Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5200
標題: 大氣酸性氣體與氣膠的特性和其影響因子分析
Characteristics and Affecting factors of Atmospheric Acidic Gases and Particulates
作者: 林煜棋
Lin, Yu-Chi
關鍵字: Acidic gases;酸性氣體;secondaru aerosol;Asian dust-storm;formation rate;二次氣膠;大陸沙塵暴;生成速率
出版社: 環境工程學系所
引用: 1.Ammann, M., M. Kalberer, D. T. Jost, L. Tobler, E. Rössler, D. Piguet, H. W. Gäggeler and U. Baltensperger, “Heterogeneous Production of Nitrous Acid on Soot in Polluted Air Masses,” Nature, Vol. 395, pp. 157-160(1998). 2.Aumont, B., F. F. Chervier and S. Laval, “Contribution of HONO Sources to the NOx/HOx/O3 Chemistry in the Polluted Boundary Layer,” Atmospheric Environment, Vol. 37, pp. 4725-4737 (2001). 3.Aumont, B., S. Madronich, M. Ammann, M. Kalberer, U. Baltensperger, D. Hauglustaine and F. Brocheton, “On the NO2 + Soot Reaction in the Atmosphere,” Journal of Geophysical Research, Vol. 104, pp. 1729 -1736 (1999). 4.Bari, A., V. Ferraro, L. R. Wilson, D. Luttinger and L. Husain, “Measurements of Gaseous HONO, HNO3, SO2, HCl, NH3, Particulate Sulfate and PM2.5 in New York, NY,” Atmospheric Environment, Vol. 37, pp. 2825-2835 (2003). 5.Bassett, M. and J. H. Seinfeld, “Atmospheric Equilibrium Models of Sulfate and Nitrate Aerosols,” Atmospheric Environment, Vol. 17, pp. 2237-2252 (1983). 6.Bergin, M. H., G. R. Cass, J. Xu, C. Fang, L. M. Zeng, T. Yu, L. G. Salmon, C. S. Kiang, X. Y. Tang, Y. H. Zhang and W. L. Chameides, “Aerosol Radiative, Physical, and Chemical Properties in Beijing during June 1999,” Journal of Geophysical Research, Vol. 106, pp. 17969-17980 (1999). 7.Calvert, J. C. and W. R. Stockwell, “Acid Generation in The Troposphere by Gas-phase Chemistry,” Environmental Science and Technology, Vol. 17, pp. 428-443 (1983). 8.Cao, J., S. Lee, X. Zheng, K. Ho, X. Zhang, H. Guo, J. D. Chow and H. Wang, “Characterization of Dust Storm to Hong Kong in April 1998,” Water, Air, Soil and Pollution, Focus 3, pp. 213-229 (2003). 9.Chameides, W. L. and A. W. Stelson, “Aqueous-phase Chemical Processes in Deliquescent Sea-salt Aerosols: A Mechanism that Couples the Atmospheric Cycles of S and Sea-salt. Journal of Geophysical Research, Vol. 97, pp. 20565 - 20580 (1992). 10.Chan, Y. C., R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen and G. M. Bailey, “Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia,” Atmospheric Environment, Vol. 31, pp. 3773-3785 (1997). 11.Chen, C. L., B. J. Tsuang, R. C. Pan, C. Y. Tu, J. H. Liu, P. L. Huang, H. Bai, and M. T. Cheng, “Quantification on Source/Receptor Relationship of Primary Pollutants and Secondary Aerosols from Ground Sources - Part II. Model Description and Case Study,” Atmospheric Environment, Vol. 36, pp. 421-434 (2002). 12.Chen, S. J., L. T. Hsieh, M. J. Kao, W. Y. Lin, K. L. Huang and C. C. Lin, “Characteristics of Particles Sampled in Southern Taiwan during the Asian Dust Storm Periods in 2000 and 2001,” Atmospheric Environment, Vol. 38, pp. 5952-5934 (2004). 13.Cheng, M. T., Y. C. Lin, C. P. Chio, C. F. Wang and C. Y. Kuo, “Characteristics of Aerosols Collected in Central Taiwan during an Asian Dust Event in Spring 2000,” Chemosphere, Vol. 61, pp. 1439-1450 (2005). 14.Cheng, T., D. Lu, G. Wang and Y. Xu, “Chemical Characteristics of Asian Dust Aerosol from Hunshan Dake Sandland in Northern China,” Atmospheric Environment, Vol. 39, pp. 2903-2911 (2005). 