Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52001
標題: Study of process model system on physicochemical properties and quality modification of instant rice flour
以加工模式系統-探討沖泡即食米穀粉理化性質及其品質修飾效果
作者: Chan, I-Ping
詹依屏
關鍵字: Instant rice flour;即食沖泡米穀粉;puff;drum dry;pregelitinazion;turbidity stability;膨發;滾筒乾燥;預糊化;混濁安定性
出版社: 食品暨應用生物科技學系所
引用: 王俊權、張永和。1997。顆粒大小對米穀粉物理性質及熱焓特性之影響。食品科學 24(3): 319-330。 王俊權、楊季清、盧訓、林子清。1998。米漿預糊化處理對碗粿組織型態之影響。食品科學 25(2): 184-96。 王豐洲。1976。乾燥食品之膨發。食品工業 8(1): 17-20。 方文助。1991。濕熱處理之米穀粉其理化特性研究。國立中興大學食品科學研究所碩士論文,台中。 李健捀、陳榮五、 陳世雄。水稻有機栽培對稻米品質之影響。臺中區農業改良場研究彙報63: 31-47 (1999)。 杜易學。1999。交鏈化糯性米穀粉在湯圓產品應用上之研究。國立中興大學食品科學系碩士論文,台中。 吳景陽。1989。修飾澱粉。食品工業 21(9): 9-19。 紀如珍。2000。滾筒乾燥山藥粉末的復水與加工應用特性。國立台灣大學食品科學系碩士論文,台北。 陳賢哲。1983。各種食品加工用化工澱粉的利用特性。食品工業 15(7):24-31。 陳樺翰。2005。探討不同碾白度米粒中細胞壁多醣物質特性及其對澱粉理化性質之影響。國立中興大學食品科學系碩士論文,台中。 曾琳祥。1982。膨發乾燥。食品工業14(5): 28-33。 莊朝琪。2003。擠壓條件、磨粉方法與粉體粒徑對糯米穀粉擠出物流變性質之影響。國立台灣大學食品科技研究所博士論文,台北。 黃月花。2000。不同熱處理製成之熟米穀粉其理化特性之探討及其產品開發。國立中興大學食品科學系碩士論文,台中。 黃晶晶。1994。稻米之理化性質。食品工業26 (2): 46-56。 須文宏。糙米與不同品種之鼓式乾燥米穀粉沖泡及其沖泡後糊液的物性研究。食品科學 25(5): 514-525。 須文宏,余嚴尊,黃俊儒。前處理對鼓式乾燥米穀粉沖泡後物理性質之影響。食品科學 24(5): 580-590。 楊啟春、張曙明、邱瑜穎。1989。探討糕仔粉理化性質對米糕品質之影響。食品科學 16(4): 445-57。 張永和、朱麗雯、蘇女淳。1996。不同品種稻米之水分擴散與澱粉糊化速率的探討。食品科學 23(5): 739-751。 張曙明、張采蓮。1995。以高壓驟降法處理不同直鏈澱粉含量米種產品特性之探討。食品科學 22(5): 465-478。 劉仲華。2004。糯性米穀粉及預糊化處理對麵糰性質及饅頭品質之影響。國立台灣大學農業化學研究所博士論文,台北。 賴滋漢、賴滋超。1994。食品科技辭典。富林出版社。台中,台灣。 簡銘維。2010。以擠壓蒸煮方式製備糕仔用預糊化米穀粉之研究。屏東科技大學碩士論文,屏東。 台灣經濟研究院。http://www.tier.org.tw/ 創市際市場研究顧問。http://www.insightxplorer.com/index.html A.A.C.C. (2000). Approved method of the AACC, 10th ed. Method. St. Paul, Minnesota: American Association of Cereal Chemists, Inc. A.O.A.C. (2000).Official methods of analysis, 17th ed. Washingtob, DC: Association of Official Analytical Chemists. Abdulmola, N. A., Hember, M. W. N., Richardson, R. K., & Morris, E. R. (1996). Effect of xanthan on the small deformation rheology of cross linked and uncross linked waxy maize starch. Carbohydrate Polymer, 31, 65-78. Ali, S. Z., & Bhattacharya, K. R. (1976). Starch Retrogradation and Starch Damage in Parboiled Rice and Flaked Rice. Starke, 28(7), 233-240. Armero, E., Collar, C. (1996). Antistaling additives, flour type and sourdough process effects on functionality of wheat doughs. Journal of Food Science, 61, 299-303. Bernal, M. J., Periago, M. J., & Ros, G. (2002). Effects of processing on dextrin, total starch, dietary fiber and starch digestibility in infant cereals. Journal of Food Science, 67(3), 1249-1254. Biswas, S. K., & Juliano, B. O. (1988). Laboratory parboiling procedures and properties of parboiled rice from varieties differing in starch properties. Cereal Chemistry, 65(5), 417-423. Bornet, F. (1993). Technological treatments of cereals. Repercussions on the physiological properties of starch. Carbohydrate Polymers, 21, 195-203. Chang, Y. H., & Lii, C. Y. (1992). Preparation