Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/51975
標題: 水稻GDSL脂肪酶基因家族中之多功能性及多樣性研究:生物資訊分析之新洞鑑
Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis
作者: 邱安娜
Chepyshko, Hanna
關鍵字: GDSL脂解酶基因家族;GDSL esterases/lipases;水稻;Oryza sativa L. japonica;脂肪酶生物資訊;gene family;esterase;lipase;enzymes;bioinformatics;lipolytic enzymes;rice;Oryza sativa L. japonica;enzyme multifunctionality
出版社: 食品暨應用生物科技學系所
引用: REFERENCES 1992. IUBMB (International Union of Biochemistry and Molecular Biology). Academic Press, San Diego, California. 2005. The map-based sequence of the rice genome. Nature 436:793-800. 2012. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71-75. Abdelkafi, S., H. Ogata, N. Barouh, B. Fouquet, R. Lebrun, M. Pina, F. Scheirlinckx, P. Villeneuve, and F. Carriere. 2009. Identification and biochemical characterization of a GDSL-motif carboxylester hydrolase from Carica papaya latex. Biochim Biophys Acta 1791:1048-1056. Agee, A. E., M. Surpin, E. J. Sohn, T. Girke, A. Rosado, B. W. Kram, C. Carter, A. M. Wentzell, D. J. Kliebenstein, H. C. Jin, O. K. Park, H. Jin, G. R. Hicks, and N. V. Raikhel. 2010. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase-associated protein involved in endomembrane protein trafficking. Plant Physiol 152:120-132. Akoh, C. C., G. C. Lee, Y. C. Liaw, T. H. Huang, and J. F. Shaw. 2004. GDSL family of serine esterases/lipases. Prog Lipid Res 43:534-552. Ali, Y. B., R. Verger, and A. Abousalham. 2012. Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. Methods Mol Biol 861:31-51. Alvaro, G. and A. Illanes. 2008. Chimioselective Esterification of Wood Sterols with Lipases. Pages 292-323 in A. Illanes, editor. Enzyme Biocatalysis─Principles and Applications. Springer, New York, NY, USA. Arif, S. A., R. G. Hamilton, F. Yusof, N. P. Chew, Y. H. Loke, S. Nimkar, J. J. Beintema, and H. Y. Yeang. 2004. Isolation and characterization of the early nodule-specific protein homologue (Hev b 13), an allergenic lipolytic esterase from Hevea brasiliensis latex. J Biol Chem 279:23933-23941. Arpigny, J. L. and K. E. Jaeger. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem J 343 Pt 1:177-183. Bailey, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, and W. S. Noble. 2009. MEME Suite: tools for motif discovery and searching. Nucleic Acids Research 37:W202-W208. Bailey, T. L. and C. Elkan. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28-36. Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers. 2010. GenBank. Nucleic Acids Res 38:D46-51. Bhattacharyya, R. P., A. Remenyi, B. J. Yeh, and W. A. Lim. 2006. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75:655-680. Blanc, G. and K. H. Wolfe. 2004. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679-1691. Bond, C. S. 2003. TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19:311-312. Bornscheuer, U. T. 2002. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73-81. Brick, D. J., M. J. Brumlik, J. T. Buckley, J.-X. Cao, P. C. Davies, S. Misra, T. J. Tranbarger, and C. Upton. 1995. A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS letters 377:475-480. Brzozowski, A. M., U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A. Patkar, and L. Thim. 1991. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491-494. Campbell, M. A., B. J. Haas, J. P. Hamilton, S. M. Mount, and C. R. Buell. 2006. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7:327. Cannon, S. B., A. Mitra, A. Baumgarten, N. D. Young, and G. May. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10. Cao, D., H. Cheng, W. Wu, H. M. Soo, and J. Peng. 2006. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol 142:509-525. Casas-Godoy, L., S. Duquesne, F. Bordes, G. Sandoval, and A. Marty. 2012. Lipases: an overview. Methods Mol Biol 861:3-30. Chahinian, H., L. Nini, E. Boitard, J. P. Dubes, L. C. Comeau, and L. Sarda. 2002. Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653-662. Chahinian, H. and L. Sarda. 2009. Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149-1161. Chang, R. C., J. C. Chen, and J. F. Shaw. 1995. Vibrio mimicus arylesterase has thioesterase and chymotrypsin-like activity. Biochem Biophys Res Commun 213:475-483. Chang, R. C., J. C. Chen, and J. F. Shaw. 1996. Site-directed mutagenesis of a novel serine arylesterase from Vibrio mimicus identifies residues essential for catalysis. Biochem Biophys Res Commun 221:477-483. Cheeseman, J. D., A. Tocilj, S. Park, J. D. Schrag, and R. J. Kazlauskas. 2004. Structure of an aryl esterase from Pseudomonas fluorescens. Acta Crystallogr D Biol Crystallogr 60:1237-1243. Cho, H. and J. E. Cronan, Jr. 1994. "Protease I" of Escherichia coli functions as a thioesterase in vivo. J Bacteriol 176:1793-1795. Clauss, K., A. Baumert, M. Nimtz, C. Milkowski, and D. Strack. 2008. Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J 53:802-813. Correia, M. A., J. A. Prates, J. Bras, C. M. Fontes, J. A. Newman, R. J. Lewis, H. J. Gilbert, and J. E. Flint. 2008. Crystal structure of a cellulosomal family 3 carbohydrate esterase from Clostridium thermocellum provides insights into the mechanism of substrate recognition. J Mol Biol 379:64-72. Cummins, I. and R. Edwards. 2004. Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. The Plant Journal 39:894-904. Dalrymple, B. P., D. H. Cybinski, I. Layton, C. S. McSweeney, G. P. Xue, Y. J. Swadling, and J. B. Lowry. 1997. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143 ( Pt 8):2605-2614. de La Torre, F., J. Sampedro, I. Zarra, and G. Revilla. 2002. AtFXG1, an Arabidopsis gene encoding alpha-L-fucosidase active against fucosylated xyloglucan oligosaccharides. Plant Physiol 128:247-255. Derewenda, Z. S. 1994. Structure and function of lipases. Adv Protein Chem 45:1-52. Fojan, P., P. H. Jonson, M. T. Petersen, and S. B. Petersen. 2000. What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033-1041. Galperin, M. Y. and E. V. Koonin. 2012. Divergence and convergence in enzyme evolution. J Biol Chem 287:21-28. Grochulski, P., F. Bouthillier, R. J. Kazlauskas, A. N. Serreqi, J. D. Schrag, E. Ziomek, and M. Cygler. 1994. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry 33:3494-3500. Guo, A. Y., Q. H. Zhu, X. Chen, and J. C. Luo. 2007. [GSDS: a gene structure display server]. Yi Chuan 29:1023-1026. Guo, X., G. Xu, Y. Zhang, X. Wen, W. Hu, and L. Fan. 2006. Incongruent evolution of chromosomal size in rice. Genet Mol Res 5:373-389. Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology 39:235-251. Hausmann, S. and K. E. Jaeger. 2010. Lipolytic Enzymes from Bacteria. Pages 1099-1126 in K. N. Timmis, editor. Handbook of Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg. Ho, Y. S., L. Swenson, U. Derewenda, L. Serre, Y. Wei, Z. Dauter, M. Hattori, T. Adachi, J. Aoki, H. Arai, K. Inoue, and Z. S. Derewenda. 