15.Chiang, C. W., W. N. Chen and J. B. Nee, “Lidar Measurements of Spring Dusts in 2002 at Chung-Li,” Terrestrial Atmospheric Oceanic Sciences, Vol. 15, pp. 813-824 (2004). 16.Chin, M., D. Jacob, G. Gardner, F. Foreman, S. Michael, A. Peter and L. Dennis, “A Global Three-dimensional Model of Tropospheric Sulfate,” Journal of Geophysical Research, Vol. 101, pp. 18667-18690 (1996). 17.Choi, J. C., M. Lee, Y. Chun, J. Kim and S. Oh, “Chemical Composition and Source Signature of Spring Aerosol in Seoul, Korea,” Journal of Geophysical Research, Vol. 106, pp. 18067-18074 (2001). 18.Chou, C. C. K., C. Y. Lin, T. Z. Chen, S. C. Hsu, S. C. Lung, S. C. Liu and C. Y. Young, “Influence of Long-range Transport Dust Particles on Local Air Quality: A Case Study on Asian Dust Episodes in Taipei during the Spring of 2002,” Terrestrial Atmospheric Oceanic Sciences, Vol. 15, pp. 881-899 (2004). 19.Countess, R. J., G. T. Wolff and S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” Journal of Pollution Control Association, Vol. 30, pp. 1194-1200 (1980). 20.Creasey, D. J., D. E. Heard and J. D. Lee, “OH and HO2 Measurements in a Forest Region of North-western Greece,” Atmospheric Environment, Vol. 35, pp. 4713-4724 (2001). 21.Danalatos, D. and S. Glavas, “Gas Phase Nitric Acid, Ammonia and Related Particulate Matter at a Mediterranean Costal Site, Patras, Greece,” Atmospheric Environment, Vol. 33, pp. 3417-3425 (1999). 22.Fan X. B., K. Okada, N. Niimura, K. Kai, K. Arao, G. Y. Shi, Y. Qin and Y. Mitsuta, “Mineral Particles Collected in China and Japan during the Same Asian Dust-storm Event,” Atmospheric Environment, 30, pp. 347-351 (1996). 23.Fang, G. C., C. N. Chang, Y. S. Wu, S. C. Lu, P. P. C. Fu, S. C. Chang, C. D. Cheng and W. H. Yuen, “Concentration of Atmospheric Particulates during a Dust Storm Periods in Central Taiwan, Taichung,” The Science of the Total Environment, Vol. 287, pp. 141-145 (2002). 24.Fang, M., M. Zheng, F. Wang, K. S. Chim and S. C. Kot, “The Long-range Transport of Aerosols from Northern China to Hong-Kong - a Mutli-technique Study,” Atmospheric Environment, Vol. 33, pp. 1803 - 1817 (1999). 25.Feichter, J., E. Kjelldtröm, H. Rodhe, F. Dentener, J. Lelieveld and G. J. Roelofs, “Simulation of the Tropospheric Sulfur Cycle in a Global Climate Model,” Atmospheric Environment, Vol. 30, pp. 1693-1707 (1996). 26.Gatz, D. F., “A Large Silicon - Aluminum Aerosol Plume in Central Illinois: North African Desert Dust ?,” Atmospheric Environment, Vol. 30, pp. 3789-3799 (1996). 27.Geyer, A., R. Ackermann, R. Dubois, B. Lohrmann, T. Müller and U. Platt, “Long-term Observation of Nitrate Radicals in the Continental Boundary Layer near Berlin,” Atmospheric Environment, Vol. 35, pp. 3619-3631 (2001). 28.Guo, Z. G., J. L. Feng, M. Fang, H. Y. Chen and K. H. Lau, “The Elemental and Organic Characteristics of PM2.5 in Asian Dust Episodes in Qingdao, China, 2002,” Atmospheric Environment, Vol. 38, pp. 909-919 (2004). 29.Harrison, R. M., J. D. Peak and G. M. Collins, “Tropospheric Cycles of Nitrous Acid,” Journal of Geophysical Research, Vol. 101, pp. 14429-14439 (1996). 30.He, K., F. Yang, Y. Ma, Q. Zhang, X. Yao, C. K. Chen, S. Cadle, T. Chan and P. Mulawa, “The Characteristics of PM2.5 in Beijing, China,” Atmospheric Environment, Vol. 35, pp. 4959-4970 (2001). 