Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52005
DC FieldValueLanguage
dc.contributor林金源zh_TW
dc.contributor鄭櫻慧zh_TW
dc.contributor.advisor黃文哲zh_TW
dc.contributor.advisorWen-Zhe Hwangen_US
dc.contributor.author李佳勳zh_TW
dc.contributor.authorLi, Jia-Shiunen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T08:55:28Z-
dc.date.available2014-06-06T08:55:28Z-
dc.identifier.citation牛惠之、張孫福。2001。論基因改造食品之風險與社會議題-一點法律人的觀察與省思。全國科技法律研討會論文集 599-621。 牛惠之。2004。基因改造科技管理之國際規範及其調和。基因改造議題-從紛爭到展望研討會論文集 180-209。 王惠亮、王金池、邱人彰、孫明賢。1978。台灣木瓜輪點病研究初報。植保會刊 20:133-140。 王惠亮、邱人彰、孫明賢。1981。台灣木瓜輪點病之研究(IV)田間防治試驗。台灣之新資源開發 249-264。 王德男。1991。台灣木瓜栽培之回顧與展望。台灣果樹之生產及研究研討會專刊 357-371。 尤宗富。2001。轉殖輪點病毒鞘蛋白基因之台農二號番木瓜其果實品質與鞘蛋白基因之探討。碩士論文。東海大學食品科學系。台中。 尤宗富、林世敏、鄧宇翔、溫銘嚞、葉錫東、包慧俊。2004。木瓜輪點病毒鞘蛋白基因改造木瓜果實內鞘蛋白基因表現之探討。台灣農業化學與食品科學42:466-473。 包慧俊。2000。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。博士論文。 中興大學植物病理學系。台中。 包慧俊、龔怡蓉、鄭櫻慧、葉錫東。2006。抗輪點病毒與畸葉嵌紋病毒基因轉殖木瓜之育成。木瓜產業研討會專刊。王德男、李文立編。行政院農業委員會農業試驗所。台中。 李國欽、徐慈鴻。2004。GMO/GMF 風險評估與風險管理方法。郭華仁、牛惠之(編)基因改造議題-從紛爭到展望:82-99。行政院農業委員會動植物防疫檢疫局。 林澤揚、蔡淑貞、葉錫東、王叔莞、施養志。2001。GM-木瓜鑑別檢驗方法之探討與研究。基因改造食品之檢驗與管理研討會。 林世敏。2002。不同成熟度轉殖木瓜輪點病毒鞘蛋白基因番木瓜果實其鞘蛋白基因表現之探討與其過敏原性評估。碩士論文。東海大學食品科學系。台中。 施明山、陳吉雄、鄧如蘭。1990。木瓜設施栽培。台灣農業 26(5):101-106。 徐慈鴻、李貽華、李國欽。2003。基轉植物之生物安全性評估及管理。行政院農業委員會農業藥物毒物試驗所技術專刊 70(126):1-27。 張雯惠、林俊宏。2005。聚合酶連鎖反應簡介。奈米通訊 12(1):6-11。 陳富永、蔡奇助、陳國憲、王雲平、楊藹華。2005。利用多目標PCR檢測基因改造木瓜。高雄區農業改良場研究彙報16(4) 16-26。 黃三光、曾經洲。2001。基因改造作物的優勢與潛藏危機。行政院農業委員 會農業藥物毒物試驗所技術專刊 63(110):1-11。 蔡三福、張敬宜、黃振聲、王順成。2005。基因改造產品的毒性與過敏性之安全評估。行政院農業委員會農業藥物毒物試驗所技術專刊77(134):1-13。 鄧宇翔。2003。轉殖木瓜輪點病毒鞘蛋白基因番木瓜果實品質、鞘蛋白基因表現與其過敏性評估。碩士論文。東海大學食品科學系。台中。 羅致逑、簡宣裕、張明暉、廖慶樑、陳淑娟。2005。基因轉殖植物對田間土壤微生物相之影響及毒性釋出之分析。基因轉殖植物之生物安全評估與評估與檢測研討會 1-23。 龔怡蓉。2004。木瓜輪點病毒及木瓜畸葉嵌紋病毒雙重抗性轉基因木瓜之育成及木瓜畸葉嵌紋病毒單株抗體之製備。碩士論文。中興大學植物病理學系。台中。 行政院衛生署。基因改造食品之安全性評估方法。2008。 行政院衛生署藥物食品檢驗局-基因改造食品資訊網。2009。 http://gmo.doh.gov.tw/Web/ 搜尋日期:2009/06/30 行政院衛生署食品資訊網-基因改造食品。2009。 http://food.doh.gov.tw/foodnew/info/InfoGmo_Ch.aspx 搜尋日期:2009/06/30 行政院農業委員會農糧署。2009。 http://www.afa.gov.tw/index.asp 搜尋日期:2009/06/30 AGBIOS。http://www.agbios.com/ Astwood, J. D., and Fuchs, R. L. 1996. Preventing food allergy: emerging technologies. Trends Food Sci. Technol. 7: 219-226. Atkinson, T. P., and Kaliner, M. A. 1992. Anaphylaxis. Med. Clin. N. Am. 76: 841-855. Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., Liou, P. C., Hsiao, C. H., Lin, C. Y., and Yeh, S. D. 2004. Field evaluations of transgenic papaya lines carrying the coat protein gene of papaya ringspot virus in Taiwan. Plant Disease 88: 594-599. Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., and Yeh, S. D. 2003. Broad-sprectrum resistance to different geographic strains of papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93: 112-120. Bertolla, F., and Simonet, P. 1999. Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms (Mini-Review). Res. Microbiol. 