Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/51985
標題: | Lactobacillus reuteri冷凍耐受性提升之探討:
細胞微膠囊化及果寡醣添加的利用 Studies on the Enhancement of the Freeze-Tolerance of Lactobacillus reuteri: the Application of Cell Microencapsulation and Fructooligosaccharides Addition |
作者: | 彭雅薇 Peng, Ya-Wei |
關鍵字: | Lactobacillus reuteri;Lactobacillus reuteri;frozen storage;microencapsulation;cryoprotectant;fructooligosaccharides;freeze-tolerance;冷凍貯藏;微膠囊化;冷凍保護劑;果寡醣;冷凍耐受性 | 出版社: | 食品暨應用生物科技學系所 | 引用: | Acker, J. P., and McGann, L. E. (2001). Membrane damage occurs during the formation of intracellular ice. Cryo Letters, 22(4), 241-54. Anukam, K. C., Osazuwa, E. O., Osadolor, H. B., Bruce, A. W., and Reid, G. (2008). Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. J Clin Gastroenterol, 42(3), 239-43. Beal, C., Fonseca, F., and Corrieu, G. (2001). Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Sci, 84(11), 2347-2356. Benita, S. (2006). Microencapsulation : Methods and Industrial Applications, New York: Taylor & Francis. Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M., and Valtonen, V. (2003). Safety of probiotics that contain Lactobacilli or Bifidobacteria. Clin Infect Dis, 36(6), 775-780. Brashears, M. M., and Gilliland, S. E. (1995). Survival during frozen and subsequent refrigerated storage of Lactobacillus acidophilus cells as influenced by the growth phase. J Dairy Sci, 78(11), 2326-35. Broadbent, J. R., and Lin, C. (1999). Effect of heat shock or cold shock treatment on the resistance of lactococcus lactis to freezing and lyophilization. Cryobiology, 39(1), 88-102. Bury, D., Jelen, P., and Kalab, M. (2001). Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling. Inno Food Sci Emer Technol, 2(1), 23-29. Caglar, E., Cildir, S. K., Ergeneli, S., Sandalli, N., and Twetman, S. (2006). Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand, 64(5), 314-8. Casas, I. A. (2000). Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb Ecol Health Dis, 12(4), 247. Champagne, C. P., and Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol, 18(2), 184-190. Cleusix, V., Lacroix, C., Vollenweider, S., Duboux, M., and Le Blay, G. (2007). Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol, 7, 101. Cummings, J. H., and Macfarlane, G. T. (2002). Gastrointestinal effects of prebiotics. Br J Nutr, 87 Suppl 2, S145-51. de Vrese, M., and Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol, 111, 1-66. Draget, K. I., Skjak-Braek, G., and Smidsrod, O. (1997). Alginate based new materials. Int J Biol Macromol, 21(1-2), 47-55. Ewaschuk, J. B., and Dieleman, L. A. (2006). Probiotics and prebiotics in chronic inflammatory bowel diseases. World J Gastroenterol, 12(37), 5941-50. FAO/WHO. (2006). Probiotics in food :Health and Nutritional Properties and Guidelines for Evaluation, Rome: Food and Agriculture Organization of the United Nations : World Health Organization. Fonseca, F., Marin, M., and Morris, G. J. (2006). Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: Freezing kinetics and storage temperature effects. Appl Environ Microbiol, 72(10), 6474-82. Fuller, R. (1989). Probiotics in man and animals. J Appl Bacteriol, 66(5), 365-78. Gbassi, G. K., Vandamme, T., Ennahar, S., and Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int J Food Microbiol, 129(1), 103-5. Gensler, T. O. (2008). Probiotic and prebiotic recipes for health : 100 Recipes that Battle Colitis, Candidiasis, Food Allergies, and Other Digestive Disorders, Beverly, Mass.: Fair Winds Press. Gibson, G. R., and Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 125(6), 1401-12. Gibson, G. R., and Roberfroid, M. B. (2008). Handbook of Prebiotics, Boca Raton: CRC Press. Giulio, B. D., Orlando, P., Barba, G., Coppola, R., Rosa, M. D., Sada, A., Prisco, P. P. D., and Nazzaro, F. (2005). Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying. World J Microbiol Biotechnol, 21(5), 739-746. Goldstein, J. (2003). Scanning Electron Microscopy and X-ray Microanalysis, New York: Kluwer Academic/Plenum Publishers. Guisan, J. M. (2006). Immobilization of Enzymes and Cells, Totowa, N.J.: Humana Press. Hamoudi, L., Goulet, J., and Ratti, C. (2007). Effect of protective agents on the viability of Geotrichum candidum during freeze-drying and storage. J Food Sci, 72(2), M45-9. Han, B., and Bischof, J. C. (2004). Direct cell injury associated with eutectic crystallization during freezing. Cryobiology, 48(1), 8-21. Hogarth, A. J., Hunter, D. E., Jacobs, W. A., Garleb, K. A., and Wolf, B. W. (2000). Ion chromatographic determination of three fructooligosaccharide oligomers in prepared and preserved foods. J Agric Food Chem, 48(11), 5326-30. Hong, S. H., and Marshall, R. T. (2001). Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts. J Dairy Sci, 84(6), 1367-74. Hubalek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology, 46(3), 205-29. Immirzi, B., Santagata, G., Vox, G., and Schettini, E. (2009). Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch. Biosyst Eng, 102(4), 461-472. Karimi, K., Inman, M. D., Bienenstock, J., and Forsythe, P. (2009). Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med, 179(3), 186-93. Kawahara, H. (2008). "Cryoprotectants and Ice-Binding Proteins", Psychrophiles: from Biodiversity to Biotechnology. Japan: Springer Berlin Heidelberg, pp. 229-246. Kearney, L., Upton, M., and Mc Loughlin, A. (1990). Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Appl Environ Microbiol, 56(10), 3112-3116. Klening, T. P. (2007). Food Engineering Research Developments, New York: Nova Science Publishers. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., and Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol, 21(4), 377-397. Lee, K., Lee, H.-G., and Choi, Y.-J. (2008). Proteomic analysis of the effect of bile salts on the intestinal and probiotic bacterium Lactobacillus reuteri. J Biotechnol, 137(1-4), 14-19. Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H., and Crowe, L. M. (1995). Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol, 61(10), 3592-7. Li, P., Burr, G. S., Gatlin, D. M., 3rd, Hume, M. E., Patnaik, S., Castille, F. L., and Lawrence, A. L. (2007). Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of Pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system. J Nutr, 137(12), 2763-8. Lorca, G. L., and de Valdez, G. F. (1998). Temperature adaptation and cryotolerance in Lactobacillus acidophilus. Biotechnol Lett, 20(9), 847-849. Lyons, J. M. (1973). Chilling injury in plants. Annu Rev Plant Physiol, 24(1), 445-466. Macfarlane, S., Macfarlane, G. T., and Cummings, J. H. (2006). Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther, 24(5), 701-14. Mattila-Sandholm, T., Myllärinen, P., Crittenden, R., Mogensen, G., Fondén, R., and Saarela, M. (2002). Technological challenges for future probiotic foods. Int. Dairy J., 12(2-3), 173-182. Mitic, S., Otenhajmer, I., and Damjanovic, V. (1974). Predicting the stabilities of freeze-dried suspensions of Lactobacillus acidophilus by the accelerated storage test. Cryobiology, 11(2), 116-20. Monnet, C., Beal, C., and Corrieu, G. (2003). Improvement of the resistance of Lactobacillus delbrueckii ssp. bulgaricus to freezing by natural selection. J Dairy Sci, 86(10), 3048-53. Moreno-Garrido, I. (2008). Microalgae immobilization: current techniques and uses. Bioresour Technol, 99(10), 3949-64. Mossoba, M. M. (2006). Lipid analysis and lipidomics : New Techniques and Applications, Champaign, IL: AOCS Press. Murga, M. L., Cabrera, G. M., De Valdez, G. F., Disalvo, A., and Seldes, A. M. (2000). Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus. J Appl Microbiol, 88(2), 342-8. Murray, P. R., and Baron, E. J. (2007). Manual of Clinical Microbiology, Washington, D.C.: ASM Press. Muthukumarasamy, P., and Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol, 111(2), 164-9. Nichols, D., Bowman, J., Sanderson, K., Nichols, C. M., Lewis, T., McMeekin, T., and Nichols, P. D. (1999). Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol, 10(3), 240-246. Ouwehand, A. C., Derrien, M., de Vos, W., Tiihonen, K., and Rautonen, N. (2005). Prebiotics and other microbial substrates for gut functionality. Curr Opin Biotechnol, 16(2), 212-7. Parthiban, M., Paula, A.-W., and Richard, A. H. (2006). Stability of Lactobacillus reuteri in Different Types of Microcapsules. J Food Sci, 71(1), M20-M24. Parvez, S., Malik, K. A., Ah Kang, S., and Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol, 100(6), 1171-85. Pineiro, M., Asp, N. G., Reid, G., Macfarlane, S., Morelli, L., Brunser, O., and Tuohy, K. (2008). FAO Technical Meeting on Prebiotics. J Clin Gastroenterol, 42 Suppl 3 Pt 2, S156-9. Ross, G. R., Gusils, C., and Gonzalez, S. N. (2008). Microencapsulation of probiotic strains for swine feeding. Biol Pharm Bull, 31(11), 2121-5. Saarela, M., Lahteenmaki, L., Crittenden, R., Salminen, S., and Mattila-Sandholm, T. (2002). Gut bacteria and health foods--the European perspective. Int J Food Microbiol, 78(1-2), 99-117. Sanders, M. E. (2008). Probiotics: definition, sources, selection, and uses. Clin Infect Dis, 46 Suppl 2, S58-61; discussion S144-51. Sangeetha, P. T., Ramesh, M. N., and Prapulla, S. G. (2005). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Tech, 16(10), 442-457. Santivarangkna, C., Higl, B., and Foerst, P. (2008a). Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol, 25(3), 429-41. Santivarangkna, C., Kulozik, U., and Foerst, P. (2008b). Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. J Appl Microbiol, 105(1), 1-13. Schwab, C., Vogel, R., and Ganzle, M. G. (2007). Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology, 55(2), 108-14. Shah, N. P. (2000). Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Tech, 55(3), 139. Simpson, N. E., Stabler, C. L., Simpson, C. P., Sambanis, A., and Constantinidis, I. (2004). The role of the CaCl2-guluronic acid interaction on alginate encapsulated β-TC3 cells. Biomaterials, 25(13), 2603-10. Storz, G., and Hengge-Aronis, R. (2000). Bacterial Stress Responses, Washington, D.C.: ASM Press. Tao, D., and Li, P. H. (1986). Classification of plant cell cryoprotectants. J Theor Biol, 123(3), 305-310. Tsen, J. H., Huang, H. Y., and King, V. A. (2007a). Enhancement of freezing-resistance of Lactobacillus rhamnosus by the application of cell immobilization. J Gen Appl Microbiol, 53(3), 215-9. Tsen, J. H., Huang, H. Y., Lin, Y. P., and King, V. A. (2007b). Freezing resistance improvement of Lactobacillus reuteri by using cell immobilization. J Microbiol Methods, 70(3), 561-4. Wang, Y. (2009). Prebiotics: Present and future in food science and technology. Food Res. Intern., 42(1), 8-12. Wang, Y., Corrieu, G., and Beal, C. (2005). Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. J Dairy Sci, 88(1), 21-29. Westermeier, R., and Gronau, S. (2005). Electrophoresis in practice : A Guide to Methods and Applications of DNA and Protein Separations, Weinheim: Wiley-VCH. Yu, B., Liu, J. R., Hsiao, F. S., and Chiou, P. W. S. (2008). Evaluation of Lactobacillus reuteri Pg4 strain expressing heterologous β-glucanase as a probiotic in poultry diets based on barley. Anim Feed Sci Technol, 141(1-2), 82-91. Yun, J. W. (1996). Fructooligosaccharides--Occurrence, preparation, and application. Enzyme Microb Technol, 19(2), 107-17. Zhang, Y., Lei, Y., and Huo, G. (2008). Expression of cold-shock-protein genes from Lactococcus lactis and analysis of the cryoprotection function. Wei Sheng Wu Xue Bao, 48(9), 1203-7. | 摘要: | Lactobacillus reuteri存在於自然環境中,且能定殖於健康動物,包括人類的腸道中。經研究證實其具有多項利於人體健康的益生功效,故被認可為益生菌。目前不論在研究或應用方面,均日益受到重視。但是因其在冷凍貯藏之耐受性差,所以在食品上的應用並不廣泛。細胞微膠囊化技術可以有效的保護菌株,來提升菌株對不利的環境的耐受性,以及在穿越腸胃道的過程中提供保護,從而提高其存活率與活性,以及加工處理與貯藏過程中的耐受性。本研究利用褐藻酸鈣來對Lactobacillus reuteri 進行細胞微膠囊化處理,同時分別添加不同濃度(1%、2%、3%)的果寡醣作為保護劑,再放置於不同凍結溫度下 (-20℃、-40℃、-60℃、-80℃、-196℃) 來進行貯藏,探討其對L. reuteri在冷凍貯藏中的保護效果,以提升菌株之存活率、活性與貯藏安定性,並比較不同處理間的差異。結果顯示,細胞微膠囊化能提高菌株在冷凍貯藏的存活率。在凍結貯藏溫度-60℃下,菌株的存活率較高。且果寡醣的添加對於微膠囊化菌株的死滅有降低的效果,添加2%果寡醣並在-60℃冷凍溫度貯藏下,可以獲得最小的死滅速率。而菌株β-半乳糖苷酶活性,與菌株存活率結果相類似,在添加2%果寡醣並在-60℃冷凍溫度貯藏,能保留高達50%的β-半乳糖苷酶活性。脂肪酸成分分析結果顯示,微膠囊化處理和冷凍貯藏溫度對菌株之脂肪酸變化有顯著的影響,但是果寡醣添加則沒有影響。由蛋白質分析結果可發現,經不同處理之菌株皆無法合成新的蛋白質。綜合以上結果得知,在冷凍貯藏過程中,在-60℃凍結貯藏溫度和2%果寡醣添加之L. reuteri處理,其冷凍耐受性較佳。 Lactobacillus reuteri was found in many natural environments, and could colonize the intestines of healthy animals, including human. It shows certain beneficial effects to human health and is recognized as a probiotic. It has led to a great deal of further studies in the researches and applications. However, its application in frozen foods is still not popular because of its poor freezing tolerance during frozen storage. The cell microencapsulation technique has been found to possess great potential for protecting probiotic bacteria, such as lactic acid bacteria, against adverse conditions in food and during passage through the gastrointestinal tract. It could therefore yield improved survival and activity of probiotic bacteria, and resistance against the conditions in food processing and storage. In this study, Ca-alginate was applied to L. reuteri for cell microencapsulation, and different concentrations (1%, 2%, 3%) of fructooligosaccharides (FOS) was added as cryoprotectants at the same time for the storage test at different frozen temperatures (-20℃, -40℃, -60℃, -80℃, -196℃) in order to study their protection effects on the enhancement of cell survival, activity and storage stability of L. reuteri during frozen storage and effects of different treatments were also compared. Results indicated that cell microencapsulation could increase the cell survival during frozen storage, and -60℃ frozen storage could obtain the higher survival among different frozen temperatures used. FOS addition could reduce cell death combined with cell microencapsulation. Addition of 2% FOS and stored in - 60℃ freezing temperature was found to be the best conditions among all the various treatments. The data of fatty acid analysis revealed that the microencapsulation and the freezing storage temperature had the remarkable influence to the fatty acid change, but FOS addition had no effect. According to the protein analysis, no new intracellular protein was found in L. reuteri with different treatments. Based on the above results, it could conclude that 2% FOS addition with -60℃ freezing temperature storage could obtain the better freeze-tolerance. |
URI: | http://hdl.handle.net/11455/51985 |
Appears in Collections: | 食品暨應用生物科技學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.