31.Hesstvedt, E., Ö. Hov, and I. S. A., Isaksen, “Quasi-steady-state Approximations in Air Pollution Modeling: Comparison of two Numerical Schemes for Oxidant Prediction. International Journal of Chemical Kinetics, Vol. 10, pp. 971-974(1978). 32.Hidy, G. M., “Atmospheric Sulfur and Nitrogen Oxides,” Academic Press, California (1994). 33.Hoek, G., M. G. Mennen, G. A. Allen, P. Hofschreuder and T. V. D. Meulen,” Atmospheric Environment, Vol. 30, pp. 3141-3150 (1996). 34.Hong, Y. M., B. K. Lin, K. J. Park, M. H. Kang, Y. R. Jung, D. S. Lee and M. G. Kim, “Atmospheric Nitrogen and Sulfur Containing Compounds for three Sites of South Korea,” Atmospheric Environment, Vol. 36, pp. 3485-3494 (2002). 35.Hsu, S. C., S. C. Liu, C. Y. Lin, R. T. Hsu, Y. T. Huang and Y. W. Chen, “Metal Compositions of PM10 and PM2.5 Aerosols in Taipei during Spring, 2002,” Terrestrial Atmospheric Oceanic Sciences, Vol. 15, pp. 925-948 (2004). 36.Hsu, S. C., S. C. Liu, W. L. Jeng, F. J. Lin, Y. T. Huang, S. C. C. Lung, T. H. Liu and J. Y. Tu, “Variations of Cd/Pb and Zn/Pb Ratios in Taipei Aerosols Reflecting Long-range Transport or Local Pollution Emissions,” The Science of the Total Environment, Vol. 347, pp. 111-121 (2005). 37.Hu, J. H. and J. P. D. Abbatt, “Reaction Probabilities for N2O5 on Sulfuric Acid and Ammonium Sulfate Aerosols at Room Temperature,” Journal of Physical Chemistry, Vol. 101, pp. 871-878 (1997)。 38.In, H. J. and S. U. Park, “The soil Particle Size Dependent Emission Parameterization for an Asian Dust (Yellow Sand) Observed in Korea in April 2002,” Atmospheric Environment, Vol. 37, pp. 4625-4636 (2003). 39.Jackson, A. V. and C. N. Hewitt, “Hydrogen Peroxide and Organic Hydroperoxide Concentrations in Air in Eucalyptus Forest in Central Portugal,” Atmospheric Environment, Vol. 30, pp. 819-830 (1996). 40.Jacobson, M. Z., Fundamentals of Atmospheric Modeling, Cambridge University Press, New York (1999). 41.John, W., S. M. Wall, J. L. Ondo and W. Winklmayr, “Modes in the Size Distributions of Atmospheric Inorganic Aerosol,” Atmospheric Environment, Vol. 24, pp. 2349-2359 (1990). 42.Kadowaki, S., “On the Nature of Atmospheric Oxidation Processes of SO2 to Sulfate and of NO2 to Nitrate on the Basis of Diurnal Variations of Sulfate, Nitrate, and Other Pollution in an Urban Area,” Environmental Science and Technology, Vol. 20, pp. 1249-1253 (1986). 43.Khoder, M. I., “Atmospheric Conversion of Sulfur Dioxide to Particulate Sulfate and Nitrogen Dioxide to Particulate Nitrate and Gaseous Nitric Acid in an Urban Area,” Chemosphere, Vol. 49, pp. 675- 684 (2002). 44.Kim, K. W., Y. J. Kim and S. J. Oh, “Visibility Impairment during Yellow Sand Periods in the Urban Atmosphere of Kwangju, Korea,” Atmospheric Environment, Vol. 35, pp. 5157-5167 (2001a). 45.Kim, B. G., J. Y. Ahn, H. R. Noh, C. J. Park, J. S. Han and S. U. Park, “Physical and Chemical Properties of a Winter-time Yellow Sand Event in Northeast Asia,” Water, Air, Soil and Pollution, Vol. 130, pp. 379-384 (2001b). 46.Kim, B. G., and S. U., Park, “Transport and Evolution of a Winter-time Yellow Sand observed in Korea,” Atmospheric Environment, Vol. 35, pp. 3191-3201 (2001). 47.Kim, K. H. and M. Y. Kim, “The Effects of Asian Dust on Particulate Matter Fractionation in Seoul, Korea during Spring 2001,” Atmospheric Environment, Vol. 51, pp. 707-721 (2003). 48.Kim, K. H., G. H. Choi, .C. H. Kang, J. H. Lee, J. Y. Kim, Y. H. Youn and S. R. Lee, “The Chemical Composition of Fine and Coarse Particles in Relation with the Asian Dust Events,” Atmospheric Environment, Vol. 37, pp. 753-765 (2003). 