1997. Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer. Nature 385:89-93. Hong, J. K., H. W. Choi, I. S. Hwang, D. S. Kim, N. H. Kim, S. Choi du, Y. J. Kim, and B. K. Hwang. 2008. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539-558. Hruz, T., O. Laule, G. Szabo, F. Wessendorp, S. Bleuler, L. Oertle, P. Widmayer, W. Gruissem, and P. Zimmermann. 2008. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747. Hu, H., J. You, Y. Fang, X. Zhu, Z. Qi, and L. Xiong. 2008. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169-181. Huang, Y. T., Y. C. Liaw, V. Y. Gorbatyuk, and T. H. Huang. 2001. Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. J Mol Biol 307:1075-1090. Irimia, M. and S. W. Roy. 2008. Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Research 36:1703-1712. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315-351. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr Opin Biotechnol 13:390-397. Kandzia, R., R. Grimm, C. Eckerskorn, P. Lindemann, and M. Luckner. 1998. Purification and characterization of lanatoside 15''-O-acetylesterase from Digitalis lanata Ehrh. Planta 204:383-389. Kanehisa, M., S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, and M. Hirakawa. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354-357. Kelley, L. and M. Scott. 2008. The evolution of biology. A shift towards the engineering of prediction-generating tools and away from traditional research practice. EMBO Rep 9:1163-1167. Kelley, L. A. and M. J. E. Sternberg. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4:363-371. Kikuchi, S., K. Satoh, T. Nagata, N. Kawagashira, K. Doi, N. Kishimoto, J. Yazaki, M. Ishikawa, H. Yamada, H. Ooka, I. Hotta, K. Kojima, T. Namiki, E. Ohneda, W. Yahagi, K. Suzuki, C. J. Li, K. Ohtsuki, T. Shishiki, Y. Otomo, K. Murakami, Y. Iida, S. Sugano, T. Fujimura, Y. Suzuki, Y. Tsunoda, T. Kurosaki, T. Kodama, H. Masuda, M. Kobayashi, Q. Xie, M. Lu, R. Narikawa, A. Sugiyama, K. Mizuno, S. Yokomizo, J. Niikura, R. Ikeda, J. Ishibiki, M. Kawamata, A. Yoshimura, J. Miura, T. Kusumegi, M. Oka, R. Ryu, M. Ueda, K. Matsubara, J. Kawai, P. Carninci, J. Adachi, K. Aizawa, T. Arakawa, S. Fukuda, A. Hara, W. Hashizume, N. Hayatsu, K. Imotani, Y. Ishii, M. Itoh, I. Kagawa, S. Kondo, H. Konno, A. Miyazaki, N. Osato, Y. Ota, R. Saito, D. Sasaki, K. Sato, K. Shibata, A. Shinagawa, T. Shiraki, M. Yoshino, Y. Hayashizaki, and A. Yasunishi. 2003. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376-379. Kim, K. J., J. H. Lim, M. J. Kim, T. Kim, H. M. Chung, and K. H. Paek. 2008. GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 374:693-698. Koonin, E. V. 2005. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309-338. Koonin, E. V. and M. Y. Galperin. 2003. Sequence - Evolution - Function: Computational Approaches in Comparative Genomics, Boston. Koshland, D. E. 1958. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A 44:98-104. Kram, B. W., E. A. Bainbridge, M. A. Perera, and C. Carter. 2008. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68:173-183. Kurata, N. 2008. Chromosome and Genome Evolution in Rice. Pages 235-245 in H.-Y. Hirano, Y. Sano, A. Hirai, and T. Sasaki, editors. Rice Biology in the Genomics Era. Springer Berlin Heidelberg. Kwon, S. J., H. C. Jin, S. Lee, M. H. Nam, J. H. Chung, S. I. Kwon, C. M. Ryu, and O. K. Park. 2009. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. The Plant Journal 58:235-245. Lecharny, A., N. Boudet, I. Gy, S. Aubourg, and M. Kreis. 2003. Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J Struct Funct Genomics 3:111-116. Lee, Y.-L., Su, M.-S., Huang, T.-H., Shaw, and J.-F. 1999. C-terminal his-tagging results in substrate specificity changes of the thioesterase I from Escherichia coli. Springer, Heidelberg, ALLEMAGNE. Lee, D. S., B. K. Kim, S. J. Kwon, H. C. Jin, and O. K. Park. 2009. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 379:1038-1042. Lee, K. A. and T. J. Cho. 2003. Characterization of a salicylic acid- and pathogen-induced lipase-like gene in Chinese cabbage. J Biochem Mol Biol 36:433-441. Lee, Y.-L., J. C. Chen, and J.-F. Shaw. 1997. The Thioesterase I ofEscherichia coliHas Arylesterase Activity and Shows Stereospecificity for Protease Substrates. Biochemical and Biophysical Research Communications 231:452-456. Lescic Asler, I., N. Ivic, F. Kovacic, S. Schell, J. Knorr, U. Krauss, S. Wilhelm, B. Kojic-Prodic, and K. E. Jaeger. 2010. Probing enzyme promiscuity of SGNH hydrolases. Chembiochem 11:2158-2167. Li, J., U. Derewenda, Z. Dauter, S. Smith, and Z. S. Derewenda. 2000. Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat Struct Biol 7:555-559. Lin, H., S. Ouyang, A. Egan, K. Nobuta, B. J. Haas, W. Zhu, X. Gu, J. C. Silva, B. C. Meyers, and C. R. Buell. 2008. Characterization of paralogous protein families in rice. BMC Plant Biol 8:18. Lin, H., W. Zhu, J. C. Silva, X. Gu, and C. R. Buell. 2006. Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:R41. Lin, T. H., C. Chen, R. F. Huang, Y. L. Lee, J. F. Shaw, and T. H. Huang. 1998. Multinuclear NMR resonance assignments and the secondary structure of Escherichia coli thioesterase/protease I: a member of a new subclass of lipolytic enzymes. J Biomol NMR 11:363-380. Lindner, A. B., S. H. Kim, D. G. Schindler, Z. Eshhar, and D. S. Tawfik. 2002. Esterolytic antibodies as mechanistic and structural models of hydrolases-a quantitative analysis. J Mol Biol 320:559-572. Ling, H. 2008. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana. Pak J Biol Sci 11:763-767. Lo, Y. C., Y. L. Lee, J. F. Shaw, and Y. C. Liaw. 2000. Crystallization and preliminary X-ray crystallographic analysis of thioesterase I from Escherichia coli. Acta Crystallogr D Biol Crystallogr 56:756-757. Lo, Y. C., S. C. Lin, J. F. Shaw, and Y. C. Liaw. 2003. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330:539-551. Lotti, M. and L. Alberghina. 2007. Lipases: Molecular Structure and Function Industrial Enzymes. Pages 263-281 in J. Polaina and A. P. MacCabe, editors. Springer Netherlands. Loveless, B. J. and M. H. Saier, Jr. 1997. A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol Membr Biol 14:113-123. Ma, J., Q. Lu, Y. Yuan, H. Ge, K. Li, W. Zhao, Y. Gao, L. Niu, and M. Teng. 2011. Crystal structure of isoamyl acetate-hydrolyzing esterase from Saccharomyces cerevisiae reveals a novel active site architecture and the basis of substrate specificity. Proteins 79:662-668. Ma, Q., Y. Zhai, J. C. Schneider, T. M. Ramseier, and M. H. Saier, Jr. 2003. Protein secretion systems of Pseudomonas aeruginosa and P fluorescens. Biochim Biophys Acta 1611:223-233. Mackness, M. I., H. M. Thompson, A. R. Hardy, and C. H. Walker. 