationships among yeast. Int. J. Syst. Bacteriol. 42: 1-6. Kwon, H. S., Yang, E. H., Yeon, S. W., Kang, B. H. and Kim, T. Y. 2004. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol. Lett. 239: 267-275. Lamendella, R., Santo Domingo, J. W., Kelty, C. and Oerther, D. B. 2008. Bifidobacteria in Feces and Environmental Waters. Applied Environ. Microbiol. 74: 575-584. Leblond-Bourget, N., Philippe, H., Mangin, I. And Decaris, B. 1996. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int. J Sys. Bacteriol. 46: 102-111. Lee, J.S., Heo, G.Y., Lee, J.W., Oha, Y.J., Park, J.A., Park, Y.H., Pyun, Y.R. and Ahn, J.S. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150. Leena, S., Tiina, J., Tuija, P. and Riitta, K. 2003 A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77: 326-330. Lin M. Y. and Yen C. L. 1999. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agric. Food Chem. 47: 3661-3664. Lin, C. K, Hung, C. L., Chiang, Y. C., Lin, C. M. and Tsen, H. Y. 2004. The sequence heterogenicities among 16 rRNA genes of Salmonella serovars and the effects on the specificity of the primers designed. Int. J. Food Microbiol. 96: 205-214. Lin, W. H., Hwang, C. F., Chen, L. W. and Tsen, H. Y. 2006. Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol. 23: 74-81. Liu, Y., Cai, X., Zhang, X., Gao, Q., Yang, X., Zheng, Z., Luo, M., Huang, X. 2007. Real-time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula. J. Microbiol. Methods. 35: 21-31. Lloyd, A. T. & Sharp, P. M. 1993. Evolution of the recA gene and the molecular phylogeny of bacteria. J Mol Evol 37, 399-407. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., Brown, E.L. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14: 1675-80. Love, J. L., Scholes, P., Gilpin, B., Savill, M., Lin, S. and Samuel, L. 2006. Evaluation of uncertainty in uantitative real-time PCR. J. Microbiol. Methods. 67:349-356. Lucchini, S., Thompson, A. and Hinton, J.C.D. 2001. Microarrays for microbiologists. Microbiology. 147: 1403-1414. Ludwig, W., J. Neumaier, N. Klugbauer, E. Brockmann, C. Roller, S. Jilg, K. Reetz, I. Schachtner, A. Ludvigsen, M. Bachleitner, U. Fischer, and K. H. Schleifer. 1993. Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta subunit genes. Antonie Leeuwenhoek. 64: 285-305. Macnaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.J. and White, D.C. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574. Mangin, I., Bourget, N., Bouhnik, Y., Bisetti, N., Simonet, J.M, and Decaris, B. 1994. Identification of Bifidobacterium strains by rRNA gene restriction patterns. Appl. Environ. Microbiol. 60: 1451-1458. Manninen, T.J.K., Rinkinen, M.L., Beasley, S.S. and Saris, P.E.J. 2006. Alteration of the canine small-intestinal lactic acid bacterium microbiota by feeding of potential probiotics. Appl. Envir. Microbiol. 72, 6539-6543. Maréchal, J., Clement, B., Nalin, R., Gandon, C., Orso, S., Cvejic,J. H., Bruneteau, M., Berry, A. & Normand, P. 2000. A recA genephylogenetic analysis confirrms the close proximity of Frankia to Acidothermus. Int J Syst Evol Microbiol 50: 781-785. Margus, T., Remm, M. and Tenson, T. 2007. Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics. 8: 15. Martineau, F., Picard, F.J., Ke, D., Paradis, S., Roy, P., Ouellette, M. and Bergeron, M.G. 2001. Development of a PCR assay for identification of staphylococci at genus and species levels. J. Clin. Microbiol. 39: 2541-2547. Masco, L., Huys, G., de Brandt, E., Temmerman, R. and Swings, J. 2005. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int. J. Food Microbiol. 102: 221-230. Masco, L., Vanhoutte, T., Temmerman, R., Swings, J. and Huys, G. 2007 Evaluation of real-time PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products. Int. J. Food Microbiol. 113: 351-357. Masco, L., Ventura, M., Zink, R., Huys, G. and Swings, J. 2004. Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. Int J Syst Evol. Microbiol. 54: 1137-1143. Matsuki, T., Watanabe, K. and Tanaka, R. 2003. Genus- and species-specific PCR primers for the detection and identification of bifidobacteria. Curr. Issues Intest. Microbiol. 4:61-69. Matsuki, T., Watanabe, K., Tanaka, R., Fukuda, M. and Oyaizu, H. 1999. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl. Environ. Microbiol. 65: 4506-4512. Matsuoka, T., Kuribara, H., Akiyama, H., Miura, H., Goda, Y., Kusakabe, Y., Isshiki, K,. Toyoda, M. and Hino, A. 2001. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize. J Food Hyg Soc Japan. 42: 24-32. Mättö, J., Malinen, E., Suihko, M. L., Alander, M., Palva, A. and Saarela, M. 2004. Genetic heterogeneity and functional properties of intestinal bifidobacteria. J Applied Microbiol. 97: 459-470. Mccaig, A.E., Glover, L.A. and Prosser, J.I. 2001. Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl. Environ. Microbiol. 67: 4554-4559. McClelland, M., Jones, R., Patel, Y., and Nelson, M. 1987. Restriction endonucleases for pulsed mapping of bacterial genomes. Nucleic Acids Res. 15: 5985-6005. Meroth, C.B., Walter, J., Hertel, C., Brandt, M.J. and Hammes, W.P. 2003. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69: 475-482. Meurman, J.H. and Stamatova, I. 2007. Probiotics: contributions to oral health. Oral Dis. 13, 443-451. Mmartineau, F., Picard, F. J. Ke, D., Paradis, S., Roy, P. H., Ouellette, M. and Bergeron, M. G. 2001. Development of a PCR assay for identification of staphylococci at genus and species levels. J. Clin. Microbiol. 39: 2541-2547. Mortazavian, A. M., Ehsani, M. R., Mousavi, S. M., Rezaei, K., Sohrabvandi, S. and Reinheimer, J. A. 2007. Effect of refrigerated storage temperature on the viability of probiotic micro-organisms in yogurt. International Journal Dairy Technology. 60: 123-127. Mullis, K., and F. A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction in “Methods on Enzymology”. 155: 335-350. Muñoa, F. J. and Pares, R. 1988. Selective medium for isolation and enumeration of Bifidobacterium spp. Appl. Environ. Microbiol. 54: 1715-1718. Muyzer, G., de Waal, E.C. and Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. Nakamura, Y., Yamamoto, N., Sakai, K. and Takano, T. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253-1257. Nebra, Y. and Blanch, A.R. 1999 A new selective medium for Bifidobacterium spp. Appl Environ Microbiol. 65: 5173-5176. Nene, V., R. Bishop, S. Morzaria, M.J. Gardner, C. Sugimoto, O.K. ole-MoiYoi, C.M. Fraser and A. Irvin. 