Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/51983
標題: | 利用微膠囊化及果寡醣添加來提升Lactobacillus reuteri之冷凍安定性 Enhancement of freezing stability of Lactobacillus reuteri by using microencapsulation and fructooligosaccharides addition |
作者: | 歐仲謀 Ou, Chung-Mou |
關鍵字: | Lactobacillus reuteri;Lactobacillus reuteri;microencapsulation;fructooligosaccharides;cryoprotectant;frozen-tolerance;frozen storage;health care ability;微膠囊化技術;果寡醣;冷凍保護劑;冷凍貯藏;冷凍耐受性;益生功效 | 出版社: | 食品暨應用生物科技學系所 | 引用: | 徐亞莉 (2009) Lactobacillus reuteri冷凍耐受性提升之探討:細胞微膠囊化及海藻糖添加的利用。碩士論文。國立中興大學食品暨應用生物科技學系,台中。 陳至潔 (2008) 細胞固定化對嗜酸乳桿菌冷凍乾燥及控低溫真空乾燥的影響:以褐藻酸鈣作為包埋固定化基質的探討。碩士論文。國立中興大學食品暨應用生物科技學系,台中。 湯宜儒 (2008) 固定化對羅伊氏乳桿菌(Lactobacillus reuteri)菌體在模擬胃腸道條件作用下之保護效果與菌體釋出後之益生特性。碩士論文。中國醫藥大學營養系,台中。 彭雅薇 (2009) Lactobacillus reuteri冷凍耐受性提升之探討:細胞微膠囊化及果寡醣添加的利用。碩士論文。國立中興大學食品暨應用生物科技學系,台中。 廖啟成 (1998) 乳酸菌之分類及應用。食品工業。30(2): 1-10。 潘子明 (2008) 乳酸菌的保健功效。健康世界。266: 41-66。 謝馨儀 (2007) 乳酸菌經模擬胃腸道條件之酸與膽鹽作用後的基礎益生特性探討。碩士論文。中國醫藥大學營養系,台中。 Abrehamsson, T. R., Sinkiewicz, G., Jakobsson, T., Fredirkson, M., Bjorksten, B. (2009). Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. Journal of Pediatric Gastroenterology Nutrition, 49(3), 349-354. Acker, J. P., & McGann, L. E. (2003). Protective effect of intracellular ice during freezing? Cryobiology, 46(2), 197-202. Alazzeh, A. Y., Ibrahim, S. A., Song, D., Shahbazi, A., & AbuGhazaleh, A. A. (2009). Carbohydrate and protein sources influence the induction of α- and β-galactosidases in Lactobacillus reuteri. Food Chemistry, 117(4), 654-659. Alegria, A., Delgado, S., Roces, C., Lopez, B., & Mayo, B. (2010). Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. International Journal of Food Microbiology, 143(1-2), 61-66. Alemayehu, D., O''Sullivan, E., & Condon, S. (2000). Changes in acid tolerance of Lactococcus lactis during growth at constant pH. International Journal of Food Microbiology, 55(1-3), 215-221. Ampatzoglou, A., Schurr, B., Deepika, G., Baipong, S., & Charalampopoulos, D. (2010). Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG. Biochemical Engineering Journal, 52(1), 65-70. Arques, J. L., Fernandez, J., Gaya, P., Nunez, M., RodrIguez, E., & Medina, M. (2004). Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. International Journal of Food Microbiology, 95(2), 225-229. Arques, J. L., Rodriguez, E., Nunez, M., & Medina, M. (2008). Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in Cuajada, a semisolid dairy product manufactured in Spain. Journal of Dairy Science, 91(1), 70-75. Arques, J. L., Rodriguez, E., Nunez, M., & Medina, M. (2010). Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control, 22(3-4), 457-461. Artursson, P., Palm, K., & Luthman, K. (2001). Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews, 46(1-3), 27-43. Azenha, M. A., Evangelista, R., Martel, F., & Vasconcelos, M. T. (2004). Estimation of the human intestinal permeability of butyltin species using the Caco-2 cell line model. Food and Chemical Toxicology, 42(9), 1431-1442. Bogovic Matijasic, B., Narat, M., Zoric Peternel, M., & Rogelj, I. (2006). Ability of Lactobacillus gasseri K7 to inhibit Escherichia coli adhesion in vitro on Caco-2 cells and ex vivo on pigs'' jejunal tissue. International Journal of Food Microbiology, 107(1), 92-96. Brun-Graeppi, A. K. A. S., Richard, C., Bessodes, M., Scherman, D., & Merten, O.-W. (2011). Cell microcarriers and microcapsules of stimuli-responsive polymers. Journal of Controlled Release, 149(3), 209-224. Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483. Canzi, E., Zanchi, R., Camaschella, P., Cresci, A., Greppi, G. F., Orpianesi, C., Serrantoni, M., & Ferrari, A. (2000). Modulation by lactic-acid bacteria of the intestinal ecosystem and plasma cholesterol in rabbits fed a casein diet. Nutrition Research, 20(9), 1329-1340. Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203-211. Case, L. P., Daristotle, L., Hayek, M. G., & Raasch, M. F. (2011). Carbohydrates. In Canine and Feline Nutrition (THIRD EDITION), 13-16. Saint Louis: Mosby. Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184-190. Collado, M., Grześkowiak, Ł., & Salminen, S. (2007). Probiotic strains and their combination inhibit In Vitro adhesion of pathogens to pig intestinal mucosa. Current Microbiology, 55(3), 260-265. Dalie, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2010). Lactic acid bacteria - potential for control of mould growth and mycotoxins: A review. Food Control, 21(4), 370-380. Daw, M. A., & Falkiner, F. R. (1996). Bacteriocins: nature, function and structure. Micron, 27(6), 467-479. de Carvalho, A. A. T., de Paula, R. A., Mantovani, H. C., and de Moraes, C. A. (2006). Inhibition of Listeria monocytogenes by a lactic acid bacterium isolated from Italian salami. Food Microbiology 23:213-219. Deepika, G., & Charalampopoulos, D. (2010). Surface and adhesion properties of lactobacilli. Advances in Applied Microbiology, 70, 127-152. Dommels, Y. E. M., Kemperman, R. A., Zebregs, Y. E. M. P., Draaisma, R. B., Jol, A., Wolvers, D. A. W., Vaughan, E. E., & Albers, R. (2009). Survival of Lactobacillus reuteri DSM 17938 and Lactobacillus rhamnosus GG in the human gastrointestinal tract with daily consumption of a low-fat probiotic spread. Applied Environmental Microbiology, 75(19), 6198-6204. Donkor, O. N., Henriksson, A., Singh, T. K., Vasiljevic, T., & Shah, N. P. (2007). ACE-inhibitory activity of probiotic yoghurt. International Dairy Journal, 17(11), 1321-1331. Elsner, J. J., Berdicevsky, I., & Zilberman, M. (2011). In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics. Acta Biomaterialia, 7(1), 325-336. Fernandez, M. F., Boris, S., and Barbes, C. (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. Journal of Applied Microbiology 94:449-455. Fowler, A., & Toner, M. (2006). Cryo-injury and biopreservation. Annals of the New York Academy of Sciences, 1066(1), 119-135. Gabriel, P., Dienstbier, M., Matoulkova, D., Kosař, K., and Sigler, K. (2008). Optimised acidification power test of yeast vitality and its use in brewing practice. Journal of the Institute of Brewing, 114(3), 270-276. Galvez, A., Abriouel, H., Lopez, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120(1-2), 51-70. Gan, L.-S. L., & Thakker, D. R. (1997). Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Advanced Drug Delivery Reviews, 23(1-3), 77-98. Ganan, M., Campos, G., Munoz, R., Carrascosa, A. V., de Pascual-Teresa, S., & Martinez-Rodriguez, A. J. (2010). Effect of growth phase on the adherence to and invasion of Caco-2 epithelial cells by Campylobacter. International Journal of Food Microbiology, 140(1), 14-18. Gbassi, G. K., Vandamme, T., Ennahar, S., & Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology, 129(1), 103-105. Gbassi, G. K., Vandamme, T., Yolou, F. S., & Marchioni, E. (2011). In vitro effects of pH, bile salts and enzymes on the release and viability of encapsulated Lactobacillus plantarum strains in a gastrointestinal tract model. International Dairy Journal, 21(2), 97-102. Giraffa, G., Chanishvili, N., & Widyastuti, Y. (2010). Importance of lactobacilli in food and feed biotechnology. Research in Microbiology, 161(6), 480-487. Gopal, P. K., Prasad, J., Smart, J., and Gill, H. S. (2001). In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. International Journal of Food Microbiology, 67, 207-216. Han, B., & Bischof, J. C. (2004). Direct cell injury associated with eutectic crystallization during freezing. Cryobiology, 48(1), 8-21. Heidebach, T., Forst, P., & Kulozik, U. (2010). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering, 98(3), 309-316. Holzapfel, W. H., Geisen, R., & Schillinger, U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. International Journal of Food Microbiology, 24(3), 343-362. Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U., & Huis in''t Veld, J. H. J. (1998). Overview of gut flora and probiotics. International Journal of Food Microbiology, 41(2), 85-101. Hubalek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology, 46(3), 205-229. Immirzi, B., Santagata, G., Vox, G., & Schettini, E. (2009). Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch. Biosystems Engineering, 102(4), 461-472. Iannitti, T., & Palmieri, B. (2010). Therapeutical use of probiotic formulations in clinical practice. Clinical Nutrition, 29(6), 701-725. Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197. Kelkar, S. M., Shenoy, M. A., & Kaklij, G. S. (1988). Antitumor activity of lactic acid bacteria on a solid fibrosarcoma, sarcoma-180 and Ehrlich ascites carcinoma. Cancer Letters, 42(1-2), 73-77. Kim, S.-J., Cho, S. Y., Kim, S. H., Song, O.-J., Shin, I. I. S., Cha, D. S., & Park, H. J. (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT - Food Science and Technology, 41(3), 493-500. Klaver, F. A., & van der Meer, R. (1993). The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Applied Environmental Microbiology, 59(4), 1120-1124. Klaenhammer, T. R. (1988). Bacteriocins of lactic acid bacteria. Biochimie, 70(3), 337-349. Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737-743. Li, P., Burr, G. S., Gatlin, D. M., Hume, M. E., Patnaik, S., Castille, F. L., & Lawrence, A. L. (2007). Dietary Supplementation of Short-Chain Fructooligosaccharides Influences Gastrointestinal Microbiota Composition and Immunity Characteristics of Pacific White Shrimp, Litopenaeus vannamei, Cultured in a Recirculating System. Journal of Nutrition, 137(12), 2763-2768. Li, X. J., Yue, L. Y., Guan, X. F., & Qiao, S. Y. (2008). The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. Journal of Applied Microbiology, 104(4), 1082-1091. Liong, M. T., & Shah, N. P. (2005). Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. Journal of Dairy Science, 88(1), 55-66. Liu, J. R., Lai, S. F., & Yu, B. (2007). Evaluation of an intestinal Lactobacillus reuteri strain expressing rumen fungal xylanase as a probiotic for broiler chickens fed on a wheat-based diet. British Poultry Science, 48(4), 507 - 514. Looijer–Van Langen, M. A. C., & Dieleman, L. A. (2009). Prebiotics in chronic intestinal inflammation. Inflammatory Bowel Diseases, 15(3), 454-462. Mabel, M. J., Sangeetha, P. T., Platel, K., Srinivasan, K., & Prapulla, S. G. (2008). Physicochemical characterization of fructooligosaccharides and evaluation of their suitability as a potential sweetener for diabetics. Carbohydrate Research, 343(1), 56-66. Maszewska, A., Torzewska, A., Staczek, P., & Rozalski, A. (2010). Enterocyte-like Caco-2 cells as a model for in vitro studies of diarrhoeagenic Providencia alcalifaciens invasion. Microbial Pathogenesis, 49(5), 285-293. Minaev, V. S. (2004). Chapter 4 Concept of polymeric polymorphous-crystalloid structure of glass and chalcogenide systems: Structure and relaxation of liquid and glass. In F. Robert & U. Boris (Eds.), Semiconductors and Semimetals, 78, 139-179: Elsevier. Moreno-Garrido, I. (2008). Microalgae immobilization: Current techniques and uses. Bioresource Technology, 99(10), 3949-3964. Mukai, T., Asasaka, T., Sato, E., Mori, K., Matsumoto, M., & Ohori, H. (2002). Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunology and Medical Microbiology, 32(2), 105-110. Mukai, T., Kaneko, S., Matsumoto, M., & Ohori, H. (2004). Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. International Journal of Food Microbiology, 90(3), 357-362. Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L., and Pfaller, M.A. (2007) Manual of Clinical Microbiology. 9th Ed, ASM. Mussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 76-81. Mustapha, A., Jiang, T., & Savaiano, D. A. (1997). Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus. Journal of Dairy Science, 80(8), 1537-1545. Muthukumarasamy, P., Allan-Wojtas, P., and Holley, R. A. (2006) Stability of Lactobacillus reuteri in different types of microcapsules. Journal of Food Science 71(1), 20-24. Muthukumarasamy, P., & Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164-169. Nikawa, H., Makihira, S., Fukushima, H., Nishimura, H., Ozaki, Y., Ishida, K., Darmawan, S., Hamada, T., Hara, K., Matsumoto, A., Takemoto, T., & Aimi, R. (2004). Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. International Journal of Food Microbiology, 95(2), 219-223. O''Flaherty, S., & Klaenhammer, T. R. (2010). The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. International Dairy Journal, 20(4), 262-268. Ouwehand, A. C., & Salminen, S. (2003). In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microbial Ecology in Health and Disease, 15(4), 175-184. Pan, X., Chen, F., Wu, T., Tang, H., & Zhao, Z. (2009). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 20(6), 598-602. Patrignani, F., Iucci, L., Lanciotti, R., Vallicelli, M., Maina Mathara, J., Holzapfel, W. H., & Guerzoni, M. E. (2007). Effect of high-pressure homogenization, nonfat milk solids, and milkfat on the technological performance of a functional strain for the production of probiotic fermented milks. Journal of Dairy Science, 90(10), 4513-4523. Pegg, D. E. (2007). Cryopreservation and Freeze-Drying Protocols, New York: Springer. Perdigon, G., Fuller, R., & Medina, M. (2005). The influence of the lactic acid bacteria and other resident microflora on the immune system of the growing animal. Biology of Growing Animals, 2, 351-375 Podolak, R., Enache, E., Stone, W., Black, D., & Elliott, P. (2010). Sources and risk factors for contamination, survival, persistence, and heat resistance of salmonella in low-moisture foods. Journal of Food Protection, 73(10), 1919-36. Ramchandran, L., & Shah, N. P. (2010). Influence of addition of Raftiline HP on the growth, proteolytic, ACE- and α-glucosidase inhibitory activities of selected lactic acid bacteria and Bifidobacterium. LWT - Food Science and Technology, 43(1), 146-152. Rammelsberg, M., Muller, E., & Radler, F. (1990). Caseicin 80: purification and characterization of a new bacteriocin from Lactobacillus casei. Archives of Microbiology, 154(3), 249-252. Reimer, L., & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation, New York: Springer. Remminghorst, U., Hay, I. D., & Rehm, B. H. A. (2009). Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. Journal of Biotechnology, 140(3-4), 176-183. Rojas, M., Ascencio, F., & Conway, P. L. (2002). Purification and Characterization of a Surface Protein from Lactobacillus fermentum 104R That Binds to Porcine Small Intestinal Mucus and Gastric Mucin. Applied Environmental Microbiology, 68(5), 2330-2336. Santivarangkna, C., Higl, B., & Foerst, P. (2008). Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiology, 25(3), 429-441. Schwab, C., Vogel, R., and Ganzle, M. G. (2007). Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology, 55, 108-114. Servin, A. L., & Coconnier, M.-H. (2003). Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Practice & Research Clinical Gastroenterology, 17(5), 741-754. Sigler, K., Mikyška, A., Kosař, K., Gabriel, P., & Dienstbier, M. (2006). Factors affecting the outcome of the acidification power test of yeast quality: Critical reappraisal. Folia Microbiologica, 51(6), 525-534. Takamatsu, H., & Zawlodzka, S. (2006). Contribution of extracellular ice formation and the solution effects to the freezing injury of PC-3 cells suspended in NaCl solutions. Cryobiology, 53(1), 1-11. Talarico, T. L., Casas, I. A., Chung, T. C., & Dobrogosz, W. J. (1988). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 32(12), 1854-1858. Tapingkae, W., Parkin, K. L., Tanasupawat, S., Kruenate, J., Benjakul, S., & Visessanguan, W. (2010). Whole cell immobilisation of Natrinema gari BCC 24369 for histamine degradation. Food Chemistry, 120(3), 842-849. Tieking, M., & Ganzle, M. G. (2005). Exopolysaccharides from cereal-associated lactobacilli. Trends in Food Science & Technology, 16(1-3), 79-84. Todorov, S. D., & Dicks, L. M. T. (2005). Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology, 36(2-3), 318-326. Tsen, J.-H., Huang, H.-Y., Lin, Y.-P., & King, V. A.-E. (2007). Freezing resistance improvement of Lactobacillus reuteri by using cell immobilization. Journal of Microbiological Methods, 70(3), 561-564. Ur-Rehman, T., Tavelin, S., & Grobner, G. (2010). Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. International Journal of Pharmaceutics, 394(1-2), 92-98. Ustunol, Z., & Wong, C. (2010). Effect of nonfat dry milk and major whey components on interleukin-6 and interleukin-8 production in human intestinal epithelial-like Caco-2 cells. Journal of Dairy Science, 93(6), 2311-2314. van der Veen, S., & Abee, T. (2011). Contribution of Listeria monocytogenes RecA to acid and bile survival and invasion of human intestinal Caco-2 cells. International Journal of Medical Microbiology, 301(4), 334-340. Yu, B., Liu, J. R., Hsiao, F. S., & Chiou, P. W. S. (2008). Evaluation of Lactobacillus reuteri Pg4 strain expressing heterologous β-glucanase as a probiotic in poultry diets based on barley. Animal Feed Science and Technology, 141(1-2), 82-91. Yun, J. W. (1996). Fructooligosaccharides-Occurrence, preparation, and application. Enzyme and Microbial Technology, 19(2), 107-117. | 摘要: | Lactobacillus reuteri能於健康動物的腸道中生存,具有許多益生功效,能定值於腸胃系統中,並能產生抗菌物質reuterin。本研究利用褐藻酸鈉與氯化鈣的凝膠機制進行Lactobacillus reuteri的微膠囊化處理,並添加2%的果寡醣作為冷凍保護劑,再貯藏於-80°C凍結溫度下,探討微膠囊化處理對L. reuteri在冷凍貯藏下的保護能力、經過冷凍貯藏後微膠囊化處理對L. reuteri產酸能力的變化、經過冷凍貯藏後微膠囊化處理和果寡醣之添加對L. reuteri耐酸耐膽鹽能力的影響、L. reuteri上清液的益生功效與抗菌效果以及L. reuteri對Caco-2 cells的腸道吸附模式試驗。結果表示,微膠囊化能提昇L. reuteri在-80°C冷凍貯藏的存活率,而果寡醣的添加也能降低菌株死滅數量達到冷凍保護劑的效果。產酸能力、耐酸、耐膽鹽試驗中,與菌株存活率結果相同,經過微膠囊化並添加2%果寡醣的L. reuteri具有較好的產酸能力、經過酸和膽鹽環境後存活率最高。而乳酸菌上清液試驗結果顯示,游離態以及經微膠囊化的L. reuteri都能有效抑制Salmonella enteritidis,其結果並無顯著的差異。在腸道吸附模擬試驗中,經過微膠囊化的L. reuteri有較好的吸附力,且L. reuteri並不會入侵腸道細胞。綜合以上結果,得知微膠囊化處理與果寡醣的添加能有效提升L. reuteri的冷凍耐受性、產酸能力、耐酸耐膽鹽能力以及L. reuteri為一安全不侵入人體腸道細胞的益生菌株。 |
URI: | http://hdl.handle.net/11455/51983 | 其他識別: | U0005-2007201111362100 |
Appears in Collections: | 食品暨應用生物科技學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.