49.Kleinman, L. I., “Photochemical Formation of Peroxides in the Boundary Layer,” Journal of Geophysical Research, Vol. 91, pp. 10899-10904 (1986). 50.Lee, B. K., N. Y. Jun and H. K. Lee, “Comparison of Particulate Matter Characteristics before, during and after Asian Dust Event in Incheon and Ulsan, Korea,” Atmospheric Environment, Vol. 38, pp. 1535-1545 (2004). 51.Lee, H. S., C. M. Kang, B. W. Kang and H. K. Kim, “Seasonal Variations of Acidic Air Pollutants in Seoul, South Korea,” Atmospheric Environment, Vol. 33, pp. 3143-3152 (1999). 52.Lin, C. Y., S. C. Liu, C. C. K. Chou, S. J. Huang, C. M. Liu, C. H. Kuo and C. Y. Young, “Long-range Transport of Aerosols and their Impact on the Air Quality of Taiwan,” Atmospheric Environment, Vol. 39, pp. 6066-6076 (2005). 53.Lin, J. J., “Characterization of Water-soluble Ion Species in Urban Ambient Particles,” Environmental International, Vol. 28, pp. 55-61 (2002). 54.Lin, T. H, “Long-range Transport of Yellow Sand to Taiwan in Spring 2000: Observed Evidence and Simulation,” Atmospheric Environment, Vol. 35, pp. 5873-5882 (2001). 55.Liu, S. C. and C. J. Shiu, “Asian Dust Storms and their Impact on the Air Quality of Taiwan,” Aerosol and Air Quality Research, Vol. 1, pp. 1-8 (2001). 56.Lung, S. C., C. H. Liu, S. Y. Huang, T. J. Lin, C. C. K. Chou and S. C. Liu, “Water-soluble Ions of Aerosols in Taipei in Spring 2002,” Terrestrial Atmospheric Oceanic Sciences, Vol. 15, pp. 901-923 (2004). 57.Maahs, H. G., “Kinetics and Mechanisms of the Oxidation of S(IV) by Ozone in Aqueous Solution with Particular Reference to SO2 Conversion in Nonurban Clouds,” Journal of Geophysical Research, Vol. 88, pp. 721-732 (1983). 58.Martinez, M., H. Harder, T. A. Kovacs, J. B. Simpas, J. Bassis, R. Lesher, W. H. Brune, G. J. Frost, E. J. Williams, C. A. Stroud, B. T. Jobson, J. M. Roberts, S. R. Hall, R. E. Shetter, B. Wert, A. Fried, B. Alicke, J. Stutz, V. L. Young, A. B. White and R. J. Zamora, “OH and HO2 Concentrations, Sources, and Loss Rates during the Southern Oxidants Study in Nashville, Tennessee, Summer 1999,” Journal of Geophysical Research, Vol. 108, pp. ACH 8-1-8-17(2003). 59.Matsumoto, J., H. Imai, N. Kosugi and Y. Kajii, “In Situ Measurement of N2O5 in the Urban Atmosphere by Thermal Decomposition/Laser-induced Fluorescence Technique,” Atmospheric Environment, Vol. 39, pp. 6802-6811 (2005). 60.Matsumoto, M. and T. Okita, “Long Term Measurements of Atmospheric Gaseous Aerosol Species Using an Annular Denuder System in Nara, Japan,” Atmospheric Environment, Vol. 32, pp. 1419-1425 (1998). 61.McMurry, P. H. and J. C. Wilson, “Droplet Phase (Heterogeneous) and Gas Phase (Homogenous) Contributions to Secondary Ambient Aerosols Formation as Functions of Relative Humidity,” Journal of Geophysical Research, Vol. 88, pp. 5101-5108 (1983). 62.Meng, Z. znd J. H. Seinfeld, “On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols,” Aerosol Science and Technology, Vol. 20, pp. 253-265 (1994). 63.Mentel. TH. F., D. Bleilebens and A. Wahner, “A Study of Nighttime Nitrogen Oxide Oxidation in a Large Reaction Chamber- the Fate of NO2, N2O5, HNO3, and O3 at Different Humidity,” Atmospheric Environment, Vol. 30, pp. 4007-4020 (1996). 