Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52007
DC FieldValueLanguage
dc.contributor趙崇義zh_TW
dc.contributor鄭瑞棠zh_TW
dc.contributor王銘富zh_TW
dc.contributor廖俊旺zh_TW
dc.contributor鄭美玲zh_TW
dc.contributor.advisor胡淼琳zh_TW
dc.contributor.author陳妤瑄zh_TW
dc.contributor.authorChen, Yu-Hsuanen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T08:55:29Z-
dc.date.available2014-06-06T08:55:29Z-
dc.identifier.citationAbraham, P., Wilfred, G. & Ramakrishna, B. (2002). Oxidative damage to the hepatocellular proteins after chronic ethanol intake in the rat. Clin Chim Acta, 325, 117-125. Adams, W. L., Yuan, Z., Barboriak, J. J. & Rimm, A. A. (1993). Alcohol-related hospitalizations of elderly people. Prevalence and geographic variation in the United States. JAMA, 270, 1222-1225. Aebi, H. (1984). Catalase in vitro. Methods Enzymol, 105, 121-126. Bailey, S. M., Patel, V. B., Young, T. A., Asayama, K. & Cunningham, C. C. (2001). Chronic ethanol consumption alters the glutathione/glutathione peroxidase-1 system and protein oxidation status in rat liver. Alcohol Clin Exp Res, 25, 726-733. Beal, M. F. (2000). Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci, 23, 298-304. Benavente, C. A. & Jacobson, E. L. (2008). Niacin restriction upregulates NADPH oxidase and reactive oxygen species (ROS) in human keratinocytes. Free Radic Biol Med, 44, 527-537. Bokov, A., Chaudhuri, A. & Richardson, A. (2004). The role of oxidative damage and stress in aging. Mech Ageing Dev, 125, 811-826. Boucheron, C., Alfos, S., Enderlin, V., Husson, M., Pallet, V., Jaffard, R. & Higueret, P. (2006). Age-related effects of ethanol consumption on triiodothyronine and retinoic acid nuclear receptors, neurogranin and neuromodulin expression levels in mouse brain. Neurobiol Aging, 27, 1326-1334. Boveris, A., Fraga, C. G., Varsavsky, A. I. & Koch, O. R. (1983). Increased chemiluminescence and superoxide production in the liver of chronically ethanol-treated rats. Arch Biochem Biophys, 227, 534-541. Bradford, B. U., Kono, H., Isayama, F., Kosyk, O., Wheeler, M. D., Akiyama, T. E., Bleye, L., Krausz, K. W., Gonzalez, F. J., Koop, D. R. & Rusyn, I. (2005). Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology, 41, 336-344. Bujanda, L., Garcia-Barcina, M., Gutierrez-de Juan, V., Bidaurrazaga, J., de Luco, M. F., Gutierrez-Stampa, M., Larzabal, M., Hijona, E., Sarasqueta, C., Echenique-Elizondo, M. & Arenas, J. I. (2006). Effect of resveratrol on alcohol-induced mortality and liver lesions in mice. BMC Gastroenterol, 6, 35. Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T. & Calabrese, E. J. (2009). Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis. Biofactors, 35, 146-160. Campisi, J. (2001). From cells to organisms: can we learn about aging from cells in culture? Exp Gerontol, 36, 607-618. Cao, Z., Umek, R. M. & McKnight, S. L. (1991). Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev, 5, 1538-1552. Carrasco, M. P., Jimenez-Lopez, J. M., Segovia, J. L. & Marco, C. (2002). Comparative study of the effects of short- and long-term ethanol treatment and alcohol withdrawal on phospholipid biosynthesis in rat hepatocytes. Comp Biochem Physiol B Biochem Mol Biol, 131, 491-497. Carretero, M., Escames, G., Lopez, L. C., Venegas, C., Dayoub, J. C., Garcia, L. & Acuna-Castroviejo, D. (2009). Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res, 47, 192-200. Cederbaum, A. I. (1991). Microsomal generation of reactive oxygen species and their possible role in alcohol hepatotoxicity. Alcohol Alcohol Suppl, 1, 291-296. Cederbaum, A. I. (2003). Iron and CYP2E1-dependent oxidative stress and toxicity. Alcohol, 30, 115-120. Chen, J., Kunos, G. & Gao, B. (1999). Ethanol rapidly inhibits IL-6-activated STAT3 and C/EBP mRNA expression in freshly isolated rat hepatocytes. FEBS Lett, 457, 162-168. Chen, T. H., Wang, M. F., Liang, Y. F., Komatsu, T., Chan, Y. C., Chung, S. Y. & Yamamoto, S. (2000). A nucleoside-nucleotide mixture may reduce memory deterioration in old senescence-accelerated mice. J Nutr, 130, 3085-3089. Chen, X., Sebastian, B. M., Tang, H., McMullen, M. M., Axhemi, A., Jacobsen, D. W. & Nagy, L. E. (2009). Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology, 49, 1554-1562. Chiba, Y., Shimada, A., Kumagai, N., Yoshikawa, K., Ishii, S., Furukawa, A., Takei, S., Sakura, M., Kawamura, N. & Hosokawa, M. (2009). The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model. Neurochem Res, 34, 679-687. Chong, Y., Ikematsu, H., Yamaji, K., Nishimura, M., Nabeshima, S., Kashiwagi, S. & Hayashi, J. (2005). CD27(+) (memory) B cell decrease and apoptosis-resistant CD27(-) (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol, 17, 383-390. Clemens, D. L. (2007). Effects of ethanol on hepatic cellular replication and cell cycle progression. World J Gastroenterol, 13, 4955-4959. Conde de la Rosa, L., Schoemaker, M. H., Vrenken, T. E., Buist-Homan, M., Havinga, R., Jansen, P. L. & Moshage, H. (2006). Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol, 44, 918-929. Cornelius, P., MacDougald, O. A. & Lane, M. D. (1994). Regulation of adipocyte development. Annu Rev Nutr, 14, 99-129. Crabb, D. W. (2004). Alcohol deranges hepatic lipid metabolism via altered transcriptional regulation. Trans Am Clin Climatol Assoc, 115, 273-287. Cristofalo, V. J. & Pignolo, R. J. (1993). Replicative senescence of human fibroblast-like cells in culture. Physiol Rev, 73, 617-638. Cunningham, C. C. & Bailey, S. M. (2001). Ethanol consumption and liver mitochondria function. Biol Signals Recept, 10, 271-282. Das, S. K. & Vasudevan, D. M. (2007). Alcohol-induced oxidative stress. Life Sci, 81, 177-187. Day, C. P. & James, O. F. (1998). Hepatic steatosis: innocent bystander or guilty party? Hepatology, 27, 1463-1466. De Gottardi, A., Vinciguerra, M., Sgroi, A., Moukil, M., Ravier-Dall''Antonia, F., Pazienza, V., Pugnale, P., Foti, M. & Hadengue, A. (2007). Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab Invest, 87, 792-806. de Magalhaes, J. P., Chainiaux, F., de Longueville, F., Mainfroid, V., Migeot, V., Marcq, L., Remacle, J., Salmon, M. & Toussaint, O. (2004). Gene expression and regulation in H2O2-induced premature senescence of human foreskin fibroblasts expressing or not telomerase. Exp Gerontol, 39, 1379-1389. Debacq-Chainiaux, F., Borlon, C., Pascal, T., Royer, V., Eliaers, F., Ninane, N., Carrard, G., Friguet, B., de Longueville, F., Boffe, S., Remacle, J. & Toussaint, O. (2005). Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci, 118, 743-758. Derave, W., Eijnde, B. O., Ramaekers, M. & Hespel, P. (2005). Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Exp Gerontol, 40, 562-572. Dey, A. & Cederbaum, A. I. (2006). Alcohol and oxidative liver injury. Hepatology, 43, S63-74. Dierick, J. F., Eliaers, F., Remacle, J., Raes, M., Fey, S. J., Larsen, P. M. & Toussaint, O. (2002a). Stress-induced premature senescence and replicative senescence are different phenotypes, proteomic evidence. Biochem Pharmacol, 64, 1011-1017. Dierick, J. F., Kalume, D. E., Wenders, F., Salmon, M., Dieu, M., Raes, M., Roepstorff, P. & Toussaint, O. (2002b). Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence. FEBS Lett, 531, 499-504. Dinic, S., Ivanovic-Matic, S., Mihailovic, M., Bogojevic, D. & Poznanovic, G. (2004). Expression of C/EBP delta in rat liver during development and the acute-phase response. Gen Physiol Biophys, 23, 499-504. Donohue, T. M., Jr. (2007). Alcohol-induced steatosis in liver cells. World J Gastroenterol, 13, 4974-4978. Duan, J., Zhang, Z. & Tong, T. (2005). Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol, 37, 1407-1420. Dumont, P., Burton, M., Chen, Q. M., Gonos, E. S., Frippiat, C., Mazarati, J. B., Eliaers, F., Remacle, J. & Toussaint, O. (2000). Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med, 28, 361-373. Dumont, P., Chainiaux, F., Eliaers, F., Petropoulou, C., Remacle, J., Koch-Brandt, C., Gonos, E. S. & Toussaint, O. (2002). Overexpression of apolipoprotein J in human fibroblasts protects against cytotoxicity and premature senescence induced by ethanol and tert-butylhydroperoxide. Cell Stress Chaperones, 7, 23-35. Figueiredo, P. A., Mota, M. P., Appell, H. J. & Duarte, J. A. (2008). The role of mitochondria in aging of skeletal muscle. Biogerontology, 9, 67-84. Flood, J. F. & Morley, J. E. (1998). Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev, 22, 1-20. French, S. W., Morimoto, M., Reitz, R. C., Koop, D., Klopfenstein, B., Estes, K., Clot, P., Ingelman-Sundberg, M. & Albano, E. (1997). Lipid peroxidation, CYP2E1 and arachidonic acid metabolism in alcoholic liver disease in rats. J Nutr, 127, 907S-911S. Frippiat, C., Chen, Q. M., Zdanov, S., Magalhaes, J. P., Remacle, J. & Toussaint, O. (2001). Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem, 276, 2531-2537. Frippiat, C., Dewelle, J., Remacle, J. & Toussaint, O. (2002). Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic Biol Med, 33, 1334-1346. Gaudineau, C. & Auclair, K. (2004). Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem Biophys Res Commun, 317, 950-956. Gilat, T., Leikin-Frenkel, A., Goldiner, I., Juhel, C., Lafont, H., Gobbi, D. & Konikoff, F. M. (2003). Prevention of diet-induced fatty liver in experimental animals by the oral administration of a fatty acid bile acid conjugate (FABAC). Hepatology, 38, 436-442. Hagen, T. M., Yowe, D. L., Bartholomew, J. C., Wehr, C. M., Do, K. L., Park, J. Y. & Ames, B. N. (1997). Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci U S A, 94, 3064-3069. Harman, D. (2006). Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci, 1067, 10-21. Hayflick, L. & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res, 25, 585-621. Hazelton, G. A. & Lang, C. A. (1985). Glutathione peroxidase and reductase activities in the aging mouse. Mech Ageing Dev, 29, 71-81. He, L., Ronis, M. J. & Badger, T. M. (2002). Ethanol induction of class I alcohol dehydrogenase expression in the rat occurs through alterations in CCAAT/enhancer binding proteins beta and gamma. J Biol Chem, 277, 43572-43577. Hipkiss, A. R. (2007). Dietary restriction, glycolysis, hormesis and ageing. Biogerontology, 8, 221-224. Hipkiss, A. R. (2008). Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology, 9, 49-55. Hishida, T., Nishizuka, M., Osada, S. & Imagawa, M. (2009). The role of C/EBPdelta in the early stages of adipogenesis. Biochimie, 91, 654-657. Ho, H. Y., Cheng, M. L., Lu, F. J., Chou, Y. H., Stern, A., Liang, C. M. & Chiu, D. T. (2000). Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radic Biol Med, 29, 156-169. Hoek, J. B. & Pastorino, J. G. (2002). Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol, 27, 63-68. Hosokawa, M. (2002). A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice. Mech Ageing Dev, 123, 1553-1561. Hosokawa, M., Kasai, R., Higuchi, K., Takeshita, S., Shimizu, K., Hamamoto, H., Honma, A., Irino, M., Toda, K., Matsumura, A. & et al. (1984). Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM). Mech Ageing Dev, 26, 91-102. Husain, K., Mejia, J., Lalla, J. & Kazim, S. (2005). Dose response of alcohol-induced changes in BP, nitric oxide and antioxidants in rat plasma. Pharmacol Res, 51, 337-343. Ieraci, A. & Herrera, D. G. (2006). Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain. PLoS Med, 3, e101. Jackson, T. M., Rawling, J. M., Roebuck, B. D. & Kirkland, J. B. (1995). Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. J Nutr, 125, 1455-1461. Jurczuk, M., Brzoska, M. M., Moniuszko-Jakoniuk, J., Galazyn-Sidorczuk, M. & Kulikowska-Karpinska, E. (2004). Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol, 42, 429-438. Kamat, J. P. & Devasagayam, T. P. (1999). Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. Redox Rep, 4, 179-184. Kamimura, S., Gaal, K., Britton, R. S., Bacon, B. R., Triadafilopoulos, G. & Tsukamoto, H. (1992). Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: association of lipid peroxidation with liver fibrogenesis. Hepatology, 16, 448-453. Kanbak, G., Inal, M. & Baycu, C. (2001). Ethanol-induced hepatotoxicity and protective effect of betaine. Cell Biochem Funct, 19, 281-285. Kang, H. T., Lee, H. I. & Hwang, E. S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell, 5, 423-436. Kasdallah-Grissa, A., Mornagui, B., Aouani, E., Hammami, M., El May, M., Gharbi, N., Kamoun, A. & El-Fazaa, S. (2007). Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci, 80, 1033-1039. Krazem, A., Marighetto, A., Higueret, P. & Jaffard, R. (2003). Age-dependent effects of moderate chronic ethanol administration on different forms of memory expression in mice. Behav Brain Res, 147, 17-29. Kroger, H., Dietrich, A., Ohde, M., Lange, R., Ehrlich, W. & Kurpisz, M. (1997). Protection from acetaminophen-induced liver damage by the synergistic action of low doses of the poly(ADP-ribose) polymerase-inhibitor nicotinamide and the antioxidant N-acetylcysteine or the amino acid L-methionine. Gen Pharmacol, 28, 257-263. Kukielka, E., Dicker, E. & Cederbaum, A. I. (1994). Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch Biochem Biophys, 309, 377-386. Lai, P. H., Wang, W. L., Ko, C. Y., Lee, Y. C., Yang, W. M., Shen, T. W., Chang, W. C. & Wang, J. M. (2008). HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim Biophys Acta, 1783, 1803-1814. Lane, M. D., Tang, Q. Q. & Jiang, M. S. (1999). Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem Biophys Res Commun, 266, 677-683. Lekstrom-Himes, J. & Xanthopoulos, K. G. (1998). Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem, 273, 28545-28548. Li, F., Chong, Z. Z. & Maiese, K. (2004). Navigating novel mechanisms of cellular plasticity with the NAD+ precursor and nutrient nicotinamide. Front Biosci, 9, 2500-2520. Li, L., Ng, T. B., Gao, W., Li, W., Fu, M., Niu, S. M., Zhao, L., Chen, R. R. & Liu, F. (2005). Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. Life Sci, 77, 230-240. Lieber, C. S. (1997). Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev, 77, 517-544. Lieber, C. S., Rubin, E. & DeCarli, L. M. (1970). Hepatic microsomal ethanol oxidizing system (MEOS): differentiation from alcohol dehydrogenase and NADPH oxidase. Biochem Biophys Res Commun, 40, 858-865. Lieber, C. S. & Savolainen, M. (1984). Ethanol and lipids. Alcohol Clin Exp Res, 8, 409-423. Lin, C. H. & Lin, P. H. (2006). Induction of ROS formation, poly(ADP-ribose) polymerase-1 activation, and cell death by PCB126 and PCB153 in human T47D and MDA-MB-231 breast cancer cells. Chem Biol Interact, 162, 181-194. Lin, T. A. & Lawrence, J. C., Jr. (1994). Activation of ribosomal protein S6 kinases does not increase glycogen synthesis or glucose transport in rat adipocytes. J Biol Chem, 269, 21255-21261. Lipman, R. D., Bronson, R. T., Wu, D., Smith, D. E., Prior, R., Cao, G., Han, S. N., Martin, K. R., Meydani, S. N. & Meydani, M. (1998). Disease incidence and longevity are unaltered by dietary antioxidant supplementation initiated during middle age in C57BL/6 mice. Mech Ageing Dev, 103, 269-284. Lu, Y. & Cederbaum, A. I. (2008). CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med, 44, 723-738. MacDougald, O. A., Cornelius, P., Liu, R. & Lane, M. D. (1995). Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes. J Biol Chem, 270, 647-654. Magni, G., Amici, A., Emanuelli, M., Orsomando, G., Raffaelli, N. & Ruggieri, S. (2004a). Enzymology of NAD+ homeostasis in man. Cell Mol Life Sci, 61, 19-34. Magni, G., Amici, A., Emanuelli, M., Orsomando, G., Raffaelli, N. & Ruggieri, S. (2004b). Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem, 11, 873-885. Maiese, K. & Chong, Z. Z. (2003). Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci, 24, 228-232. Mallikarjuna, K., Nishanth, K., Hou, C. W., Kuo, C. H. & Sathyavelu Reddy, K. (2009). Effect of exercise training on ethanol-induced oxidative damage in aged rats. Alcohol, 43, 59-64. Mallikarjuna, K., Nishanth, K. & Reddy, K. S. (2007). Hepatic glutathione mediated antioxidant system in ethanol treated rats: Decline with age. Pathophysiology, 14, 17-21. Mandrup, S. & Lane, M. D. (1997). Regulating adipogenesis. J Biol Chem, 272, 5367-5370. McFarland, G. A. & Holliday, R. (1999). Further evidence for the rejuvenating effects of the dipeptide L-carnosine on cultured human diploid fibroblasts. Exp Gerontol, 34, 35-45. McKnight, S. L. (2001). McBindall--a better name for CCAAT/enhancer binding proteins? Cell, 107, 259-261. Merry, B. J., Kirk, A. J. & Goyns, M. H. (2008). Dietary lipoic acid supplementation can mimic or block the effect of dietary restriction on life span. Mech Ageing Dev, 129, 341-348. Mikami, K., Haseba, T. & Ohno, Y. (1997). Ethanol induces transient arrest of cell division (G2 + M block) followed by G0/G1 block: dose effects of short- and longer-term ethanol exposure on cell cycle and cell functions. Alcohol Alcohol, 32, 145-152. Mitra, S. K., Varma, S. R., Godavarthi, A. & Nandakumar, K. S. (2008). Liv.52 regulates ethanol induced PPARgamma and TNF alpha expression in HepG2 cells. Mol Cell Biochem, 315, 9-15. Moos, R. H., Brennan, P. L., Schutte, K. K. & Moos, B. S. (2004). High-risk alcohol consumption and late-life alcohol use problems. Am J Public Health, 94, 1985-1991. Morgan, K., French, S. W. & Morgan, T. R. (2002). Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology, 36, 122-134. Nanji, A. A., Zhao, S., Sadrzadeh, S. M., Dannenberg, A. J., Tahan, S. R. & Waxman, D. J. (1994). Markedly enhanced cytochrome P450 2E1 induction and lipid peroxidation is associated with severe liver injury in fish oil-ethanol-fed rats. Alcohol Clin Exp Res, 18, 1280-1285. Nieto, N., Friedman, S. L. & Cederbaum, A. I. (2002). Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology, 35, 62-73. Nordblom, G. D. & Coon, M. J. (1977). Hydrogen peroxide formation and stoichiometry of hydroxylation reactions catalyzed by highly purified liver microsomal cytochrome P-450. Arch Biochem Biophys, 180, 343-347. Ohkawa, H., Ohishi, N. & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95, 351-358. Oliveira-Silva, I. F., Pinto, L., Pereira, S. R., Ferraz, V. P., Barbosa, A. J., Coelho, V. A., Gualberto, F. F., Souza, V. F., Faleiro, R. R., Franco, G. C. & Ribeiro, A. M. (2007). Age-related deficit in behavioural extinction is counteracted by long-term ethanol consumption: correlation between 5-HIAA/5HT ratio in dorsal raphe nucleus and cognitive parameters. Behav Brain Res, 180, 226-234. Ozaras, R., Tahan, V., Aydin, S., Uzun, H., Kaya, S. & Senturk, H. (2003). N-acetylcysteine attenuates alcohol-induced oxidative stress in the rat. World J Gastroenterol, 9, 125-128. Paglia, D. E. & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med, 70, 158-169. Palozza, P., Simone, R., Catalano, A., Boninsegna, A., Bohm, V., Frohlich, K., Mele, M. C., Monego, G. & Ranelletti, F. O. (2009). Lycopene prevents 7-ketocholesterol-induced oxidative stress, cell cycle arrest and apoptosis in human macrophages. J Nutr Biochem,(In press). Pantoja, C., Huff, J. T. & Yamamoto, K. R. (2008). Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro. Mol Biol Cell, 19, 4032-4041. Parlesak, A., Diedrich, J. P., Schafer, C. & Bode, C. (1998). A low concentration of ethanol reduces the chemiluminescence of human granulocytes and monocytes but not the tumor necrosis factor alpha production by monocytes after endotoxin stimulation. Infect Immun, 66, 2809-2813. Pascal, T., Debacq-Chainiaux, F., Boilan, E., Ninane, N., Raes, M. & Toussaint, O. (2007). Heme oxygenase-1 and interleukin-11 are overexpressed in stress-induced premature senescence of human WI-38 fibroblasts induced by tert-butylhydroperoxide and ethanol. Biogerontology, 8, 409-422. Pemberton, P. W., Smith, A. & Warnes, T. W. (2005). Non-invasive monitoring of oxidant stress in alcoholic liver disease. Scand J Gastroenterol, 40, 1102-1108. Perez, V. I., Bokov, A., Remmen, H. V., Mele, J., Ran, Q., Ikeno, Y. & Richardson, A. (2009). Is the oxidative stress theory of aging dead? Biochim Biophys Acta, (In press). Phipps, S. M., Berletch, J. B., Andrews, L. G. & Tollefsbol, T. O. (2007). Aging cell culture: methods and observations. Methods Mol Biol, 371, 9-19. Pistelli, A., Di Simplicio, P., Di Bello, M. G., Raspanti, S., Gambassi, F., Botti, P., Caramelli, L., Peruzzi, S., Smorlesi, C., Zorn, A. M. & et al. (1992). [Contribution of glutathione to detoxification in alcoholism. Biochemical-clinical studies]. Clin Ter, 140, 461-471. Raghavendra, V. & Kulkarni, S. K. (2001). Possible antioxidant mechanism in melatonin reversal of aging and chronic ethanol-induced amnesia in plus-maze and passive avoidance memory tasks. Free Radic Biol Med, 30, 595-602. Ramji, D. P. & Foka, P. (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J, 365, 561-575. Ray, S. D., Balasubramanian, G., Bagchi, D. & Reddy, C. S. (2001). Ca(2+)-calmodulin antagonist chlorpromazine and poly(ADP-ribose) polymerase modulators 4-aminobenzamide and nicotinamide influence hepatic expression of BCL-XL and P53 and protect against acetaminophen-induced programmed and unprogrammed cell death in mice. Free Radic Biol Med, 31, 277-291. Richie, J. P., Jr. (1992). The role of glutathione in aging and cancer. Exp Gerontol, 27, 615-626. Rodriguez, M. I., Escames, G., Lopez, L. C., Lopez, A., Garcia, J. A., Ortiz, F., Sanchez, V., Romeu, M. & Acuna-Castroviejo, D. (2008). Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp Gerontol, 43, 749-756. Rogers, C. Q., Ajmo, J. M. & You, M. (2008). Adiponectin and alcoholic fatty liver disease. IUBMB Life, 60, 790-797. Roselle, G. A., Mendenhall, C. L. & Grossman, C. J. (1989). Age dependent alterations of host immune response in the ethanol-fed rat. J Clin Lab Immunol, 29, 99-103. Rosen, E. D. (2005). The transcriptional basis of adipocyte development. Prostaglandins Leukot Essent Fatty Acids, 73, 31-34. Rubin, E., Beattie, D. S., Toth, A. & Lieber, C. S. (1972). Structural and functional effects of ethanol on hepatic mitochondria. Fed Proc, 31, 131-140. Sadanaga-Akiyoshi, F., Yao, H., Tanuma, S., Nakahara, T., Hong, J. S., Ibayashi, S., Uchimura, H. & Fujishima, M. (2003). Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra. Neurochem Res, 28, 1227-1234. Saheki, T., Kobayashi, K., Iijima, M., Moriyama, M., Yazaki, M., Takei, Y. & Ikeda, S. (2005). Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. Hepatol Res, 33, 181-184. Salmela, K. S., Kessova, I. G., Tsyrlov, I. B. & Lieber, C. S. (1998). Respective roles of human cytochrome P-4502E1, 1A2, and 3A4 in the hepatic microsomal ethanol oxidizing system. Alcohol Clin Exp Res, 22, 2125-2132. Sauve, A. A. (2008). NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther, 324, 883-893. Seitz, H. K., Meydani, M., Ferschke, I., Simanowski, U. A., Boesche, J., Bogusz, M., Hoepker, W. W., Blumberg, J. B. & Russell, R. M. (1989). Effect of aging on in vivo and in vitro ethanol metabolism and its toxicity in F344 rats. Gastroenterology, 97, 446-456. Sergent, O., Griffon, B., Cillard, P. & Cillard, J. (2001). Alcohol and oxidative stress. Pathol Biol (Paris), 49, 689-695. Severino, J., Allen, R. G., Balin, S., Balin, A. & Cristofalo, V. J. (2000). Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res, 257, 162-171. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A. & Markesbery, W. R. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A, 88, 10540-10543. Sozio, M. & Crabb, D. W. (2008). Alcohol and lipid metabolism. Am J Physiol Endocrinol Metab, 295, E10-16. Stefani, M., Markus, M. A., Lin, R. C., Pinese, M., Dawes, I. W. & Morris, B. J. (2007). The effect of resveratrol on a cell model of human aging. Ann N Y Acad Sci, 1114, 407-418. Szuster-Ciesielska, A., Plewka, K., Daniluk, J. & Kandefer-Szerszen, M. (2009). Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling. Biochem Pharmacol, 78, 301-314. Takeda, T., Hosokawa, M., Takeshita, S., Irino, M., Higuchi, K., Matsushita, T., Tomita, Y., Yasuhira, K., Hamamoto, H., Shimizu, K., Ishii, M. & Yamamuro, T. (1981). A new murine model of accelerated senescence. Mech Ageing Dev, 17, 183-194. Tamilselvan, J., Jayaraman, G., Sivarajan, K. & Panneerselvam, C. (2007). Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med, 43, 1656-1669. Tanaka, T., Yoshida, N., Kishimoto, T. & Akira, S. (1997). Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J, 16, 7432-7443. Tang, Q. Q. & Lane, M. D. (1999). Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev, 13, 2231-2241. Terelius, Y., Norsten-Hoog, C., Cronholm, T. & Ingelman-Sundberg, M. (1991). Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1). Biochem Biophys Res Commun, 179, 689-694. Thomas, G. N., Zhao, H. L., Ma, Y. Q., Leung, W. Y., Chan, J. C., Tomlinson, B. & Critchley, J. A. (2002). Relationship between obesity and cardiovascular risk factors in elderly Chinese subjects. Chin Med J (Engl), 115, 897-899. Tilg, H. & Diehl, A. M. (2000). Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med, 343, 1467-1476. Toussaint, O., Dumont, P., Dierick, J. F., Pascal, T., Frippiat, C., Chainiaux, F., Sluse, F., Eliaers, F. & Remacle, J. (2000a). Stress-induced premature senescence. Essence of life, evolution, stress, and aging. Ann N Y Acad Sci, 908, 85-98. Toussaint, O., Medrano, E. E. & von Zglinicki, T. (2000b). Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol, 35, 927-945. Toussaint, O., Remacle, J., Dierick, J. F., Pascal, T., Frippiat, C., Zdanov, S., Magalhaes, J. P., Royer, V. & Chainiaux, F. (2002). From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing. Int J Biochem Cell Biol, 34, 1415-1429. Vogt, B. L. & Richie, J. P., Jr. (2007). Glutathione depletion and recovery after acute ethanol administration in the aging mouse. Biochem Pharmacol, 73, 1613-1621. Volpi, E., Lucidi, P., Cruciani, G., Monacchia, F., Reboldi, G., Brunetti, P., Bolli, G. B. & De Feo, P. (1997). Nicotinamide counteracts alcohol-induced impairment of hepatic protein metabolism in humans. J Nutr, 127, 2199-2204. Warshaw, G. A. & Bragg, E. J. (2003). The training of geriatricians in the United States: three decades of progress. J Am Geriatr Soc, 51, S338-345. Wheeler, M. D., Nakagami, M., Bradford, B. U., Uesugi, T., Mason, R. P., Connor, H. D., Dikalova, A., Kadiiska, M. & Thurman, R. G. (2001). Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat. J Biol Chem, 276, 36664-36672. Wilfred de Alwis, N. M. & Day, C. P. (2007). Genetics of alcoholic liver disease and nonalcoholic fatty liver disease. Semin Liver Dis, 27, 44-54. Wu, D. & Cederbaum, A. I. (2003). Alcohol, oxidative stress, and free radical damage. Alcohol Res Health, 27, 277-284. Yeh, W. C., Cao, Z., Classon, M. & McKnight, S. L. (1995). Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev, 9, 168-181. Ying, W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal, 10, 179-206. You, M. & Crabb, D. W. (2004a). Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol, 34, 39-43. You, M. & Crabb, D. W. (2004b). Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver. Am J Physiol Gastrointest Liver Physiol, 287, G1-6. Zablocka, A. & Janusz, M. (2008). The two faces of reactive oxygen species. Postepy Hig Med Dosw (Online), 62, 118-124. Zerez, C. R. & Tanaka, K. R. (1987). Impaired nicotinamide adenine dinucleotide synthesis in pyruvate kinase-deficient human erythrocytes: a mechanism for decreased total NAD content and a possible secondary cause of hemolysis. Blood, 69, 999-1005. Zhou, Z., Wang, L., Song, Z., Lambert, J. C., McClain, C. J. & Kang, Y. J. (2003). A critical involvement of oxidative stress in acute alcohol-induced hepatic TNF-alpha production. Am J Pathol, 163, 1137-1146.en_US
dc.identifier.urihttp://hdl.handle.net/11455/52007-
dc.description.abstract本論文主要是探討酒精造成的肝損傷及細胞老化,並了解菸鹼醯胺可能之保護作用。 許多的研究指出,酒精對老年人造成較大傷害,其原因可能是因為肝臟的抗氧化能力下降,使得肝臟無法修復酒精所造成的傷害。 因為老化促進小鼠在生命早期就會出現老化的現象,所以本研究用老化促進小鼠動物模式來探討酒精對老年人造成的肝損傷。 結果顯示酒精會增加血清轉胺酶活性,增加肝臟中丙二醛及羰基化蛋白含量,並降低肝臟中穀胱甘肽過氧化酶,過氧化氫酶,和超氧化物歧化酶的活性。 蘇木素及伊紅染色顯示中度以上的脂肪浸潤但沒有纖維化的情形。 餵食高劑量(500 mg/kg BW)菸鹼醯胺可明顯改善餵食酒精老鼠的老化指數,減少氧化壓力及抑制CYP2E1蛋白的表現。 由於酒精是主要在肝臟代謝的毒性物質,很容易造成脂肪肝, 因此本研究用C57BL/6J品系的小鼠及人類肝癌細胞株HepG2細胞來探討C/EBP α、β及δ在酒精誘發脂肪肝的表現。 結果顯示C/EBP δ會在酒精誘發脂肪肝的早期開始表現,顯示其可能作為治療酒精性脂肪肝的一個指標。 因為酒精會造成老化促進小鼠的氧化壓力,而菸鹼醯胺有改善小鼠的老化指數的現象,於是本研究接著嘗試建立一個低劑量、長時間的酒精處理的細胞模式,以模擬在體內長期氧化壓力的形式,並探討營養素的保護作用。 結果顯示長期低劑量的酒精處理,會造成細胞生長停止並出現細胞老化的形態,包括細胞外形呈扁平狀、老化相關的半乳糖酶表現呈陽性、生長曲線變得平緩,伴隨細胞週期中G1 細胞增加。這些現象可能與NAD+/NADH的比值下降及還原態榖胱甘肽減少有關。 菸鹼醯胺表現出明顯的抗老化作用,包括延長生長代數、維持年輕化細胞型態、減少老化相關的半乳糖酶活性及維持正常的細胞週期。 雖然菸鹼醯胺抗酒精促老化的機制尚未釐清,而這些抗老化作用可能與菸鹼醯胺調節細胞週期、增加NAD+/NADH的比值及避免還原態榖胱甘肽減少有關。 總之,本論文證實酒精會造成細胞老化,氧化壓力及脂肪肝,而且菸鹼醯胺扮演著一個重要的保護角色。zh_TW