1987. Distinction between ''A''-esterases and arylesterases. Implications for esterase classification. Biochem J 245:293-296. Mathews, I., M. Soltis, M. Saldajeno, G. Ganshaw, R. Sala, W. Weyler, M. A. Cervin, G. Whited, and R. Bott. 2007. Structure of a Novel Enzyme That Catalyzes Acyl Transfer to Alcohols in Aqueous Conditions‡. Biochemistry 46:8969-8979. Mayfield, J. A., A. Fiebig, S. E. Johnstone, and D. Preuss. 2001. Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292:2482-2485. Molgaard, A., S. Kauppinen, and S. Larsen. 2000. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8:373-383. Molgaard, A. and S. Larsen. 2002. A branched N-linked glycan at atomic resolution in the 1.12 A structure of rhamnogalacturonan acetylesterase. Acta Crystallogr D Biol Crystallogr 58:111-119. Montanier, C., V. A. Money, V. M. Pires, J. E. Flint, B. A. Pinheiro, A. Goyal, J. A. Prates, A. Izumi, H. Stalbrand, C. Morland, A. Cartmell, K. Kolenova, E. Topakas, E. J. Dodson, D. N. Bolam, G. J. Davies, C. M. Fontes, and H. J. Gilbert. 2009. The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. PLoS Biol 7. Moore, R. C. and M. D. Purugganan. 2005. The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122-128. Moore, S. A., R. L. Kingston, K. M. Loomes, O. Hernell, L. Blackberg, H. M. Baker, and E. N. Baker. 2001. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. J Mol Biol 312:511-523. Müller, G. a. P., S. eds., . 2004. Lipases and phospholipases in drug development: from biochemistry to molecular pharmacology. Naranjo, M. A., J. Forment, M. Roldan, R. Serrano, and O. Vicente. 2006. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ 29:1890-1900. Nardini, M. and B. W. Dijkstra. 1999. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732-737. Oh, I. S., A. R. Park, M. S. Bae, S. J. Kwon, Y. S. Kim, J. E. Lee, N. Y. Kang, S. Lee, H. Cheong, and O. K. Park. 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832-2847. Ouyang, S., W. Zhu, J. Hamilton, H. Lin, M. Campbell, K. Childs, F. Thibaud-Nissen, R. L. Malek, Y. Lee, L. Zheng, J. Orvis, B. Haas, J. Wortman, and C. R. Buell. 2007. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:D883-887. Pagni, M., V. Ioannidis, L. Cerutti, M. Zahn-Zabal, C. V. Jongeneel, J. Hau, O. Martin, D. Kuznetsov, and L. Falquet. 2007. MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:W433-437. Park, J. J., P. Jin, J. Yoon, J. I. Yang, H. J. Jeong, K. Ranathunge, L. Schreiber, R. Franke, I. J. Lee, and G. An. 2010. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol 74:91-103. Pleiss, J., M. Fischer, M. Peiker, C. Thiele, and D. Rolf. 2000. Lipase engineering database: Understanding and exploiting sequence-structure-function relationships. Journal of Molecular Catalysis B: Enzymatic 10:491-508. Pleiss, J., M. Fischer, and R. D. Schmid. 1998. Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67-80. Pringle, D. and R. Dickstein. 2004. Purification of ENOD8 proteins from Medicago sativa root nodules and their characterization as esterases. Plant Physiol Biochem 42:73-79. Reddy, A. S. 2007. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267-294. Reina, J. J., C. Guerrero, and A. Heredia. 