64.Mori, I., M. Nishikawa, T. Tanimura and H. Quan, “Change in Size Distribution and Chemical Composition of Kosa (Asian Dust) Aerosol during Long-range Transport,” Atmospheric Environment, Vol. 37, pp. 4253-263 (2003). 65.Mozurkewich, M., “The Dissociation Constant of Ammonium Nitrate and its Dependence on Temperature, Relative Humidity and Particle Size,” Atmospheric Environment, Vol. 27, pp. 261-270 (1993). 66.Mozurkewich, M., “The Dissociation Constant of Ammonium Nitrate and its Dependence on Temperature, Relative Humidity and Particle size,” Atmospheric Environment, Vol. 27, pp. 261-270 (1993). 67.Neuberger, M., M. G. Schimek, H. Jr. Friedrich, H. Moshammer, M. Kundi, T. Frischer, B. Gomiscek, H. Puxbaum, H. Hauck and AUPHEP-Team, “Acute Effects of Particulate Matter on Respiratory Diseases, Symptoms and Functions: Epidemiological Results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP),” Atmospheric Environment, Vol. 38, pp. 3971-3981 (2004). 68.Nishikawa, M., Q. Hao and M. Morita, “Preparation and Evaluation of Certified Reference Materials for Asian Mineral Dust,” Global Environmental Research, Vol. 4, pp. 103-113 (2000). 69.Nishikawa, M., S. Kanamori, K. Nobuko, and K. Tsuguo, “Kosa Aerosol as Eolian Carrier of Anthropogenic Material,” The Science of the total Environment, Vol. 107, pp. 13-27 (1991). 70.Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, pp. 815-822 (1990). 71.Okada, K. and K. Kai, “Atmospheric Mineral Particles Collected at Qira in the Taklamakan Desert, China,” Atmospheric Environment, Vol. 38, pp. 6927-6935 (2004). 72.Park, M. N., Y. P. Kim and C. H. Kang, “Aerosol Composition Change due to Dust Storm: Measurements between 1992 and 1999 at Gosan, Korea,” Water, Air, Soil and Pollution, Focus 3, pp. 117-128 (2003). 73.Perrino, C., M., Catrambone, A. Di Menno Di Bucchianico and I. Allegrini, “Gaseous Ammonia in the Urban Area of Rome, Italy and its Relationship with Traffic Emissions,” Atmospheric Environment, Vol. 36, pp. 5385-5394 (2004). 74.Perry, D. K., T. A. Cahill, R. C. Schnell and J. M. Harris, “Long- range Transport of Anthropogenic Aerosols to the National Oceanic and Atmospheric Administration Baseline Station at Mauna Loa Observation, Hawaii,” Journal of Geophysical Research, Vol. 104, pp. 18521-18533 (1999). 75.Radojevic, M., “SO2 and NOx Oxidation Mechanisms in the Atmosphere,” Atmospheric Acidity, Elsevier, Essex, England (1992). 76.Ravishankara, A. R., “Heterogeneous and Multiphase Chemistry in the Troposphere,” Science, Vol. 276, pp. 1058-1064 (1997). 77.Ren, X., H. Harder, M. Martinez, R. L. Lesher, A. Oliger, T. Shirley, J. B. Simpas and W. H. Brune, “HOx Concentrations and OH Reactivity Observations in New York City during PMTACS-NY2001,” Atmospheric Environment, Vol. 37, pp. 3627-3637(2003a). 78.Ren, X., H. Harder, M. Martinez, R. L. Lesher, A. Oliger, J. B. Simpas, W. H. Brune, J. J. Schwab, K. L. Demerjian, Y. He, X. Zhou and H. Gao, “OH and HO2 Chemistry in the Urban Atmosphere of New York City,” Atmospheric Environment, Vol. 37, pp. 3639-3651 (2003b). 79.Roberts, P. T. and S. K. Friedlander, “Conversion of SO2 to Sulfur Particulate in the Los Angeles Atmosphere,” Environmental Health Perspectives, Vol. 10, pp. 103-108 (1975). 80.Saliba, N. A., M. Mochida and B. J. Finlayson-Pitts, “Laboratory Studies of Sources of HONO in Polluted Urban Atmosphere,” Geophysical Research Letters, Vol. 27, pp. 3229-3232 (2000). 