dc.description.abstractThis dissertation is concerned with the effect of ethanol on liver injury, cell senescence and the possible protective roles of nicotinamide (NAM). Several studies have shown that the greater susceptibility of older people to the adverse effects of ethanol may be due to the depletion of hepatic antioxidants and a resulting decrease in the ability of the liver to recover from ethanol-induced damage. Because senescence-accelerated-prone 8 mice (SAMP8) begin to show signs of aging in their early life, we herein employed the SAMP8 mice as animal model for studying ethanol-induced liver injury in the elderly. Results showed that ethanol elevated activity of serum aminotransferase. Ethanol also enhanced the formation of malondialdehyde (MDA) and protein carbonyls in the liver, whereas ethanol treatment resulted in significantly lower activity of hepatic glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD). Hematoxylin and eosin staining on the liver sections indicated moderate to severe fatty infiltration but not fibrosis. Administration of high NAM (500 mg/kg BW) led to markedly decreased the aging score, diminished the oxidative stress and to inhibit protein expression of CYP2E1 in the ethanol-fed mice. A long term ethanol administration induce steatosis of mice liver, in order to elucidate the mechanisms of ethanol-induced hepatosteatosis, both the in vivo and in vitro effect of ethanol on the expression of C/EBP α, β and δ in male C57BL/6J mice and HepG2 cells were conducted. The results have shown that C/EBP δ expression appears to play an important role in the early phase of ethanol-induced hepatosteatosis in mice and in ethanol-treated HepG2 cells. Thus, C/EBP δ might be a therapeutic target in alcoholic hepatosteatosis. The previous results have shown that NAM led to markedly decreased aging score in ethanol-treated mice, herein we established a low-concentration and long-term ethanol treatment model to mimic the prolonged oxidative stress in vitro and to elucidate the protective role of NAM. We found that the prolonged low concentration of ethanol treatment induced cell cycle arrest and senescent-like morphology. These cells exhibited signs of aging as indicated by large, flattened morphology, senescence-associated β-galactosidase (SA-β-gal) staining and decreased additional population doubling level (PDL). This was accompanied by a significant increase in the percentage of G1 cells. These effects of ethanol may be related to the decreased NAD+/NADH ratio and GSH depletion. NAM exerted a clear anti-aging effect by increasing PDL, juvenating cell morphology, decreasing SA-β-gal activity and showing the same cell cycle profile as control. Although its protective mechanism is still obscure, NAM may delay ethanol-induced cell senescence by, at least in part, regulation of the cell cycle and by increasing NAD+/NADH and GSH level. In summary, the obtained results demonstrate that ethanol induces senescence, oxidative stress and hepatosteatosis both in in vivo and in vitro while that NAM exerts an important role in protection.en_US
dc.description.tableofcontentsChinese Abstract ……………………………………………………. i English Abstract ……………………………………………….... ii Table of Contents ……………………………………….…... iv List of Tables …….……….………………………………….... ix List of Figures ………….…..……………………………………. x Chapter 1. Introduction to this dissertation……………1 1. The deleterious effects of ethanol…………………………2 1.1. Ethanol metabolism……………………………………………2 1.2. Ethanol and reactive oxygen species (ROS)……………3 2. Aging (Senescence) and ethanol………………………………3 2.1. Free radical theory of aging……………………………3 2.2. Senescence markers……………………………………………4 2.2.1. Morphological signs of aging………………………………4 2.2.2. Quantification of cellular aging…………………………4 2.2.3. Senescene associated-β-galactosidase (SA-β gal) activity.4 2.2.4. Cell cycle arrest………………………………………5 2.2.5. NAD+/NADH ratio…………………………………………5 2.2.6. GSH depletion………………………………………………6 2.3. Stress-induced premature senescence (SIPS)……………6 2.4. Senescence-accelerated mouse (SAM)………………………6 3. Ethanol-induced liver injury…………………………………7 3.1. Mitochondria, oxidative stress, and ethanol-induced liver injury…7 3.2. CYP2E1 and ethanol-induced liver injury……………8 4. Ethanol-induced steatosis……………………………………9 4.1. Enhancement of lipid synthesis…………………………9 4.2. Role of SREBP-1…………………………………9 4.3. Role of CCAAT/enhancer-binding proteins (C/EBPs)……9 4.3.1. C/EBP α……………………………………………………10 4.3.2. C/EBP β and C/EBP δ……………………………………….10 5. Nicotinamide………………………………………………………10 6. Objectives and hypothesis………………………………………12 7. Experimental design……………………………………………13 Chapter 2. Beneficial effects of nicotinamide on alcohol-induced liver injury in senescence-accelerated mice. (Biofactors, in press)……14 Abstract………………………………………………………….15 1.Introduction………………………………………………………16 2. Materials and methods………………………………………17 2.1. Animals and diets………………………………………………17 2.2. Experimental design…………………………………17 2.2.1. Dose effects of ethanol in SAMP8 mice…………18 2.2.2. NAM pretreated before ethanol treatment in SAMP8 mice…18 2.3. Single-trial Passive avoidance test…………………18 2.4. Grading score of aging………………………………19 2.5. Biochemical indicators of liver function………………19 2.6. Liver histology………………………………………19 2.7. Antioxidant status………………………………………20 2.7.1. Superoxide dismutase (SOD)………………………20 2.7.2. Glutathione peroxidase (GPx)…………………20 2.7.3. Catalase (CAT)………………………………………21. 