of Starch Phosphates by Extrusion. Journal of Food Science, 57(1), 203-205. Chang, S. M., & Yang, H. C. (1992). Thermal-Processing Effects on Rice Characteristics. Food Structure, 11(4), 373-382. Christianson, D. D., Casiraghi, E. M., & Bagley, E. B. (1986). Deformation and Fracture of Wheat, Corn and Rice Starch Gels in Lubricated and Bonded Uniaxial Compression. Carbohydrate Polymers, 6(5), 335-348. Davidou, S., Le Meste, M., Devever, E., & Bekaert, D. (1996). A contribution to the study of staling of white bread: effect of water and hydrocolloid. Food Hydrocoll, 10, 375-383. Douzals, J. P., Perrier-Cornet, J. M., Coquille, J. C., & Gervais, P. (2001). Pressure- temperature phase transition diagram for wheat starch. Journal of Agricultural and Food Chemistry, 49 (2), 873-876. Hoke, K., Housova, J., & Houska, M. (2005). Optimum conditions of rice puffing. Czech Journal of Food Sciences, 23(1), 1-11. Hsieh, F. & Luh, B.S. (1991). Breakfast rice cereals and baby foods. In: Rice Volume II: Utilization (edited by B.S. Luh). Pp. 177–194. New York: Van Nostrand Reinhold. Kalogianni, E. P., Xynogalos, V. A., Karapantsios, T. D., & Kostoglou, M. (2002). Effect of feed concentration on the production of pregelatinized starch in a double drum dryer. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 35(8), 703-714. Kulicke, W. M., Eidam, D., Kath, F., Kix, M., & Kull, A. H. (1996). Hydrocolloids and rheology: Regulation of visco-elastic characteristics of waxy rice starch in mixtures with galactomannans. Starch-Starke, 48(3), 105-114. Lai, H. M., & Cheng, H. H. (2004). Properties of pregelatinized rice flour made by hot air or gum puffing (vol 2, pg 201, 2004). International Journal of Food Science and Technology, 39(5), 585-585. Mahanta, C. L., Ali, S. Z., Bhattacharya, K. R., & Mukherjee, P. S. (1989). Nature of Starch Crystallinity in Parboiled Rice. Starch-Starke, 41(5), 171-176. Mahanta, C. L., & Bhattacharya, K. R. (1989). Thermal-Degradation of Starch in Parboiled Rice. Starch-Starke, 41(3), 91-94. Mariotti, M., Alamprese, C., Pagani, M. A., & Lucisano, M. (2006). Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. Journal of Cereal Science, 43(1), 47-56. Muhr, A.H., Wetton, R.E., & Blanshard, J.M.V. (1982). Effect of hydrostatic pressure on starch gelatinization, as determined by DTA. Carbohydrate Polymers, 2 (2), 91-102. Murugesan, G. & Bhattacharya, K.R. (1989). The nature of starch in popped rice. Carbohydrate Polymers, 10, 215-226. Nakorn, K. N., Tongdang, T., & Sirivongpaisal, P. (2009). Crystallinity and Rheological Properties of Pregelatinized Rice Starches Differing in Amylose Content. Starch-Starke, 61(2), 101-108. Orts, W. J., Glenn, G. M., Nobes, G. A. R., & Wood, D. F. (2000).Wheat starch effects on the textural characteristics of puffed brown rice cakes. Cereal Chemistry, 77(1), 18-23. Rojas, J. A., Rosell, C. M. & Benedito de Barber, C. (1999). Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocoll, 13, 27-33. Thebaudin, J. Y., Lefebvre, A. C., & Doublier, J. L. (1998). Rheology of starch pastes from starches of different origins: Applications to starch-based sauces. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 31(4), 354-360. Thevelein, J.M., Van Assche, J.A., Heremans, K., Gerlsma, S.Y., (1981). Gelatinization temperature of starch, as influenced by high pressure. Carbohydrate Research, 93 (2), 304-307. Tsai, M. L., Li, C. F., & Lii, C. Y. (1997). Effects of granular structures on the pasting behaviors of starches. Cereal Chemistry, 74(6), 750-757. Shi, X.& BeMiller, J. N. (2002). Effect of food gums on viscosities of starch suspensions during pasting. Carbohydrate Polymer, 50, 7-18. Shittu, T. A., & Lawal, M. O. (2007). Factors affecting instant properties of powderd cocoa beverages. Food Chemistry, 100, 91-98. Sudhakar, V., Singhal, R. S., & Kulkarni,P. R. (1992). Starch-gum interactions: formulations and functionality using amaranth/corn starch and CMC. Starch/Starke, 44, 369-374. Vallous, N. A., Gavrielidou, M. A., Karapantsios, T. D., & Kostoglou, M. (2002). Performance of a double drum dryer for producing pregelatinized maize starches. Journal of Food Engineering, 51(3), 171-183. Williams, P. C., Kuzina, F. D., & Hlynka, I. (1970). A rapid colorimetric procedure for estimating the amylase content of starches and flours. Cereal Chemistry, 47, 411-421. Wotton, M., & Bamunuarachchi, A. (1978). Water binding capacity of commercial produced native and modified starches. Starch-Starke, 30(9), 306-309.
摘要: 
即食沖泡米穀粉屬預糊化穀類製品 (pregelatinized cereal products),其主要將穀粒、穀粉漿 (cereal paste) 以乾式預糊化:膨發 (puffing)、焙炒 (roasting) 或濕式預糊化:滾筒乾燥 (drum dry)、蒸煮或擠壓 (extrusion) 加工等方式進行糊化、乾燥、粉碎、過篩 (seive) 而得。其中膨發鎗及滾筒乾燥均為便利及節省成本之預糊化方式,因此常被用於製造即食穀類製品。本研究擬以膨發及滾筒預糊化處理製備即食沖泡米穀粉,進行 (1) 不同膨發壓力 (0,3,5,7,9,11 kgf/cm2 ),(2) 冷、熱漿入料,(3) 不同滾筒表面溫度 (115、125、130℃),對 (4) 不同直鏈澱粉含量之國產米 (台中在來一號- TCN1、台粳九號- TK9、台中糯70- TCW70) 預糊化處理後,探討其理化特性、復水性質影響及產品混濁安定性,並以多元回歸分析建立加工參數與其吸水、溶解特性之數學模式,另以食用膠與自製膨發米穀粉 (TCW70-11 kgf/cm2 ) 改善即食沖泡米穀粉之品質。
實驗結果如下,隨膨發壓力增加,膨發米穀粉之WAI、WSI、SP、糊化度、糊精度提升,粒徑、分子量變小,離層性及混濁安定性增加。並由數學方程式WAI = 8.00100-0.233223×A+ 0.014585×T+ 0.0288663×P (r 2=0.87) 、SP = 10.70046-0.42053×A+ 0.04572×T+0.40982×P (r 2=0.84)、WSI = 7.514986-0.821779×A +0.131696×T +1.730803×P (r 2=0.87)、separation ratio = 0.538692-0.020034×A + 0.002299 T+0.049799×P (r 2=0.89),可在加工前預估成品之復水性質及離層安定性。滾筒乾燥米穀粉呈多孔性,均完全糊化,且隨滾筒溫度增加其溶解度、糊精度、混濁安定性、離層性提升,分子量變小。並由數學方程式冷漿入料:WAI = 9.861863-0.334415A+0.087127T+ 0.039369 TS (r2=0.87)、SP = 1.101079-0.481397A+0.199154T+ 0.106375TS (r2=0.95)、separation ratio =0.562169-0.019469A+0.000952T +0.003206Ts(r2= 0.94);熱漿入料:WSI=53.87873-2.61321A+0.21491 T+0.09996TS (r2= 0.99)、separation ratio=0.230230-0.014633A+0.001675 T+0.005635Ts (r2= 0.88)可在加工前預估成品之復水性質及離層性。