2007. Isolation, characterization, and localization of AgaSGNH cDNA: a new SGNH-motif plant hydrolase specific to Agave americana L. leaf epidermis. J Exp Bot 58:2717-2731. Riemann, M., C. Gutjahr, A. Korte, B. Danger, T. Muramatsu, U. Bayer, F. Waller, M. Furuya, and P. Nick. 2007. GER1, a GDSL motif-encoding gene from rice is a novel early light- and jasmonate-induced gene. Plant Biol (Stuttg) 9:32-40. Rivera, I., J. C. Mateos-Diaz, and G. Sandoval. 2012. Plant lipases: partial purification of Carica papaya lipase. Methods Mol Biol 861:115-122. Rose, A. B. 2008. Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol 326:277-290. Rouard, M., V. Guignon, C. Aluome, M. A. Laporte, G. Droc, C. Walde, C. M. Zmasek, C. Perin, and M. G. Conte. 2011. GreenPhylDB v2.0: comparative and functional genomics in plants. Nucleic Acids Res 39:D1095-1102. Roy, S. W. and D. Penny. 2007. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171-181. Ruppert, M., J. Woll, A. Giritch, E. Genady, X. Ma, and J. Stockigt. 2005. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta 222:888-898. Sagane, Y., T. Nakagawa, K. Yamamoto, S. Michikawa, S. Oguri, and Y. S. Momonoki. 2005. Molecular characterization of maize acetylcholinesterase: a novel enzyme family in the plant kingdom. Plant Physiol 138:1359-1371. Sanchez, S. and A. L. Demain. 2010. Enzymes and Bioconversions of Industrial, Pharmaceutical, and Biotechnological Significance. Organic Process Research & Development 15:224-230. Sarda, L. and P. Desnuelle. 1958. Action de la lipase pancréatique sur les esters en émulsion. Biochimica et Biophysica Acta 30:513-521. Satoh, K., K. Doi, T. Nagata, N. Kishimoto, K. Suzuki, Y. Otomo, J. Kawai, M. Nakamura, T. Hirozane-Kishikawa, S. Kanagawa, T. Arakawa, J. Takahashi-Iida, M. Murata, N. Ninomiya, D. Sasaki, S. Fukuda, M. Tagami, H. Yamagata, K. Kurita, K. Kamiya, M. Yamamoto, A. Kikuta, T. Bito, N. Fujitsuka, K. Ito, H. Kanamori, I. R. Choi, Y. Nagamura, T. Matsumoto, K. Murakami, K. Matsubara, P. Carninci, Y. Hayashizaki, and S. Kikuchi. 2007. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. PLoS One 2:e1235. Schrag, J. D. and M. Cygler. 1997. Lipases and alpha/beta hydrolase fold. Methods Enzymol 284:85-107. Schrödinger, L. The PyMOL Molecular Graphics System. . Scott, B. T., N. Olson, G. L. Long, and E. G. Bovill. 2008. Novel isoforms of intracellular platelet activating factor acetylhydrolase (PAFAH1b2) in human testis; encoded by alternatively spliced mRNAs. Prostaglandins Other Lipid Mediat 85:69-80. Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627-662. Shaw, J. F., R. C. Chang, K. H. Chuang, Y. T. Yen, Y. J. Wang, and F. G. Wang. 1994. Nucleotide sequence of a novel arylesterase gene from Vibro mimicus and characterization of the enzyme expressed in Escherichia coli. Biochem J 298 Pt 3:675-680. Sigrist, C. J., L. Cerutti, E. de Castro, P. S. Langendijk-Genevaux, V. Bulliard, A. Bairoch, and N. Hulo. 2010. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161-166. Singh, A. K. and M. Mukhopadhyay. 2012. Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486-520. Smit, A., Hubley, R & Green, P. 1996-2010. RepeatMasker Open-3.0. Takahashi, K., T. Shimada, M. Kondo, A. Tamai, M. Mori, M. Nishimura, and I. Hara-Nishimura. 2010. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51:123-131. Talker-Huiber, D., J. Jose, A. Glieder, M. Pressnig, G. Stubenrauch, and H. Schwab. 2003. Esterase EstE from Xanthomonas vesicatoria ( Xv_EstE) is an outer membrane protein capable of hydrolyzing long-chain polar esters. Appl Microbiol Biotechnol 61:479-487. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599. Tang, S. J., J. F. Shaw, K. H. Sun, G. H. Sun, T. Y. Chang, C. K. Lin, Y. C. Lo, and G. C. Lee. 2001. Recombinant expression and characterization of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability. Arch Biochem Biophys 387:93-98. Thomas, A., M. Allouche, F. Basyn, R. Brasseur, and B. Kerfelec. 2005. Role of the lid hydrophobicity pattern in pancreatic lipase activity. J Biol Chem 280:40074-40083. Trifonov, E. N. and Z. M. Frenkel. 2009. Evolution of protein modularity. Curr Opin Struct Biol 19:335-340. Tyukhtenko, S. I., A. V. Litvinchuk, C. F. Chang, R. J. Leu, J. F. Shaw, and T. H. Huang. 2002. NMR studies of the hydrogen bonds involving the catalytic triad of Escherichia coli thioesterase/protease I. FEBS Lett 528:203-206. Tyukhtenko, S. I., A. V. Litvinchuk, C. F. Chang, Y. C. Lo, S. J. Lee, J. F. Shaw, Y. C. Liaw, and T. H. Huang. 2003. Sequential structural changes of Escherichia coli thioesterase/protease I in the serial formation of Michaelis and tetrahedral complexes with diethyl p-nitrophenyl phosphate. Biochemistry 42:8289-8297. Updegraff, E. P., F. Zhao, and D. Preuss. 2009. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod 22:197-204. Uppenberg, J., M. T. Hansen, S. Patkar, and T. A. Jones. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2:293-308. Upton, C. and J. T. Buckley. 1995. A new family of lipolytic enzymes? Trends in Biochemical Sciences 20:178-179. van den Berg, B. 2010. Crystal structure of a full-length autotransporter. J Mol Biol 396:627-633. Volokita, M., T. Rosilio-Brami, N. Rivkin, and M. Zik. 2010. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land-plants. Molecular Biology and Evolution. Vujaklija, D., W. Schroder, M. Abramic, P. Zou, I. Lescic, P. Franke, and J. Pigac. 2002. A novel streptomycete lipase: cloning, sequencing and high-level expression of the Streptomyces rimosus GDS(L)-lipase gene. Arch Microbiol 178:124-130. Wagner, A. and G. Daum. 2005. Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33:1174-1177. Wei, Y., J. L. Schottel, U. Derewenda, L. Swenson, S. Patkar, and Z. S. Derewenda. 1995. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat Struct Biol 2:218-223. Wilhelm, S., F. Rosenau, H. Kolmar, and K. E. Jaeger. 2011. Autotransporters with GDSL passenger domains: molecular physiology and biotechnological applications. Chembiochem 12:1476-1485. Wilhelm, S., J. Tommassen, and K. E. Jaeger. 1999. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977-6986. Yamamoto, K. and Y. S. Momonoki. 2008. Subcellular localization of overexpressed maize AChE gene in rice plant. Plant Signal Behav 3:576-577. Yamamoto, K., S. Oguri, S. Chiba, and Y. S. Momonoki. 2009. Molecular cloning of acetylcholinesterase gene from Salicornia europaea L. Plant Signal Behav 4:361-366. Yamamoto, K., S. Oguri, and Y. S. Momonoki. 2008. Characterization of trimeric acetylcholinesterase from a legume plant, Macroptilium atropurpureum Urb. Planta 227:809-822. Yang, T. H., J. G. Pan, Y. S. Seo, and J. S. Rhee. 2004. Use of Pseudomonas putida EstA as an Anchoring Motif for Display of a Periplasmic Enzyme on the Surface of Escherichia coli. Appl. Environ. Microbiol. 