2000. Theileria parva genomics reveals an atypical apicomplexan genome. Int. J. Parasitol. 30: 465-474. Nielsen, D.S., Teniola, O.D., Ban-Koffi, L., Owusu, M., Andersson, T.S. and Holzapfel, W.H. 2007. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 114: 168-186. Nighswonger, B. D., Brashears, M. M. and Gilliland, S. E. 1996. Viability of Lactobacillus acidophilus and Lactobacillus casei in fermented milk products during refrigerated storage. J Dairy Sci. 79: 212-219. Nissen, H. and Dainty, R. 1995. Comparison of the use of rRNA probes and conventional methods in identifying strains of Lactobacillus sake and L. curvatus isolated from meat. Int. J. Food Microbiol. 25: 311-315. Nissen, H. and Dainty, R. 1995. Comparison of the use of rRNA probes and conventional methods in identifying strains of Lactobacillus sake and L. curvatus isolated from meat. Int. J. Food Microbiol. 25: 311-315. Norris, T.B., Wraith, J.M., Castenholz, R.W. and McDermott, T.R. 2002. Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68: 6300-6309. O’sullivan, M. G., Thornton, G., Osullivan, G.C., and Collins, J.K. 1992. Probiotic bacteria: myth or reality. Trend. Food Technol. 3: 309-314. Ohashi, Y., Nakai, S., Tsukamoto, T., Masumori, N., Akaza, H., Miyanaga, N., Kitamura, T., Kawabe, K., Kotake, T., Kuroda, M., Naito, S., Koga, H., Saito, Y., Nomata, K., Kitagawa, M. and Aso, Y. 2002. Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol. Int. 68: 273-280. Perea Vélez, M., Hermans, K., Verhoeven, T. L. A., Lebeer, S. E., Vanderleyden, J. and De Keersmaecker, S. C. J. 2007. Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products. J. Appl. Microbiol. 103: 666-674. Pretorius, I.S., and Marmur, J. 1988. Localization of yeast glucoamylase genes by PFGE and OFAGE. Curr. Genet. 14: 9-13. Rambaud, J. C., Bouhnik, Y., Marteau, P., and Pochart, P. 1993. Manipulation of the human gut microflora. Proc. Nutr. Soc. 52: 357-366. Randazzo, C.L., Torriani, S., Akkermans, A.D.L., de Vos, W.M. and Vaughan, E.E. 2002 Diversity, dynamics, and activity of bacterial communities during production of an Artisanal Sicilian Cheese as evaluated by16S rRNA analysis. Appl. Environ. Microbiol. 68: 1882-1892. Rantsiou, K., Alessandria, V., Urso, R., Dolci, P., Cocolin, L. 2008. Detection, quantification and vitality of Listeria monocytogenes in food as determined by quantitative PCR. Int. J. Food Microbiol. 121: 99-105. Reeson, A.F., Jancovic, T., Kasper, M.L., Rogers, S. and Austin, A.D. 2003. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol. Biol. 12: 85-91. Reid G. 1999. The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol. 65: 3763-6. Reid, G., Kim, S.O. and Köhler, G.A. 2006. Selecting, testing and understanding probiotic microorganisms. FEMS Immunol. Med. Microbiol. 46: 149-157. Renouf, V., Claisse, O. and Lonvaud-Funel, A. 2006. rpoB gene: A target for identification of LAB cocci by PCR-DGGE and melting curves analyses in real time PCR. J. Microbiol. Methods. 67: 162-170. Reuter, G., Klein, G. and Foldberg, M. 2002. Identification of probiotic cultures in food samples. Food Res. Intern. 