Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/51988
標題: Anti-inflammatory and anti-tumor activities of endopolysaccharide from Tremella spp.
Tremella spp.胞內多醣免疫調節、抗腫瘤生理活性之評估
作者: Wong, Sih-Ting
翁思婷
關鍵字: Tremella spp.;木耳屬;endopolysaccharides;antioxidation;anti-tumor;anti-inflammatory;胞內多醣;抗氧化;抗發炎;抗腫瘤
出版社: 食品暨應用生物科技學系所
引用: 水野卓、川合正允原著、賴慶亮譯。1997。菇類的化學‧生化學。國立編譯館。 王樹。1999。銀白木耳對大鼠凝血作用的影響。張家口醫學院學報。16(3):37-381。 王伯徹、黃仁彰。2002。靈芝與樟芝之研發與試場面面觀。食品工業。34(5):3。 王伯徹。2007。菇類多樣化的產品市場。食品工業發展研究所。39(5):1-10。 王伯徹。2009。菇類之食藥用價值及其多樣化市場產品開發。農業生技產業季刊-食品生技18:34-40。 田以正。2005。提升寡木醣生產效率及建立連續分離系統之研究。靜宜大學食品營養學系。碩士論文。 李青樺。2004。舞菇多醣體水解之分析研究。南台科技大學化學工程系。碩士論文。 李燕。2005。冬食銀耳,抗衰延壽又滋補。大眾醫學。1: 155。 林天送。1994。自由基與健康。科學月刊。第295期。 林庭瑋。2006。黃白木耳於液態培養下生產胞外多醣之條件探討。國立中興大學食品暨應用生物科技學系。碩士論文。 林天送。2008。自由基化學與醫學。科學發展。432:48-53。 林怡岑。2009。自靈芝殘渣製備糖幾丁聚醣及其抗氧化與理化性質。國立中興大學食品暨應用生物科技學系。碩士論文。 吳文歆。2011。大豆胚軸經Aspergillus niger M46固態發酵後評估其生理活性之探討。國立中興大學食品暨應用生物科技學系。碩士論文。 馬素雲、賀亮、姚麗芬。2010。銀耳多醣結構與生物活性研究進展。食品科學。31(23):411-416。 莊庭珣。2008。合成羥基取代之N-色洛冬寧桂皮醯胺化合物探討其抗氧 化及抑制酪胺酸酶活性之研究。嘉南藥理科技大學化粧品科技研 究所。碩士論文。 章义利、吳波拉。2008。褐藻多醣硫酸酯的藥理學研究進展。海峽藥學。 20 (10):14-17。 柳洪芳。2009。榆耳多醣的分離純化、結構鑑定及抗腫瘤活性的研究。 吉林農業大學作物生物技術系。碩士論文。 黃郁芬。2009。黃白木耳多醣與發校豆奶萃取物製備及其生理活性評 估。國立中興大學食品暨應用生物科技學系。碩士論文。 梁佳玟,賴怡君,朱燕華。2004 年。中草藥對於促發炎細胞激素生成之 影響。食品工業發展研究所。15(4): 293-304。 張志豐。2004。深層培養松茸(Tricholoma matsutake)之最適化培養液組成。大同大學生物工程研究所。碩士論文。 張雅琳。2008。初步探討黃白木耳發酵豆奶之機能性與保健產品開發。國立中興大 學食品暨應用生物科技學系。碩士論文。 張東柱、科捷生物科技。2010。牛樟芝的神奇療效:保肝抗癌的台灣森林奇蹟。商周出版。 張文菀。2011。不同的液態培養條件對樟芝(Antrodiacamphorata)菌絲生長及多醣形成的影響。東海大學食品科學系。碩士論文。 程時、黃靜、王之湄、劉智。1984。銀耳多醣TP 對小鼠乾細胞超微結構影響的定量電鏡觀察。北京大學學報(醫學版)。第03期。 趙大振,王朝江,池惠荣。1995。銀白木耳藥用初探。河北師範大學學報(自然科学版)。19 (2) :100-1021。 趙強。1997。自由基與抗氧化物質,美食天下。64:116。 林庭瑋。2006。黃白木耳於液態培養下生產胞外多醣之條件探討。國立中興大學食品暨應用生物科技學系。碩士論文。 林怡岑。2005。自靈芝殘渣製備糖幾丁聚醣及其抗氧化與理化性質。國立中興大學食品暨應用生物科技學系。碩士論文。 吳文歆。2011。大豆胚軸經Aspergillus niger M46 固態發酵後評估其生理活性之探討。國立中興大學食品暨應用生物科技學系。碩士論文。 馬素雲、賀亮、姚麗芬。2010。銀耳多醣結構與生物活性研究進展。食品科學。31(23):411-416。 趙佩岑。2004。黃白木耳液體發酵的生理活性探討。南台科技大學生物科技系。碩士論文。 鄭寶灿、馬桂榮。1991。銀耳菌絲體多醣對小鼠免疫功能的影響。中國食用菌。2:9-11。 謝坤霖。2007。番木瓜果實水萃取物之抗氧化能力研究。靜宜大學食品營養學系。碩士論文。 Abdalla, D. S., Campa, A., Monteiro, H. P. (1992). Low density lipoprotein oxidation by stimulated neutrophils and ferritin. Atherosclerosis, 97:149-159. Adachi, Y., Okazaki, M., Ohno, N., Yadomae, T. (1994). Enhancement of cytokine production by macrophages stimulated with(1→3)-beta-D-glucan, grifolan(GRN), isolated from Grifola frondosa. Biological & pharmaceutical bulletin, 17(12):1554-1560. Ahn, K. S., Noh, E. J., Zhao, H. L., Jung, S.H., Kang, S.S., Kim, Y.S. (2005).Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-[kappa] B activation in RAW 264.7 cells. Life sciences,76(20): 2315-2328. Amelung, W., Cheshire, M. V., Guggenberger, G. (1996). Determination of neutral and acidic sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acidhydrolysis. Soil Biol.Biochem., 28(12):1631-163. Aruoma, O. I., Halliwell, B., Williamson, G. (1997). In vitro methods for characterizing potential prooxidant and antioxidant actions of nonnutritive substances in plant foods. Antioxidant Methodology,173-204. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry,72: 248-254. Chen, B. (2010). Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro. Carbohydrate Polymers, 81(2):420-424. Chen, C. J. (1998). Morphological and molecular studies in the genus Tremella. Bibliotheca Mycologica, 174:1-225. Berlin: J. Cramer. ISBN 3443590764, 225. Chen, H.M., Yan, X. J. (2005). Antioxidant activities of agarooligosaccharides with different degrees of polymerization in cell-based system. Biochimica et Biophysica Acta, 1722:103-111. Chen, Y. Y., Chang, H. M. (2004). Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells. Food and Chemical Toxicology, 42:759-769. Cheung, P. C. K. (1996). The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis(white jelly-leaf) in hypercholesterolemic rats1. Nutrition Research, 16(10): 1721-1725. Costa, S., Zimetti, F., Pedrelli, M., Cremonesi, G., Bernini, F. (2010). Manidipine reduces pro-inflammatory cytokines secretion in human endothelial cells and macrophages. Pharmacological Research,62(3): 265-270. Cui, J., Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances, 21:109-122. Cun, Z., Mizuno, T., Ito, H., Shimura, K., Sumiya, T., Kawade, M. (1994). Antitumor activity and immunological property of polysaccharides from the mycelium of liquid-cultured Grifola frondosa. Journal of the Japanese Society for Food Science and Technology, 41:724-733. Delves, P. J., Roitt, I. M. (2000). The immune system. N Engl J Med, 343(1):37-49. Dinis, T. C., Maderia, V. M., Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics,315(1):161-169. Dong, Q., Liu, X., Yao, J., Dong, X. T., Ma, C., Xu, Y. X., Fang, J. N., Ding.K. (2010). Structural characterization of a pectic polysaccharide from Nerium indicum flowers. Phytochemistry, 71:1430-1437. Dubois, M., Giles, K.A., Rebers, P.A., Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical chemistry, 28(3):350-356. Francia, C., Rapior, S., Courtecuisse, R., Siroux, Y. (1999). Current research findings on the effects of selected mushrooms on cardiovascular diseases. International Journal of Medicinal Mushrooms, 1:169-172. Franz, G., Alban, S. (1995). Structure-activity relationship of antithrombotic polysaccharide derivatives.Int. J. Biol. Macromol., 17:311–314. Fraser, C. G., Jennings, H. J., Moyna, P. (1973). Structural analysis of an acidic polysaccharide from Tremella mesenterica NRRL Y- 6158. Can. J. Biochem., 51: 219-224. Gao, Q. P., Jiang, R. Z., Chen, H. Q., Jensen, E., Seljelid, R. (1996). Characterization and cytokine stimulating activities of heteroglycans from Tremella fuciformis. Planta medica 62: 297-302. Gordon, M.H. (1990). The mechanism of the antioxidant action in vitro. In: Hudson B.J.F.(ed.), Food Antioxidants. London: Elsevier, 1-18. Guan, Z. A., Sun, M. X., Guan, D. S. (2000). Modern diabetes mellitus. Tianjin Science and Technology Press: Tianjin. Halliwell, B. (1994). Free radicals and antioxidants: a personal view. Nutrition Reviews, 52(8): 253-265. Halliwell, B., Gutteridge, J. M. C. (1984). Oxygen toxicology, oxygen radicals, transition metals and disease. Journal of Biochemistry, 219:1-4. Heyraud, A., Courtois, J., Dantas, L., Colin-Morel, P., Courtois, B. (1993).Structural characterization and rheological properties of an extracellular glucuronan produced by a Rhizobium meliloti M5N1 mutant strain. Carbohydr Res, 240:71-8. Hsu, T. L., Cheng, S. C., Yang, W. B., Chin, S. W., Chen, B. H., Huang, M.T., Hsieh, S. L., Wong, C. H. (2009). Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins. The journal of biological chemistry, 284(50):34479–34489. Hwang, B. Y., Lee, J. H., Jung, H. S., Kim, K. S., Nam, J. B., Hong, Y.S., Paik, S. G., Lee, J. J. (2003). Sauchinone, a lignan from Saururus chinensis, suppresses iNOS expression through the inhibition of transactivation activity of RelA of NF-κB. Pharmacology, 69(12): 1096-1101. Hyun, J. W., Choi, E. C., Kim, K. B. (1996). Studies on sonstituents of higher fungi of Korea (LXVII). Antitumor components of the basidiocarp of Ganoderma lucidum. Han’guk Kyunhakhoechi, 18(2): 721-727. Ishihara, K., Hirano, T., (2002). IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine and Growth Factor Reviews, 13:357-368. Itoh, Y., Kawase, T., Nikaidou, N., Fukada, H., Mitsutomi, M., Watanabe, T., Itoh, Y. (2002). Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Bioscience, biotechnology, and biochemistry, 66(5):1084-1092. Jadhav, S. J.; Nimbalkar, S. S.; Kulkarni, A. D.; Madhavi, D.L. (1996). Lipid oxidation in biological and food systems. Food Antioxidants,5-63. Janeway, C. A., Travers, P., Walport, M., Shlomchik, M. J. (1996). Immunobiology: the immune system in health and disease, Current Biology Garland. Ji, Z., Tang, Q., Zhang, J., Yang, Y., Jia, W., Pan, Y. (2007).Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum. J. Ethnopharmacol. 112:445-450. Jung, C. H., Jung, H., Shin, Y. C., Park, J. H., Jun, C. Y., Kim, H. M., Yim, H. S., Shin, M. G., Bae, H. S., Kim, S. H., Ko, S. G. (2007). Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage. Journal of ethnopharmacology, 113(1):183-187. Karnjanapratum, S., You, S. G.. (2011). Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. International Journal of Biological Macromolecules, 48 :311-318. Kiho, T., Kobayashi, T., Morimoto, H., Usui, S., Ukai, S., Hirano, K., Aizawa, K., Inakuma, T. (2000). Structural features of an anti-diabetic polysaccharide (TAP) from Tremella aurantia. Notes, 48(11): 1793-1795. Kiho, T., Morimoto, H., Kobayashi, T., Usui, S., Ukai, S., Aizawa, K., Inakuma, T. (2000). Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Bioscience, biotechnology, and biochemistry, 64(2):417-419. Kiho, T., Kochi, M., Usui, S., Hirano, K., Aizawa, K., Inakuma, T. (2001). Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H). Biological & pharmaceutical bulletin, 24(12): 1400-1403. Kimura, Y., Sumiyoshi, M., Suzuki, T., Sakanaka, M. (2006). Antitumor and antimetastatic activity of a novel water-soluble low molecular weight β-1,3-D-glucan (branch β-1,6) isolated from Aureobasidium pullulans 1A1 strain black yeast. Anticancer research, 26: 4131-4142. Konno, K. (1995). Biologically active components of poisonous mushrooms. Food Reviews International, 11(1):83-107. Lee, J. S., Kwon, J. S., Yun, J. S., Pahk, J. W., Shin, W. C., Lee, S. Y., Hong, E. K. (2010). Structural characterization of immunostimulating polysaccharide from cultured mycelia of Cordyceps militaris. Carbohydrate Polymers, 80:1011-1017. Lee, S. C., Fang, T. J. (2011). Simultaneous extraction of carotenoids and transfructosylating enzyme from Xanthophyllomyces dendrorhous by a bead beater. Biotechnol Lett, 33:109-112. Lee, W. Y., Youngki, P., Jin, K. A., Kang, H. K., So, Y. P. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and Microbial Technology, 40:249–254. Lombard, Y. J. (1994). A new method for studying the binding and ingestion of zymosan particles by macrophages. Journal of Immunological Methods, 174:155-163. Long, L. H., Kwee, D. C., Halliwell, B. (2000). The antioxidant activities of seasonings used in Asian cooking. Powerful antioxidant activity of dark soy sauce revealed using the ABTS assay. Free Radic., 32:181-186. Mizuno, T., Sakai, T., Chihara, G. (1995). Health foods and medicinal usages of mushrooms. Food Reviews International, 11(1): 69-81. Molitoris, H. P. (1994). Mushrooms in medicine. Folia microbiologica, 39(2): 91-98. Moncada, S., Palmer, R. M., Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Am Soc Pharm Exp Ther, 143:109-141. Morigiwa, A., Kitabatake, K., Fujimoto, Y., Ikekawa, N. (1986). Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chemical & pharmaceutical bulletin, 34(7): 3025-3028. Nathan, C. F. and J. B. Hibbs. (1991). Role of nitric oxide synthesis in macrophage antimicrobial activity. Current Opinion in Immunology,3(1): 65-70. Nauts, H. C., Swift, W. E., Coley, B. L. (1946). The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, reviewed in the light of modern research. Cancer Research,6:205-214. Niki, E., Shimaski, H., Mino, M. (1994). Antioxidantism-Free Radical and Biological Defense. Gakkai Syuppan Center:Tokyo, 3-16. Ooi, V. E. C., Liu F. (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry, 7:715-729. O''Shea, J. J., Ma, A., Lipsky, P. (2002). Cytokines and autoimmunity. Nature Reviews Immunology, 2(1): 37-45. Oyaizu, M. (1986). Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Japanese Journal of Nutrition [Eiyogaku Zasshi],44(6):307-315. Persinger, R. L., Poynter, M. E., Ckless, K., Janssen-Heininger, Y. M. (2002). Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Molecular and cellular biochemistry, 234(1): 71-80. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying animproved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9/10):1231–1237. Rimbach, G., Park, Y. C., Guo, Q., Moini, H., Qureshi, N., Saliou, C., Takayama, K., Virgili, F., Packer, L. (2000). Nitric oxide synthesis and TNF- α secretion in RAW 264.7 macrophages mode of action of a fermented papaya preparation. Life Sciences, 67:679-694. Roberta, R. E., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Catherine, R. E. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med , 26:1231-1237. Roberts, P. (1995). British Tremella Species I: Tremella aurantiaca & T. mesenterica. Mycologist, 9: 110-114. Roberts, P. (2001). British Tremella species III: Tremella callunicola s. nov., T. invasa, T. sarnensis spp. nov., T. simplex & T. versicolor. Mycologist, 15(4): 146-150. Ryu, S. Y., Oak, M. H., Yoon, S. K., Cho, D. I., Yoo, G. S., Kim, T. S., Kim, K. M. (2000). Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta medica, 66(4): 358-360. Sakanaka, S., Yumi, T., Yuki, O. (2005). Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food chemistry, 89(4): 569-575. Sander, C. S., Chang, H., Hamm, F., Elsner, P., Thiele, J. J. (2004). Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. International journal of dermatology, 43(5): 326-335. Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6):945-948. Tracey, K. J., Cerami, A. (1993). Tumor necrosis factor, other cytokines and disease. Annual review of cell biology, 9(1): 317-343. Wang, S. Y., Jiao, H. (2000). Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry, 48(11): 5677-5684. Wasser, S. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60(3): 258-274. Weissman, B. A., Gross, S. S., (2001). Measurement of NO and NO synthase. Current Protocols in Neuroscience, 7:13. Wiseman, A. (1991). Principles of Biotechnology. Surrey: Surrey University Press. 151. Wu, Q., Zheng, C., Zheng, X. N., Yang, B. (2007). Modification of low molecular weight polysaccharides from Tremella fuciformis and their antioxidant activity in vitro. International Journal of Molecular Sciences, 8(7): 670-679. Yazdi, A. S., Guarda, G., Riteau, N., Drexler, S. K., Tardivel, A., Couillin, I., Tschopp, J. (2010). Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. National Acad Sciences, 107(45):19449–19454. Ye, H., Wang, K. Q., Zhou, C. H., Liu, J., Zeng, X. X. (2008). Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chemistry, 111:428–432. Yoon, S. B., Lee, Y. J., Park, S. K., Kim, H. C., Bae, H., Kim, H. M., Ko, S. G., Choi, H. Y., Oh, M. S., Park, W. (2009). Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW264.7 macrophages. Journal of Ethnopharmacology, 125:286-290. Yuan, Y. V., Bone, D. E., Carrington, M. F. (2005). Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chemistry, 91:485-494. Zaidman, B. Z., Yassin, M., Mahajna, J., Wasser, S. P. (2005). Medicinal mushroom modulators of molecular targets as cancer therapeutics. Applied Microbiology and Biotechnology, 2:1-24. Zhang, H. L., Li, J., Li, G., Wang, D. M., Zhu, L. P., Yang, D. P. (2009). Structural characterization and anti-fatigue activity of polysaccharides from the roots of Morinda officinalis. Int J Biol Macromol,44(3):257-61. Zhang, B. Z., Yan, P. S., Chen, H., He J. (2012). Optimization of production conditions for mushroom polysaccharides with high yield and antitumor activity. Carbohydrate Polymers,87 :2569-2575. Zhou, C., Ma, H. (2006). Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis). J Agric Food Chem, 54:2223-8. Zhou, A. R., Wu, Y. K., Hou, Y. Y. (1987). Studies on antitumor activity of Tremella polysaccarides. Beijing Yi Ke Da Xue Xue Bao, 19:150.