81.Savage, N. H., R. M. Harrison, P. S. Monks and G. Saliabury, “Steady-state Modeling of Hydroxyl Radical Concentrations at Mace Head during the EASE ’97 Campaign, May 1997,” Atmospheric Environment, Vol. 35, pp. 515-524 (2001). 82.Seinfeld, J. H. and S. N. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change, John Wiley & Sons, Inc., New York (1999). 83.Takami, A., N. Shiratori, H. Yonekura and S. Hatakeyama, “Measurement of Hydroperoxides and Ozone in Oku-Nikko Area,” Atmospheric Environment, Vol. 37, pp. 3861-3872 (2003). 84.Tang, I. N. and H. R. Munkelwitz, “Compositions and Temperature Dependence of the Deliquescence Properties of Hydroscopic Aerosols”, Atmospheric Environment, Vol. 27, pp. 467-473 (1993). 85.Tsai, C. J. and S. N. Perng, “Artifacts of Ionic Species for Hi-vol PM10 and PM10 Dichotomous Sampler,” Atmospheric Environment, Vol. 32, pp. 1605-1613 (1998). 86.Tsai, Y. I. and M. T. Cheng, “Characterization of Chemical Species in Atmospheric Aerosols in a Metropolitan Basin,” Chemosphere, Vol. 54, pp. 1171-1181 (2004). 87.Tsuang, B. J., C. T. Lee, M. T. Cheng, N. H. Lin, Y. C. Lin, C. L. Chen, C. M. Peng and P. H. Kuo, “Quantification on the Source/Receptor Relationship of Primary Pollutants and Secondary Aerosols by a Gaussian Plume Trajectory Model: Part III – Asian Dust-storm Periods,” Atmospheric Environment, Vol. 37, pp. 4007-4017 (2003). 88.US EPA, “Determination of Reactive Acidic and Basic Gases and Strong Acidity of Atmospheric Fine Particles in Ambient Air Using the Annular Denuder Technology,” Method IO-4, Center for Environmental Research and Development, Office of Research and Development, U.S. EPA, Cincinnati (1999). 89.Valverde-Canossa, J., W. Wieprecht, K. Acker and G. K. Moortgat, “H2O2 and Organic Peroxide Measurements in an Orographic Cloud: The FEBUKO Experiment,” Atmospheric Environment, Vol. 39, pp. 4279-4290(2005). 90.Walker, J. T., D. R. Whitall, W. Robarge, H. W. Parel, “Ambient Ammonia and Ammonium Aerosol across a Region of Variable Ammonia Emission Density,” Atmospheric Environment, Vol. 38, pp. 1235-1246 (2004). 91.Wang, C. C., C. T. Lee, S. C. Liu and J. P. Chen, “Aerosol Characterization at Taiwan’s Northern Tip during Ace-Asia,” Terrestrial Atmospheric Oceanic Sciences, Vol. 15, pp. 839-855 (2004). 92.Wang, C. F., C. J. Chin and P. C. Chiang, “Multielement Analysis of Suspended Particulates Collected with a Beta-gauge Monitoring System by ICP Atomic Emission Spectrometry and Mass Spectrometry,” Analytical Sciences, Vol. 14, pp. 763-768 (1998). 93.Wang, C. F., W. H. Chen, M. H. Yang and P. C. Chiang, “Microwave Decomposition for Airborne Particulate Matter for the Determination of Trace Elements by Inductively Coupled Plasma Mass Spectrometry,” Analyst, Vol. 120, pp. 1681-1686 (1995). 94.Wang, Y., G. Zhuang, Y. Sun and Z. An, “Water-soluble Part of the Aerosol in the Dust Storm Season - Evidence of the Mixing between Mineral and Pollution Aerosols,” Atmospheric Environment, Vol. 39, pp. 7020-7029 (2005). 95.Yao, X., A. P. S. Lau, M. Fang, C. K. Chan and M. Hu, “Size Distributions and Formation of Ionic Species in Atmospheric Particulate Pollutants in Beijing, China: 1-Inoganic Ions,” Atmospheric Environment, Vol. 37, pp. 2991-3000 (2003). 96.Yao, X., C. K. Chan, M. Fang, S. Cadle, T. Chan, P. Mulawa, K. He and B. Ye, “The Water-soluble Ionic Composition of PM2.5 in Shanghai and Beijing, China,” Atmospheric Environment, Vol. 36, pp. 4223-4234 (2002). 