以0.2 % 關華豆膠修飾膨發米穀粉沖泡液及2 % TCW70-11kg/cm2修飾滾筒米穀粉沖泡液有良好之離層、混濁安定修飾效果及最受歡迎之整體接受性。

Instant rice flour belongs to the pregelatinized cereal products group and mainly uses the dry methods: puffing, roasting or wet methods: drum drying, steaming or extrution to carry out gelatinization, drying, grinding, sieving to obtain the cereal particles and paste. The puffing gun and drum dryer are often used to produce edible cereal products because of their low costs and easy to use. This study uses puffing and drum drying to prepare instant rice flour and examines the effects of (1) different puffing pressures (0, 3, 5, 7, 9, 11kg/cm2), (2) cold and hot slurry feed, (3) different surface temperatures, (4) amylase content of rice (TCN1, TK9 and TCW70) on the physicochemical properties, rehydration properties and product turbidity stability; and multiple regression analysis was used to set up math models of the processing effect parameter of puffing and drum drying, absorbent index, and solubility. Moreover, modify the quality of instant rice flour by adding gums and puffed TCW70 -11 kg / cm2.
The results show that the WAI, WSI, SP, degree of gelatinization, dextrin content, separation ratio and turbidity stability of puffed instant rice flour increase with the puffing pressure rises, but particle size and molecular weight decrease. The products' hydration preperties and separation ratio can be estimated by three math model: WAI = 8.00100-0.233223×A+ 0.014585×T+ 0.0288663×P (r 2=0.87), SP = 10.70046-0.42053×A+ 0.04572×T+0.40982×P (r 2=0.84), WSI = 7.514986-0.821779×A +0.131696×T +1.730803×P (r 2=0.87) and separation ratio = 0.538692-0.020034×A + 0.002299 T+0.049799×P (r 2=0.89). Multiple-porous structures and completed gelatinization are found in drum dried instant rice flour, and it's WSI, dextrin, turbidity stability and separation ratio increase with surface temperature increase. The hydration preperties and separation ratio of drum dried instant rice flour also can be estimated by math modle, respectively: cold slurry feeded could be used by WAI = 9.861863-0.334415A +0.087127T+0.039369TS (r2=0.87), SP = 1.101079-0.481397A +0.199154T+0.106375TS (r2=0.95) and separation ratio = 0.562169-0.019469A+0.000952T+0.003206Ts(r2= 0.94); Hot slurry feeded could be used by WSI=53.87873-2.61321A+ 0.21491T+0.09996TS (r2= 0.99) and separation ratio =0.230230- 0.014633A+ 0.001675T+0.005635Ts (r2= 0.88).
There are good separation stability, turbidity stability and most popular overall acceptance when puffed instant rice flour is modified by adding 0.2 % guan gum and drum dried instant rice flour is modified by adding 2 % puffed TCW70 -11 kg / cm2 flour.
URI: http://hdl.handle.net/11455/52001
其他識別: U0005-2207201114525000
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.