150: 375-384. Baulcombe, D. C. 1996. Mechanism of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8: 1833-1844. Brunt, A., Crabtree, K, and Gibbs, A. 1990. Virus of Tropical Plants: Papaya ringspot potyvirus. CAVI Wallingford U.K. 374-377. Cheng, Y. H., Yang, J. S., and Yeh, S. D. 1996. Efficient transformation of papaya by coat protein gene of Papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep. 16: 127-132. Conover, R. A. 1962. Virus disease of the papaya in Florida. Phytopathology 52: 6. Capoor, S. P., and Varma, P. M. 1948. A mosaic disease of Carica papaya L. in the Bombay Province. Curr. Sci. 17: 265-266. DeShazo, R. D., and Kemp, S. F. 1997. Allergic reactions to drugs and biologic agents. JAMA 278: 1895-1906. Deviller, P., and Pauli, G. 1997. Crossreactions involving plant allergens. Clin. Rev. Allergy Immunol 15: 405-413. Dejarnatt, A. C., and Grant, J. A. 1992. Basic mechanisms of anaphylaxis and anaphylactoid reactions. Immunol. Allergy Clin. N. Am. 12: 501-515. De la Rosa, M., and Lastra, R. 1983. Purification and partial characterization of papaya ringspot virus. Phytopathology 106: 329-336. Germini, A., Zanetti, A., Salati, C., Rossi, S., Forré, C., Schmid, S., and Marchelli, R. 2004. Development of a seven-target Multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J. Agric. Food Chem. 52: 3275-3280. Goda, Y., Asano, T., Shibuya, M., Hino, A., and Toyoda, M. 2001. Detection of recombinant DNA from genetically modified papaya. J. Food Hyg. Soc. Japan 42: 231-236. FAO/WHO. 2001. Evaluation of allergenicity of genetically modified foods. Report of joint FAO/WHO expert consultation on foods derived from biotechnology. Rome, Italy. 29pp. Fritsch, R., Ebner, C., and Kraft, D. 1997. Allergenic crossreactivities. Clin. Rev. Allergy Immunol 15: 397-404. Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., and Sanford, J. C. 1992. Virus resistant papaya plants derived from tissue bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10: 1466-1472. Holgate, S. T. 1998. Asthma and allergy-disorders of civilization? Q. J. Med. 91: 171-184. Hefle, S. L., Nordlee J. A., and Taylor, S. L. 1996. Allergenic foods. Crit Rev Food Sci Nutr 36: 69-89. Herrera-Estrella, L., Block, M. D., Messens, E., Hernalsteens, J. P., Montagu, M. V., and Schell, J. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987-995. Herold, F., and Weibel, J. 1962. Electron microscopic demonstration of papaya ringspot virus. Virology 18: 307-311. James, C. 2009. Execntive summary of global status of commercialized biotech GM crops: 2008. ISAAA briefs No.39. Jensen, D. D. 1949. Papaya ringspot virus and its insect vector relationships. Phytopathology 39: 212-220. Kiritani, K., and Su, H. J. 1999. Papaya ringspot, banana bunchy top, and citrus greening in Asia and Pacific region:occurrence and control strategy. Japn. Agri. Res. Quar. 33: 23-30. Krasteva, M. 1993. Contact dermatitis. Int. J. Dermatol. 