35: 117-124. Rodrigues, U.M., Aguirre, M., Facklam, R.R. and Collins, M.D. 1991. Specific and intraspecific molecular typing of lactococci based on polymorphism of DNA encoding rRNA. J. Appl. Bacteriol. 71: 509-516. Ross, R. P., Desmond, C., Fitzgerald, G. F. and Stanton, C. 2005. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98: 1410-1417. Roy, D., Ward, P. and Champagne, G. 1996. Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int. J. Food Microbiol. 29: 11-29. Saarela, M., Fonden, G., Fonden, R., Mättö,J., Mattila-Sandholm, T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotech. 84: 197-215. Saarela, M., Mogensen, G., Fondén, R., Mättö, J. and Mattila-Sandholm, T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197-215. Saavedra, J.M. 2001. Clinical applications of probiotic agents. Am.J. Clin. Nutr. 73(Suppl): 1147S-1151S. Saide, J.A. and Gilliland, S.E. 2005. Antioxidative activity of lactobacilli measured by oxygen radical absorbance capacity. J. Dairy Sci. 88: 1352-1357. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science. 239: 487-494. Salminen, S., von Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W.M., Fonden, R., Saxelin, M., Collins, K., Mogensen, G., Birkeland, S.E. and Mattila-Sandholm, T. 1998. Demonstration of safety of probiotics -- a review. Int. J Food Microbiol. 44: 93-106. Sambrook, J. and Russel, D. 2001. Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Sander, M.E., Walker, D.C., Walker, K.M., Aoyama, K. and Klaenhammer, T.R. 1996. Performance of commercial cultures in fluid milk applications. J. Dairy Sci. 79: 943-955. Schiffrin, E.J., Rochat, F., Link-Amster, H., Aeschlimann, J.M. and Donnet-Hughes, A. 1995. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491-497. Schillinger, U., Yousif, M.K., N., Sesar, L. and Franz, C. M.A.P. 2003. Use of Group-Specific and RAPD-PCR Analyses for Rapid Differentiation of Lactobacillus Strains from Probiotic Yogurts. Current. Microbiol. 47: 453-456. Schleifer, K. H. and Ludwig, W. 1995. Phylogeny of the genus Lactobacillus and related genera. Syst. Appl. Microbiol. 18: 461-467. Schwartz, D.C., and Cantor, C.R. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 337: 67-75. Sela, S., Yogev, D., Razin, S. and Bercovier, H. 1989. Duplication of the tuf gene: a new insight into the phylogeny of eubacteria. J. Bacteriol. 171: 581-584. Selma M. V., Martínez-Culebras, P. V., Aznar, R. 2008. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes. Int. J. Food Microbiol. 122: 126-134. Shah, NP. 2000. Probiotic bacteria: Enumeration and survival in dairy foods. J Dairy Sci. 83: 894-907. Sidorenko, A. V., Novik, G. I. and Akimov, V. N. 2008. Application of the methods of molecular systematics to classification and identification of bacteria of the genus Bifidobacterium. Mikrobiologiia. 77: 293-302 Smith, C.L., and Cantor, C.R. 1987. Purification, specific fragmentation and separation of large DNA molecules. Meth. Enzymol. 155: 449-467. Solano
具益生菌特性之乳酸菌廣泛使用於發酵食品、乳製品之製造以及食品或飼料添加物。對於消費者或主管機關而言,了解益生菌產品中乳酸菌菌種以及其活菌數是非常重要的。16S rRNA基因一直被認為是真細菌菌種鑑定最佳的標的基因。然而,卻有著相近菌種之16S rDNA 序列間具高度相似性以及基因體中不同operon間可能有不同的序列的問題存在。Tuf 基因為細菌延展因子 (elongation factor Tu) 蛋白之基因,在革蘭氏陽性細菌中只有一套。近年來,常用於設計分子檢測方法之替代基因。因此,本研究試著以tuf 基因為標的基因,開發乳酸桿菌及雙歧桿菌之分子鑑定與分子定量方法。