摘要: 
文獻指出,木耳屬(Tremella spp.)富含異質多醣,具有免疫調節及抗腫瘤之功效;由於胞內多醣研究較少,且一般進行液態培養後產生之菌體丟棄甚是可惜,另外,每株菌種所產生之多醣結構組成及分子量大小不同,其功能性亦不盡相同,故本實驗針對八株木耳屬真菌T. aurantia、T. encephala、T.fuciformis、T. flava、T. neofoliacea、T. nivalis、T. resupinata 及T. tropica 進行發酵槽之深層培養,並以組織研磨機破壁方式取得胞內多醣,再利用切向流超過濾設備獲取不同分子量大小(>10 kDa 及<10 kDa)之多醣,進行抗氧化、抗發炎和抗腫瘤細胞試驗。

抗氧化試驗方面,以T. resupinata 效果較佳,其亞鐵離子螯合能力為89.17%;還原能力為81.9% (以100 μg/mL 之Vitamin C 做為對照組);且ABTS 自由基清除能力為36.16%,顯示其具有良好之抗氧化效果。

抗腫瘤及抗發炎試驗以細胞模式進行。抗腫瘤試驗方面,結果顯示,以低分子量 (<10 kDa) 胞內多醣抑制腫瘤細胞效果較佳,在濃度1,000 μg/mL 時,T. encephala、T. resupinata 對於AGS 胃癌細胞抑制率高達92~93%;抑制Caco-2 結腸癌細胞能力分別為79.5%及80.7%;另外,抑制HepG2 肝癌細胞能力以T. resupinata 效果較佳,且達統計顯著差異(p < 0.05)。抗發炎試驗方面,低分子量(<10 kDa)胞內多醣對於經LPS 誘導RAW 264.7 巨噬細胞產生之發炎物質,如一氧化氮(NO)具有抑制效果,在濃度1,000 μg/mL 時,抑制NO 產生能力以T. neofoliacea 及T. encephala 表現較佳,分別抑制率為69.81% 及58.17%。

胞內多醣之單醣組成分與分子量分佈分析結果顯示,單醣組成以甘露糖、葡萄糖及木糖為主,另外,低分子量胞內多醣為1.1~1.3 kDa,其抗發炎及抗腫瘤功效較高分子量之胞內多醣為佳。綜合以上結果可知,T. encephala 及T.resupinata 胞內多醣具有良好之抗氧化、抑制癌細胞及抗發炎之能力,深具開發成為機能性產品之潛力。

Tremella spp. has been reported to be abundant with heterogeneous polysaccharides, which have immunomodulatory and anti-tumor effects. Therefore, many researches are focusing on exopolysaccharides(EPS) but not on endopolysaccharides(PPS). It is assumed that PPS from differnet species with various structure characteristic and molecular weight could have different functional activities. In this study, we investigated the anti-oxidation, anti-inflammatory and anti-tumor ability of PPS from eight Tremella spp. including T. aurantia, T. encephala, T. fuciformis, T. flava, T. neofoliacea, T. nivalis, T. resupinata and T. tropica. Fungi were individually incubated in bioreactors and concentrated to remove medium, then bead beater was used to disrupt the cell wall and PPS were obtained through precipitaion. These PPS from tested Tremella spp. were separated to two parts based on their molelar weight(<10 kDa and > 10 kDa)by using tangential flow filtration system.

In the effect of antioxidation, the results showed that PPS from T. resupinata had the greatest effect. The ferrous ion chelating ability was 89.17%; the reduction capacity [% of vitamin C (100 μg/mL)] and the ABTS free radical scavenging capacity were 81.9% and 36.16%, respectively.

The anti-tumor and anti-inflammatory ability were tested with cell model system. The results showed that the PPS with <10 kDa had a better anti-tumor and anti-inflammatory ability. At 1,000 μg/mL, the PPS from T. encephala and T. resupinata had inhibitory effect to AGS cell and Caco-2 cell, with 92.6% and 93.1% inhibition to AGS and 79.5% and 80.7% to Caco-2 cell, respectively. It''s worth noting that T. resupinata showed significantly inhibitory of HepG2 at 23.18%(p < 0.05). Regarding anti-inflammatory activity, the endopolysaccharides of T. neofoliacea and T. encephala could suppress NO production in LPS-induced macrophage, and sample showed respectively a good inhibitory ability at 69.81% and 58.17% when treated with 1,000 μg/mL.

The analysis of composition of endopolysaccharide was assayed. The results showed the monosaccharides were consisting of mannose, glucose and xylose. The molecular weight of <10 kDa endopolysaccharides showed 1.1-1.3 kDa, and the results indicated that the <10 kDa endopolysaccharides had a better anti-inflammatory and anti-tumor ability than >10 kDa endopolysaccharides. In conclusion, the endopolysaccharides of T. encephala, T. resupinata showed high antioxidant activities, inhibit inflammation and possessed effect of anti-proliferation on cancer cell, which has potential as functional products.
URI: http://hdl.handle.net/11455/51988
其他識別: U0005-2106201200351900
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.