97.Ye, B., X. Ji, H. Yang, X. Yao, C. K. Chen, S. H. Cadle, T. Chan and P. Mulawa, “Concentration and Chemical Composition of PM2.5 in Shanghai for 1-year Period,” Atmospheric Environment, Vol. 37, pp. 499-510 (2003). 98.Yuan, C. S., C. C. Sau, M. C. Chen, M. H. Huang, S. W. Chang, Y. C. Lin and C. G. Lee, “Mass Concentration and Size-resolved Chemical Composition of Atmospheric Aerosols Sampled at the Pescadores during Asian Dust Storm Periods in the Years of 2001 and 2002,” Terrestrial Atmospheric Oceanic Sciences, Vol. 15, pp. 857-879 (2004). 99.Zhang, D. and Y. Iwasaka, “Nitrate and Sulfate in Individual Asian Dust-storm Particles in Beijing, China in Spring of 1995 and 1996,” Atmospheric Environment, Vol. 33, pp. 3213-3223 (1999). 100.Zhang, X., R. Arimoto, Z. An, T. Chen, G. Zhang, G. Zhu and X. Wang, “Atmospheric Trace Elements over Source Regions for Chinese Dust: Concentrations, Sources and Atmospheric Deposition on the Loess Plateau,” Atmospheric Environment, Vol. 13, pp. 2051-2067 (1993). 101.Zhou, M., K. Okada, F. Qian, P. M. Wu, L. Su, B. E. Casareto and T. Shimohara, “Characteristics of Dust-storm Particles and their Long-range Transport from China to Japan - Case Studies in April 1993,” Atmospheric Research, Vol. 40, pp. 19-31 (1996). 102.Zhuang, H., C. K. Chan, M. Fang and A. S. Wexler, “Size Distributions of Particulate Sulfate, Nitrate, and Ammonium at a Coastal Site in Hong Kong,” Atmospheric Environment, Vol. 33, pp. 843-853 (1999). 103.王景良,「中部空品區污染源逸散粉塵的組成分析」,碩士論文,中興大學環境工程系,台中市(2000)。 104.俞宗岳,「大氣中懸浮微粒二次氣膠含量與生成速率之推估」,國立成功大學環境工程學系碩士論文,台南(2003)。 105.張順欽,李崇德,「大陸沙塵暴對台灣空氣品質特徵之研究」,第十八屆空氣污染控制技術研討會摘要集,高雄,第81-88頁(2001)。 106.郭奕伶,吳義林,張能復,「高屏地區衍生性硝酸鹽與硫酸鹽之形成速率」,第十三屆空氣污染控制技術研討會論文集,台北,第81-88頁(1996)。 107.程萬里,黃怡嘉,「中部地區臭氧及懸浮微粒與氣象因子之相關研究」,第十七屆空氣污染控制技術研討會論文集,雲林,第38-44頁(2000)。 108.楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性及來源分析」,碩士論文,中興大學環境工程系,台中市(1998)。 109.詹長權,黃景祥,陳文鐘,王宗倫,蘇大成,江伯倫,「中國大陸沙塵暴對台灣居民健康之影響」,沙塵暴學術研討會論文集,台北,第1-9頁 (2002)。 110.劉昌岭,張經,劉素美,「我國不同礦物氣溶膠源區物質的物理化學特徵」,環境科學,第23卷,第28-32頁(2002)。 111.劉紹臣,李崇德,鄭曼婷,李文智,袁中新,陳瑞仁,林博雄,周崇光,陳太逸,龍世俊,許世傑,林傳堯,劉遵賢,「台灣地區臭氧與懸浮微粒預報模式建立及生成與傳輸機制分析」,行政院環保署報告,EPA-91-FA11-03-A062 (2002)。 112.劉景濤,鄭明倩,「內蒙古中西部強和特強沙塵暴的氣候學特徵」,沙塵暴學術研討會論文集,台北,第87-95頁(2002)。 113.蔡瀛逸,「台灣中部都會及沿海地區能見度與大氣氣膠化學特性關係之研究」,國立中興大學環境工程學系博士論文,台中 (1999)。 114.鄭曼婷,「都會區臭氧事件日硫酸鹽及硝酸鹽微粒生成之影響因子探討」,行政院國家科學委員會專題研究計畫,NSC 93-2211-E-005-022 (2005)。 115.鄭曼婷,程萬里,張艮輝,林沛練,莊秉潔,王竹方,郭崇義,林宗嵩,王重傑,黃景祥,白曛綾,「中部地區空氣污染總量管制技術資料建立與應用」,行政院環保署研究報告(2000)。 116.錢正安,蔡英,劉景濤,李棟梁,「中國北方沙塵暴研究若干問題」,沙塵暴學術研討會論文集,台北,第63-72頁(2002)。 117.藍文農,「台灣中部地區大氣有機碳及元素碳微粒之特性研究」, 國立中興大學環境工程學系碩士論文,台中(2002)。
摘要: 
本研究藉由2000年3月與2002年1月至12月氣膠及氣體氣體污染物之採樣結果,分析大陸沙塵過境對本地氣膠物化特性的影響,並瞭解光化氣膠及前趨氣體污染物濃度季節性之分佈。此外,利用化學反應理論計算硫酸鹽及硝酸鹽之生成速率,藉由生成速率靈敏度分析之結果,瞭解光化氣膠生成之影響因子。
綜合四波大陸沙塵事件日氣膠之量測結果顯示,沙塵期間大氣PM2.5-10質量濃度為非沙塵期間的1.8 - 2.3倍本研究藉由2000年3月與2002年1月至12月氣膠及氣體氣體污染物之採樣結果,分析大陸沙塵過境對本地氣膠物化特性的影響,並瞭解光化氣膠及前趨氣體污染物濃度季節性之分佈。此外,利用化學反應理論計算硫酸鹽及硝酸鹽之生成速率,藉由生成速率靈敏度分析之結果,瞭解光化氣膠生成之影響因子。
綜合四波大陸沙塵事件日氣膠之量測結果顯示,沙塵期間大氣PM2.5-10質量濃度為非沙塵期間的1.8 - 2.3倍,波峰介於3.2 - 5.6 um粒徑範圍之微粒濃度明顯增加,顯示沙塵主要影響本地區粗微粒之濃度。此外,沙塵事件日期間PM2.5-10之地殼元素Ca、Mg、Al及Fe與海鹽氣膠Cl-及Na+為非沙塵事件日的2 - 3倍,Ca/Al及Mg/Al之比值分別介於0.6 - 0.9及0.21 - 0.25之間,較非沙塵事件日的0.02 - 0.47及 0.1 - 2.1穩定,顯示沙塵事件日期間本地氣膠之地殼元素Ca、Mg及Al可能來自於同一污染源。