32: 547-560. Kawano, S., and Yonaha, T. 1992. The occurrence of papaya leaf-distortion mosaic virus in Okinawa. Tech. Bull. of FFTC 132; Food and Fertilizer. Khurana, S. M., and Bhargava, K. S. 1970. Induce apocarpy and “double papaya”fruit formation in papaya with distortion ringspot virus infection. Plant Dis. Rep. 54; 181-183. Lipp, M., Brodmann, P., Pietsch, K., Pauwels, J., and Anklam, E. 1999. IUPAC collaborative trial study of a method to detect genetically modified soybeans and maize in dried powder. J. AOAC Int. 82: 923-928. Litz, R. E. 1984. Papaya, In: Handbook of Plant Cell Culture Vol.2: 349-368. Landa, A. F. 1980. Transmission and properties of virus isolated from Carica papaya in Nigeria. J. Hortic. Sci. 55: 191-197. Maoka, T., and Tatsuji, T. 2005. The complete nucleotide sequence and biotype variablilityof papaya leaf distortion mosaic virus. Phytopathology 95: 128-135. Miraglia, M., Berdal, K. G., Brera, C., Corbisier, P., Holst-Jensen, A., Kok, E. J., Marvin, H. J., Schimmel, H., Rentsch, J., van Rie, J. P., and Zagon, J. 2004. Detection and traceability of genetically modified organisms in the food production chain. Food Chem Toxicol 42(7):1157-1180. Metcalfe, D. D., Astwood, J. D., Townsend, R., Sampson, H. A., Taylor, S. L., and Fuchs, R. L. 1996. Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit Rev Food Sci Nutr 36: 165-186. Owen, M. D. K. 2000. Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop protect. 19: 765-771. Ortolani, C., Ispano, M., Pastorello, E. A., Bigi, A., and Ansaloni, R. 1988. The oral allergy syndrome. Ann. Allergy 61: 47-52. Schuler, T., Poppy, G., Kerry, B., and Denholm, I.. 1998. Insect-resistant transgenics plants. Trends Biotechnol. 4: 168-175. Sanford, J. C. and Johnston, S. A. 1985. The concept of parasite-derived resistance : deriving resistance genes from the parasite’s own genome. J. Thero. Biol. 113: 395-405. Singh, A. B. 1969. A new virus disease of Carica papaya in India. Plant Dis. Rep. 53: 267-269. Story, G. E., and Haliiwell, R. S. 1969. Identifification of distortion ringspot virus disease of papya in the Domincan Republic. Plant Dis. Rep. 53: 757-760. Penninks, A., Knippels, L., and Houben, G. 2001. Allergenicity of foods derived from genetically modified organisms. p. 108-134. In: Custers, R. ed. Safety of Genetically engineered crops. Flanders Interuniversity Institute for Biotechnology, Zwijnaarde, Belgium. Pearson, W. R. 2000. Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132: 185-219. Palaniswamy, P. 1996. Host plant resistance to insect pests on cruciferous crops-with special reference to flea beetles feeding on canola. Acta Horticulturae 407: 469-481. Purcifull, D. E., Edwardson, J. R., Hiebert, E., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Description of Plant Viruses, No. 84. Vance, V., and Vaucheret, H. 2001. RNA silencing in plants–defense and counterdefense. Science 292: 2277-2280. Vial, T., Pont, J., Pham, E., Rabilloud, R., and Descotes, J. 1992. Cefaclor- associated serum sickness-like disease: eight cases and revies of the literature. Ann. Pharmacother. 26: 910-914. Wang, H. L., Wang, C. C., Chiu, R. J., and Sun, M. H. 1978. Preliminary study on papaya ringspot virus in Taiwan. Plant Prot. Bull. 20: 133-140. Waterhouse, P. M., Wang, M. B., and Lough, T. 2001. Gene silencing as an adaptive defense against virus. Nature 411: 494-498. Yagami, T., Haishima, Y., Nakamura, A., Osuna, H., and Ikezawa, Z. 2000. Digestibility of allergens extracted from natural rubber latex and vegetable foods. J. Allergy Clin. Immunol. 