70:6968-6976. Yoshida, S., R. I. Mackie, and I. K. Cann. 2010. Biochemical and domain analyses of FSUAxe6B, a modular acetyl xylan esterase, identify a unique carbohydrate binding module in Fibrobacter succinogenes S85. J Bacteriol 192:483-493. Youens-Clark, K., E. Buckler, T. Casstevens, C. Chen, G. Declerck, P. Derwent, P. Dharmawardhana, P. Jaiswal, P. Kersey, A. S. Karthikeyan, J. Lu, S. R. McCouch, L. Ren, W. Spooner, J. C. Stein, J. Thomason, S. Wei, and D. Ware. 2010. Gramene database in 2010: updates and extensions. Nucleic Acids Res. Yu, J., J. Wang, W. Lin, S. Li, H. Li, J. Zhou, P. Ni, W. Dong, S. Hu, C. Zeng, J. Zhang, Y. Zhang, R. Li, Z. Xu, X. Li, H. Zheng, L. Cong, L. Lin, J. Yin, J. Geng, G. Li, J. Shi, J. Liu, H. Lv, J. Li, Y. Deng, L. Ran, X. Shi, X. Wang, Q. Wu, C. Li, X. Ren, D. Li, D. Liu, X. Zhang, Z. Ji, W. Zhao, Y. Sun, Z. Zhang, J. Bao, Y. Han, L. Dong, J. Ji, P. Chen, S. Wu, Y. Xiao, D. Bu, J. Tan, L. Yang, C. Ye, J. Xu, Y. Zhou, Y. Yu, B. Zhang, S. Zhuang, H. Wei, B. Liu, M. Lei, H. Yu, Y. Li, H. Xu, S. Wei, X. He, L. Fang, X. Huang, Z. Su, W. Tong, Z. Tong, J. Ye, L. Wang, T. Lei, C. Chen, H. Chen, H. Huang, F. Zhang, N. Li, C. Zhao, Y. Huang, L. Li, Y. Xi, Q. Qi, W. Li, W. Hu, X. Tian, Y. Jiao, X. Liang, J. Jin, L. Gao, W. Zheng, B. Hao, S. Liu, W. Wang, L. Yuan, M. Cao, J. McDermott, R. Samudrala, G. K. Wong, and H. Yang. 2005. The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38. Yu, S., B. Zheng, X. Zhao, and Y. Feng. 2010. Gene cloning and characterization of a novel thermophilic esterase from Fervidobacterium nodosum Rt17-B1. Acta Biochim Biophys Sin (Shanghai) 42:288-295. Zhang, Z., J. A. Ober, and D. J. Kliebenstein. 2006. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536. Zhu, D., Q. Wu, and N. Wang. 2011. Industrial Enzymes. Pages 3-13 in M.-Y. Murray, editor. Comprehensive Biotechnology. Elsevier, Amsterdam ; Boston. CSRDB:Cereal small RNAs Database http://sundarlab.ucdavis.edu/smrnas/ NetNGlyc 1.0 Server http://www.cbs.dtu.dk/services/NetNGlyc/ Protein Data Bank http://www.rcsb.org/pdb/home/home.do Rice MPSS Database http://mpss.udel.edu/rice/
摘要: 
GDSL型脂肪酶/酯解酶為脂解酶中一個新發現的子族群(subclass),由於其具有廣泛的受質專一性、位置特異性及立體選擇等多功能的特性,因此成為非常重要且具有吸引力的研究課題。即使許多植物的GDSL型脂肪酶/酯解酶基因家族成員已被解序,但相較於細菌的GDSL型脂肪酶/酯解酶研究而言,植物的GDSL型脂肪酶/酯解酶研究仍然有限。迄今為止,在水稻GDSL型脂肪酶/酯解酶基因家族方面,只有兩個基因有被深入探討,其餘該家族的主要成員,所知仍然有限。因此,本研究藉由水稻OsGELP (Oryza sativa GDSL esterase/lipase protein )基因家族的基因體和蛋白質體學層次,進行水稻OsGELP基因家族之特性分析,此分析結果可進一步提供瞭解水稻OsGELP基因家族多功能的特性。
本研究藉由延展的生物資訊分析定義出114個水稻OsGELP家族基因,已知此基因家族在水稻上的染色體位置分佈、基因結構、演化親緣關係與蛋白質motif,藉由已知功能的其他植物GDSL型脂肪酶/酯解酶與水稻OsGELPs的蛋白質motif分析中,共發現41個保守性區塊,並分析這些保守性區塊和親緣演化樹不同分枝上的關係,藉由這些分析以及蛋白質三級結構預測,推論其作用及功能,把可能的受質專一性區域標示出來;並進一步利用親緣分析結合蛋白質motif的結構以及基因表現的情形,預測水稻OsGELP基因可能的生理功能。
藉由基因體分析結果,了解水稻OsGEL家族基因組成的基本資訊,並結合基因體、演化親緣關係、生物晶片表現、蛋白質motif分佈位置和蛋白質結構分析,提供水稻GDSL型脂肪酶/酯解酶家族基因的功能預測。本研究結果可提供作為挑選具有潛力的水稻GDSL型脂肪酶/酯解酶家族基因之參考,以進一步做更深入的功能探討與應用。

GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared to the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species includes numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes.
In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes.
Presented genomic analysis introduces fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family were created. The present study provides a platform for the selection of candidate genes for further detailed functional study.
URI: http://hdl.handle.net/11455/51975
其他識別: U0005-1906201212563900
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.