由光化氣膠及前趨氣體污染物監測結果顯示,PM2.5之硫酸鹽、硝酸鹽及銨鹽濃度分別為8.0、6.0及4.6 ug m-3,共佔PM2.5質量比例的44 %,硝酸鹽微粒濃度有明顯季節性變化,其最低值出現在夏季及秋季。前趨氣體SO2、HNO2、HNO3及NH3濃度分別為6.1、2.9、1.9及8.5 ug m-3,夏季採樣期間HNO2容易光解,因此其濃度為冬季的0.6倍,相反地在此高溫的季節,NH4NO3微粒容易揮發形成HNO3及NH3,故夏季HNO3與NH3濃度高於冬季量測的結果。硫(Fs)及氮(Fn)轉換比例平均分別為46及17 %,由日間Fn與O3及夜間Fn與相對濕度分別呈現高度正相關,顯示日、夜間NO2轉換成HNO3及NO3-之機制及影響因子不同。
在污染物生成速率推估上,雲內機制硫酸鹽之生成速率介於10 - 224 % h-1,約為氣相機制硫酸鹽生成速率之100 倍,然而影響雲內機制硫酸鹽生成之主要因子為H2O2濃度及雲內含水量與pH值。此外,採樣期間NO2轉換成HNO3及NO3-之速率分別介於0.2 - 13 % h-1 及 0.1 - 7.1 % h-1,由靈敏度分析結果顯示,日夜間影響硝酸氣體及硝酸鹽微粒生成之因子主要為溫度及相對濕度。

This study mainly investigated the influence of Asian dust-storm (AD) on ambient aerosols. Meanwhile, seasonal variations of secondary aerosols and their precursors were also studied. The rates and affecting factors on secondary aerosol formation were also investigated by theoretical evaluations regarding potential SO2 and NO2 oxidant reactions.
Four AD events were observed in central Taiwan during the years of 2000 and 2002. The results indicated that the concentrations of PM2.5-10 in the AD events were 1.8 - 2.3 times higher than those in the non-dust events. The aerosol concentrations in the range of 3.2 - 5.6 um increased significantly, indicating that the coarse particles were influenced by the AD dust. The concentration of the crustal elements Ca, Mg, Al, Fe and sea salt species Na+ and Cl- during the dust episode exceeded the mean concentrations in the non-dust episode by factors of 2 - 3. It is noted that during the dust event, the ratio of Mg/Al in PM2.5-10 ranged from 0.21 to 0.25 while that of Ca/Al ranged from 0.6 to 0.9, levels more constant than those obtained in non-dust periods. This indicated that the ratios of Mg/Al and Ca/Al might be as good tracers of AD events.
The annual concentrations of SO42-, NO3- and NH4+ were 8.0, 6.0 and 4.6 ug m-3, respectively, and these inorganic species occupied approximately 44 % of PM2.5 fractions. Particulate nitrate exhibited significant seasonal variations with lower levels observed in summer and autumn. On the other hand, the annual average concentrations of SO2, HNO2, HNO3 and NH3 were 6.1, 2.9, 1.9 and 8.5 ug m-3, respectively. Lower HNO2 concentrations in summer have been attributed to the photolytic reactions. Oppositely, HNO3 and NH3 displayed higher concentrations in the summer. This can be explained by the higher volatility of particulate NH4NO3 under high temperature. Moreover, the annual average sulfur conversion ratio (Fs) and nitrogen conversion ratio were 46 and 17 %, respectively. Fn was well correlated with ozone during daytime, whereas Fn correlated well with relative humidity during nighttime. The results suggested that the mechanisms and affecting factors on the oxidant of NO2 to HNO3 and NO3- were different during daytime and nighttime.
Finally, the formation rates of secondary aerosols were evaluated in this study. The results showed that the formation rates of SO2 to particulate sulfate in in-cloud process ranged from 10 - 224 % h-1, which were 100 times higher than those of gas-phase conversion. The formations of sulfate were mainly dependent on H2O2 concentrations, water content and pH value in the cloud. Furthermore, the calculated formation rates of NO2 to HNO3 and NO3- were from 0.2 - 13 % h-1 and 0.1 - 7.1 % h-1, respectively. The factors affecting gaseous and particulate nitrate formation were temperature and relative humidity.
URI: http://hdl.handle.net/11455/5200
其他識別: U0005-2408200613161700
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.