106 (4): 752-762. Yagami, T., Sato, M., and Nakamura, A. 1995. Plant defense-related proteins eluting from latex gloves and ammoniated latex: potential latex allergens. J. Nat. Rubb. Res 10: 100-107. Yagami, T., Sato, M., Nakamura, A. and Shono, M. 1996. Esterase from ammoniated latex: biochemical characterization and antigenicity. Food Agric. Immunol 8: 121-136. Yeh, S. D., and Gonsalves, D. 1994. Practices and perspective of control of papaya ringspot virus by cross protection. Adv. Dis. Vector Res. 10: 237-257. Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H., and Bau, H. J. 1992. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73:2531-2541. Yeh, S. D., Gonsalves, D., Wang, H. L., Namba, R., and Chiu, R. J. 1988. Control of papaya ringspot virus by cross protection. Plant Dis. 72: 375-380. Yeh, S. D., and Gonsalves, D. 1984. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74: 1086-1091. Yonaha, T., Yonemori, S., and Tamori, M. 1976. Relation between the flight occurrence of alate aphids and the spread of papaya virus disease in the field. Okinawa Agriculture 14: 7-15.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/52005-
dc.description.abstract木瓜輪點病毒(Papaya ringspot virus; PRSV)和木瓜畸葉嵌紋病毒(Papaya leaf-distortion mosaic virus; PLDMV)是台灣木瓜生產最主要的限制因子,目前仍無法以傳統的化學藥劑防治。根據病原誘導抗病性(pathogen-derived resistance)理論及植物基因轉殖技術,中興大學已育成單抗PRSV轉基因木瓜及雙抗PRSV與PLDMV轉基因木瓜,其可以有效地預防病害。 目前一般消費大眾對於基因改造作物(Genetically Modified Organism;GMO)仍有食用安全性的疑慮,故本實驗以雙抗轉基因木瓜(TPY10-4)為材料,進行轉基因木瓜過敏原性評估,包括序列同源性比對分析以及病毒鞘蛋白分析。 首先針對轉基因木瓜品系(TPY10-4)設計專一性引子組(TPY16-F, TPY16-R),由轉基因木瓜之葉子、生果及熟果中皆可成功擴增出目標基因片段 (1328 bp),經定序確認後,再與過敏資料庫比對,確認外來基因所轉譯的蛋白質並非是致過敏蛋白質。然後利用酵素聯結免疫吸附分析法檢測轉基因木瓜是否有病毒基因產物蛋白質存在。 進一步利用模擬胃液及模擬腸液,針對轉基因木瓜進行消化試驗,結果顯示,轉基因木瓜粗蛋白經ELISA分析後,所得之ELISA unit均小於0.2,與非轉基因木瓜ELISA unit相似,且均較PLDMV-infected leaf和PRSV-infected leaf粗蛋白之ELISA unit為低。結果顯示,即使轉基因木瓜中含有很微量之輪點病毒蛋白和畸葉嵌紋病毒蛋白亦會經消化液分解而消失,且轉基因木瓜與非轉基因木瓜差異並不大。因病毒鞘蛋白表現所引起之過敏性機率極低,故食用轉基因木瓜並無食用安全性的問題。 市售木瓜檢測方面,利用(Pn-1F/Pn-1R)、(TPY-F/TPY-R)和(NA/NB)三組引子組分別對十種不同販售地點之新鮮木瓜進行轉基因檢測。結果顯示,十種樣品均無檢測出轉基因成分,表示轉基因木瓜的流通程度並不高。zh_TW
dc.description.abstractPapaya ringspot virus (PRSV) and Papaya leaf-distortion mosaic virus (PLDMV) were the major limiting factor of papaya production in Taiwan, these diseases caused by viruses were still cannot be prevented and controlled by traditional chemical agent. Nevertheless, based on the concept of pathogen- derived resistance and the plant-transgenic method, the domestic transgenic papaya resistant to PRSV and double resistant to both PRSV and PLDMV lines were successfully developed by National Chung Hsing University (NCHU). In recent years, the general populace were filled with anxiety about edible safety of genetically modified organism (GMO). In this study, the domestic transgenic papaya double resistant to both PRSV and PLDMV line (TPY10-4) were used for the experimental materials to conduct the allergenicity assessment. The allergenicity assessment included both sequence homology analysis and virus coat protein