首先,經由比對基因庫中之乳酸桿菌之tuf基因與recA基因序列,由tuf基因序列設計九組特異性引子組及以recA基因序列設計四組特異性引子組,可以分別檢測L. acidophilus、L. brevis、L. casei group、L. delbrueckii、L. farciminis、L. fermentum、L. jensenii、L. reuteri、Lactobacillus spp.及L. amylovorus、L. pentosus、L. plantarum/L. brevis、L. rhamnosus。另外,以自行設計的引子組直接檢測市售標榜內含乳酸桿菌之乳製產品,結果顯示PCR (Polymerase chain reaction) 之檢測與產品標示相符。因此,所開發之引子組,可應用於乳製品中乳酸桿菌之檢測。
另一方面,針對18株雙歧桿菌部分tuf 及16S rRNA之基因進行定序分析,經比較其序列相似度後發現14株不同菌種之部分 tuf 及16S rRNA基因序列相似度分別為 82.24~99.72% 與 92.33~99.05%,部分 tuf 基因序列有較多之變異性,於雙歧桿菌之鑑別上提供較佳之區分能力。另外,以部分 tuf 基因序列進行分析之親緣演化樹與以部分16S rRNA基因序列分析之結果相似,tuf 基因序列可作為菌種親緣演化分析之工具。根據雙歧桿菌tuf基因序列,可設計13組特異性引子組,分別檢測B. adolescentis、B. animalis、B. bifidum、B. breve、B. cuniculi、B. gallinarum、B. globosum、B. indicum、B. infantis、B. longum、B. minimum 、B. subtile 及Bifidobacterium spp.。針對常使用於乳製品之B. lactis 與B. longum,檢測靈敏度皆可達N×103 CFU/ml (N=1~9) 之菌數。而以自行設計的引子組直接檢測市售標榜內含雙歧桿菌之乳製產品,並配合平板法計數活菌,可用來確認乳製產品之品質。
在多套式PCR (Multiplex PCR) 開發部分,選擇常使用於發酵乳之乳酸菌為開發標的,利用前述 tuf基因序列設計之Laci_tF/ Laci_tR、Lcasg_tF/ Lcasg_tR、Ldel_tF/ Ldel_tR、Blon_tF/ Blon_tR PCR 引子組開發一多套式PCR系統,可分別檢測 L. acidophilus、L. casei group、L. delbrueckii與B. longum,其PCR產物大小分別為397、230、202與161 bp,於牛乳樣品中之檢測靈敏度可達N×103 CFU/ml之菌數。利用此多套式PCR直接檢測市售標榜內含乳酸菌之發酵乳產品,並以文獻發表之16S rDNA 或 16S-23S ITS序列所設計引子組與API50 CHL套組作確認,其檢測結果顯示具有良好之特異性。此多套式PCR可應用於發酵乳產品中,乳酸桿菌與雙歧桿菌之快速檢測。
變性梯度膠體電泳 (Denaturing gradient gel electrophoresis, DGGE) 可以區分相同長度而不同序列之DNA片段,使用 PCR配合DGGE可以分析一混合菌相中之個別菌種。本研究針對 Bifidobacterium 之 tuf 基因序列設計專一性引子,開發一 Bifidobacterium PCR-DGGE 之鑑定系統,對菌種有很高的鑑別能力,可以將16個菌種 (包含2個subspecies)分成13群:B. adolescentis/B. thermophilum、B. indicum、B. subtile、B. boum、B. longum/B. magnum、B. cuniculi、B. minimum、B. breve、B. animalis、B. bifidum、B. lactis/B. gallinarum、B. globosum與B. infantis;若配合吾人所開發tuf gene-based PCR引子組,則可使16個菌種 (包含2個subspecies) 全部被鑑定出來。使用tuf gene-based PCR-DGGE方法,再配合tuf gene-based PCR或定序確認,將可非常實用的應用於檢測樣品中之Bifidobacterium菌種。
另外,以 tuf 基因所設計之L. acidophilus、L. casei group、L. delbrueckii、B. lactis與B. longum特異性引子組,配合ABI 7500 Real-time PCR 系統及SYBR Green I為染劑,進行即時聚合酶鏈反應,結果顯示,以產生之螢光訊號,輔以PCR產物 melting temperature (Tm) 值裂解溫度的偵測,五組引子組皆得到良好的特異性。在添加目標菌之牛乳中,即時聚合酶鏈反應之靈敏度可達102~103 CFU/ml。而在定量分析方面,三市售優酪乳產品在儲存過程中L. acidophilus、L. casei group、L. delbrueckii、B. lactis與B. longum菌數,以MRS-sorbitol agar、MRS agar (pH 5.2)、MRS-vancomycine agar 與BIM-25 agar等選擇性培養基篩選菌落後經PCR確認之菌數與以即時聚合酶鏈反應檢測DNA量,經換算後所得之菌數有相當之一致性。乳酸菌即時聚合酶鏈反應較傳統PCR快速、具較高檢測靈敏度,並在定量上有開發之潛力。

Lactic acid bacteria (LAB) strains with probiotic functions have been used for the processing of fermented food and milk products as well as food and feed supplements. In addition to viability, identity of the LAB species in products is important to consumers and regulatory agencies. 16S rRNA gene has been generally used as target for the identification of eubacteria. However, the identical 16S rDNA sequences of closely related species and the divergent 16S rDNA sequences of a single organism remain problems. The elongation factor Tu gene (tuf), which is present as a single copy in most gram-positive bacteria, has recently been an alternative for designing gene-based methods. In this study, we tried to develop and use of tuf gene-based molecular methods for the qualification and quantification of Lactobacillus and Bifidobacterium.