2.8. Determination of thiobarbituric acid reactive substances (TBARS)..21 2.9. Determination of oxidized protein………………………21 2.10. Western blot analysis………………………………22 2.11. Statistical analysis………………………………………22 3. Results…………………………………………………………22 3.1. Body weight of SAMP8 mice fed with ethanol with or without NAM…22 3.2. Passive avoidance tests of SAMP8 mice fed with ethanol …………………………22 3.3. Grading score of senescence and appearance of SAMP8 mice fed with ethanol with or without NAM……………………………23 3.4. Liver histology: fatty infiltration in SAMP8 mice fed with ethanol with or without NAM………………………………………23 3.5. Biochemical indicators of liver function………………………23 3.6. Lipid peroxidation of the liver…………………………23 3.7. Protein oxidation of the liver……………………………24 3.8. Activities of liver antioxidant enzymes………………24 3.8.1 Catalase…………………………………………………24 3.8.2 GPx…………………………………………………………24 3.8.3 SOD…………………………………………………………24 3.9. Protein expression of CYP2E1………………………………25 4. Discussion………………………………………………………25 5. Conclusion…………………………………………………………27 Chapter 3. C/EBP beta and C/EBP delta expression is elevated in the early phase of ethanol-induced hepatosteatosis in mice (Acta Pharmacologica Sinica 2009, 30: 1138-1143)…………………43 Abstract………………………………………………………………44 1. Introduction……………………………………………………45 2. Materials and methods…………………………46 2.1 Animals and diets………………………………………………46 2.2 Assay of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT)……………………………………………47 2.3 Liver morphology………………………………………………47 2.4 Cell culture conditions……………………………………47 2.5 Western blot analysis……………………………………48 2.6 Statistical analysis………………………………………48 3. Results……………………………………………………………49 3.1 Ethanol administration and high-fat diet increase liver function abnormality…49 3.2 Liver histology of experimental animals…………………49 3.3 Protein expressions of C/EBP α, β and δ in C57BL/6J (B6) mice with/without ethanol and with/without a high-fat diet…………49 3.4 Protein expression of C/EBP α, β and δ in HepG2 cells with/without ethanol…………………………………………50 3.5 Protein expression of C/EBP δ in HepG2 cells with/without oleic acid………51 3.6 Protein expression of C/EBP δ in HepG2 cells incubated with ethanol and with/without oleic acid……………51 4. Discussion………………………………………………………51 Chapter 4. Induction of premature senescence in Hs68 cells by ethanol and the possible antiaging effects of nicotinamide....66 Abstract……………………………………………………………67 1. Introduction……………………………………………………68 2. Materials and methods…………………………………………70 2.1 Cell culture and induction of SIPS………………………70 2.2 Growth curve of the cumulative population doubling levels and cell morphology……70 2.3 SA-β-gal staining………………………………………………70 2.4 Measurement of intracellular ROS generation……………71 2.5 Cell cycle analysis……………………………………………71 2.6 Determination of reduced glutathione (GSH)………………72 2.7 Determination of cellular NAD+ and NADH levels…………72 3. Results………………………………………………………………73 3.1 Prolonged treatment with a low concentration of ethanol induces senescent phenotypes in Hs68 cells……………..73 3.2 Prolonged treatment with low concentrations of ethanol decreases additional CPDs in Hs68 cells……………………………..73 3.3 Effects of lipoic acid, carnosine, melatonin and NAM on growth curve of the cumulative population doublings…………………73 3.4 Evaluation of ethanol combined with NAM on growth curve of the cumulative population doublings………………74 3.5 Senescence-associated-β-galactosidase (SA-β-gal) activities of Hs68 cells treated with ethanol or/and NAM…………………74 3.6 Cell cycle profiles of Hs68 cells treated with ethanol or/and NAM.....75 3.7 Intracellular ROS generation of Hs68 cells treated with ethanol or/and NAM………75 3.8 NAD+/NADH ratio of Hs68 cells treated with ethanol or/and NAM…………75 3.9 GSH level of Hs68 cells treated with ethanol or/and NAM………76 4. Discussion…………………………………………………………76 Summary of this dissertation……………………………………91 References……………………………………………………………93 Appendix………………………………………………………………108zh_TW
dc.language.isoen_USzh_TW
dc.publisher食品暨應用生物科技學系所zh_TW
dc.subjectethanolen_US
dc.subject酒精zh_TW
dc.subjectliver injuryen_US
dc.subjectcell senescenceen_US
dc.subjectoxidative stressen_US
dc.subjectethanol-induced hepatosteatosisen_US
dc.subjectnicotinamideen_US
dc.subject肝損傷zh_TW
dc.subject細胞老化zh_TW
dc.subject氧化壓力zh_TW
dc.subject酒精誘發脂肪肝zh_TW
dc.subject菸鹼醯胺zh_TW
dc.title酒精對細胞及小鼠之傷害以及菸鹼醯胺之保護作用zh_TW
dc.titleThe deleterious effects of ethanol and the protective roles of nicotinamideen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:食品暨應用生物科技學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.