detection in this study. First, TPY16-F/TPY16-R primers were designed to amplify the 1328 bp DNA sequence of PLDMV-PRSV coat protein from transgenic papaya line TPY10-4. The expected DNA fragments were successfully detected from transgenic papaya leaf, raw fruit and ripe fruit samples. The sequence homology analysis of transgenic proteins from papaya samples using AllergenOnline and Allermatch database demonstrated that all transgenic protein possess < 35% identical with known allergens in the database. The virus coat protein contents in transgenic papaya detected by ELISA assay show negative results, indicating no virus coat protein expression in transgenic papaya fruit. On the other hand, the digestibily of transgenic papaya were assessed with simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). After digestion, the results of ELISA showed that ELISA unit of transgenic papaya was extremely low (<0.2), and there was no difference between transgenic and non- transgenic papaya. The results showed that even if transgenic papaya contained both the PRSV and PLDMV coat protein, they was digested with SGF and SIF. Therefore, we considered that the transgenic papaya could be regarded as safe. Ten samples of papaya were purchased from the different stores. The primers (Pn-1F/Pn-1R, TPY-F/TPY-R and NA/NB) were used to investigate the transgenic ingredient of papaya samples. The result showed that all of ten samples have no transgenic ingredient.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iv 表目錄 vi 圖目錄 vii 壹、前言 1 貳、文獻整理 2 一、基因轉殖木瓜簡介 2 (一) 木瓜簡介 2 (二) 木瓜輪點病毒 2 (三) 木瓜畸葉嵌紋病毒 3 (四) 台灣防治木瓜病毒病害之策略 4 (五) 抗病毒基因轉殖木瓜 5 二、基因改造生物 10 (一) 基因改造生物簡介 10 (二) 基因改造作物之發展趨勢 10 (三) 台灣核准之GM食品 16 (四) 基因改造作物之好處 16 (五) 基因改造食品之安全性爭議 21 (六) 基因改造植物之安全性評估 22 三、過敏原性評估 25 (一) 過敏簡介 25 (二) 食品過敏原性評估 26 參、材料與方法 31 一、實驗大綱 31 二、實驗材料 32 (一) 木瓜 32 (二) 藥品 32 (三) 緩衝液與試劑配製 33 (四) 儀器設備 34 (五) 電腦軟體 35 三、實驗方法 35 (一) 轉基因木瓜過敏原之序列同源性比對 35 1. 木瓜genomic DNA萃取方法 35 2. 不同重量百分比混合DNA之製備 35 3. 核酸引子組來源 36 4. 聚合酶連鎖反應 36 5. PCR產物定序 38 6. 生物資訊資料庫比對 38 (二) 轉基因木瓜之病毒蛋白檢測 38 1. 蛋白質定量 38 2. 酵素聯結免疫吸附反應 38 (三) 轉基因木瓜粗蛋白體外消化試驗 39 1. 木瓜粗蛋白萃取 39 2. 木瓜粗蛋白之體外消化試驗 39 肆、結果與討論 40 一、轉基因木瓜過敏原之序列同源性比對 40 (一) PLDMV-PRSV CP基因之偵測 40 (二) PCR產物之定序分析 43 (三) PCR產物定序DNA轉譯成胺基酸之序列比對 43 (四) 過敏蛋白資料庫比對分析 46 二、轉基因木瓜之病毒蛋白檢測 46 (一) 蛋白質定量 46 (二) PLDMV-PRSV coat protein之表現 46 三、轉基因木瓜粗蛋白萃取與體外消化試驗 48 四、市售新鮮木瓜之檢驗 67 伍、結論 72 陸、未來展望 73 柒、參考文獻 74zh_TW
dc.language.isoen_USzh_TW
dc.publisher食品暨應用生物科技學系所zh_TW
dc.subjectPapaya ringspot virusen_US
dc.subject木瓜輪點病毒zh_TW
dc.subjectPapaya leaf-distortion mosaic virusen_US
dc.subjecttransgenic papayaen_US
dc.subjectallergenicity assessmenten_US
dc.subjectdigestibilyen_US
dc.subject木瓜畸葉嵌紋病毒zh_TW
dc.subject轉基因木瓜zh_TW
dc.subject過敏原性評估zh_TW
dc.subject消化試驗zh_TW
dc.title國產轉基因木瓜之外源病毒蛋白過敏原序列同源性比對及其致過敏性評估zh_TW
dc.titleExogenous viral protein sequence analysis and potential allergenicity evaluation of domestic transgenic papayaen_US
dc.typeThesis and Dissertationzh_TW
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
Appears in Collections:食品暨應用生物科技學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.