Based on tuf and recA gene sequences retrieved form the GenBank database, 12 species-specific and one genus-specific primer sets were designed for the PCR detection of L. acidophilus, L. brevis, L. casei group, L. delbrueckii, L. farciminis, L. fermentum, L. jensenii, L. reuteri, Lactobacillus spp. and L. amylovorus, L. pentosus, L. plantarum/L. brevis, L. rhamnosus. The specificities of these PCR primer sets were confirmed by assaying Lactobacillus spp. and other bacterial strains. All the targeted Lactobacillus generated PCR products with predicted sizes. Furthermore, the labels of commercial fermented milk products were examined with these PCR primer sets. The results indicated that label of most fermented milk products were correct with Lactobacillus species. Therefore, the specific PCR primers developed could be used to detect Lactobacillus in fermented milk products.
On the other hand, partial sequences of the tuf and 16S rRNA gene for 18 Bifidobacterium strains belonging to 14 species were determined. Phylogenetic tree was constructed using neighbor-joining method. The phylogenetic tree based on tuf gene has a profile similar to that determined on the basis of 16S rRNA gene. Sequence alignment for these sequences showed that the similarities among the 14 Bifidobacterium species were 82.24-99.72% for partial tuf genes and 92.33-99.05% for partial 16S rRNA genes, respectively. According to these partial tuf genes, 12 species-specific and one genus-specific primer sets were designed for the PCR detection of B. adolescentis, B. animalis, B. bifidum, B. breve, B. cuniculi, B. gallinarum, B. globosum, B. indicum, B. infantis, B. longum, B. minimum, B. subtile and Bifidobacterium spp.. While Bifidobacterium spp. and other bacterial strains were assayed, these PCR primer sets showed great specificities to targeted Bifidobacterium. Detection limits of species-specific PCR were N×103 CFU per ml (N=1-9) in artificially spiked milk targeted with B. longum and B. lactis, respectively. Bifidobacterial strains in commercial probiotic products could be identified with these tuf gene-based PCR primers and be enumeration by plating count method. Thus, the quality of these porbiotic products could be assured.
In addition, tuf gene-based PCR primers specific for the detection of L. acidophilus, L. casei group, L. delbrueckii, and B. longum were combined for the simultaneous detection of these LAB. The specificity of this multiplex PCR was confirmed and the PCR products generated from L. acidophilus, L. delbrueckii, L. casei group, and B. longum were 397, 230, 202, and 161 bp, respectively. The identification limit for each LAB strain with this multiplex PCR method was N× 103 CFU per ml in milk samples. When this multiplex PCR method were used for the simultaneous detection of the LAB in fermented milk products, the LAB species listed on the labels of these products could be identified without the preenrichment step. The results of the multiplex PCR method were further confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. In conclusion, this multiplex PCR method could be used for the identification and detection of LAB in commercial fermented milk products.
Denaturing gradienet gel electrophoresis (DGGE) is a technique able to differentiate DNA fragnments with sequences diversity. With polymerase chain reaction, DGGE was able to analyze the species in mixed cultures. PCR-DGGE targeting tuf gene was developed and used for species identification. When 16 Bifidobacterium species were assayed with the PCR-DGGE method, all these species could be differentiated to 13 separated patterns, except that the tuf gene sequences from B. adolescentis/B. thermophilum, B. longum/B. magnum and B. lactis/B. gallinarum which migrated the same distance with DGGE gel. Combing with species-specific PCR, all the 16 Bifidobacterium species could be identified. Detection limits of genus-specific PCR-DGGE were N×104 CFU per ml in artificially spiked milk targeted with B. longum and B. lactis, respectively. Furthermore, species-specific PCR and PCR-DGGE were used for the detection of bifidobacterial species in probiotic products. The Bifidobacterium in probiotic products could be faithfully detected by tuf gene-based PCR and PCR-DGGE.
Finally, SYBR Green I based Real-time PCR were developed for the detection of L. acidophilus, L. casei group, L. delbrueckii, B. lactis and B. longum using tuf gene-based specific primers. According to the melting temperature (Tm) of the PCR products generated with these primers, the specificity could be confirmed. Using Ct (cycle threshold) and the concentration of bacteria cells, the standard curves of LAB strains were generated and could be used in evaluating the concentration of bacteria. For the quantification of the LAB in fermented products, the enumeration results obtained from selective medium plating and Real-time PCR showed great agreement between two methods. The result suggested that it has potential for developing a culture-independent bacteria enumeration procedure by Real-time PCR.
Appears in Collections:食品暨應用生物科技學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.