Please use this identifier to cite or link to this item:
標題: 利用大腸桿菌及乳酸鏈球菌表現及純化重組人類第一型三葉因子
Expression and purification of recombinant human trefoil factor 1 by Escherichia coli and Lactococcus lactis
作者: Lu, Meng-Ting
關鍵字: gastrointestinal healing;腸胃道修復;trefoil factor 1;Escherichia coli BL21(DE3);Lactococcus lactis NZ9000;Caco-2 cell;第一型三葉因子;大腸桿菌;乳酸鏈球菌;人類結腸癌表皮細胞株
出版社: 食品暨應用生物科技學系所
引用: 蘇政蕙。2005年。挑選持續型強力啟動子並表現重組抗凍蛋白類似物於乳酸鏈球菌與乳酸桿菌中。國立中興大學食品科學系碩士論文。 黃馨慧。2007年。增進第一型重組抗凍蛋白質類似物於乳酸鏈球菌之分泌表現。國立中興大學食品暨應用生物科技學系碩士論文。 翟爾雅。2010年。利用乳酸鏈球菌表現填為蛋白質。國立中興大學食品暨應用生物科技學系碩士論文。 王志鵬。2007年。開發枯草桿菌持續型及誘導型表現系統以應用於自體、同源及異源蛋白質之表現暨建立芽孢桿菌益生菌表現系統。國立中興大學食品暨應用生物科技學系博士論文。 白彩明,畢研偉,楊旭,李智華,李健峰,徐維明。2009年。小腸三葉因子在乳酸菌中的表達。中國生物工程雜誌。第29期第10卷。 Allen, S. C. H., Barrett, C. M. L., Ray, N., & Robinson, C. (2002). Essential cytoplasmic domains in the Escherichia coli TatC protein. Journal of Biological Chemistry, 277(12), 10362-10366. Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther, N., Dobson, A., Duong, T., Callanan, M., Lick, S., Hamrick, A., Cano, R., & Klaenhammer, T. R. (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 3906-3912. Amann, E., Brosius, J., & Ptashne, M. (1983). Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene, 25(2-3), 167-178. Andersen, C., Koronakis, E., Bokma, E., Eswaran, J., Hymphreys, D., Hughes, C., & Koronakis, V. (2002). Transition to the open state of the ToIC periplasmic tunnel entrance. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11103-11108. Andersson, H., & von Heijne, G. (1991). A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. Proc Natl Acad Sci U S A, 88(21), 9751-9754. Andoh, A., Kinoshita, K., Rosenberg, I., & Podolsky, D. K. (2001). Intestinal trefoil factor induces decay-accelerating factor expression and enhances the protective activities against complement activation in intestinal epithelial cells. J Immunol, 167(7), 3887-3893. Arnau, J., Hjerl-Hansen, E., & Israelsen, H. (1997). Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl Microbiol Biotechnol, 48(3), 331-338. Azcarate-Peril, M. A., Altermann, E., Goh, Y. J., Tallon, R., Sanozky-Dawes, R. B., Pfeiler, E. A., O''Flaherty, S., Buck, B. L., Dobson, A., Duong, T., Miller, M. J., Barrangou, R., & Klaenhammer, T. R. (2008). Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Applied and Environmental Microbiology, 74(15), 4610-4625. Babyatsky, M. W., deBeaumont, M., Thim, L., & Podolsky, D. K. (1996). Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury in rats. Gastroenterology, 110(2), 489-497. Barrett, C. M. L., Ray, N., Thomas, J. D., Robinson, C., & Bolhuis, A. (2003). Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. Biochemical and Biophysical Research Communications, 304(2), 279-284. Beck, K., Wu, L. F., Brunner, J., & Muller, M. (2000). Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. Embo Journal, 19(1), 134-143. Beck, P. L., Wong, J. F., Li, Y., Swaminathan, S., Xavier, R. J., Devaney, K. L., & Podolsky, D. K. (2004). Chemotherapy- and radiotherapy-induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology, 126(3), 796-808. Behrendt, J., Standar, K., Lindenstrauss, U., & Bruser, T. (2004). Topological studies on the twin-arginine translocase component TatC. FEMS Microbiology Letters, 234(2), 303-308. Berks, B. C., Sargent, F., & Palmer, T. (2000). The Tat protein export pathway. Molecular Microbiology, 35(2), 260-274. Bermudez-Humaran, L. G., Cortes-Perez, N. G., Le Loir, Y., Alcocer-Gonzalez, J. M., Tamez-Guerra, R. S., de Oca-Luna, R. M., & Langella, P. (2004). An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. Journal of Medical Microbiology, 53(5), 427-433. Bermudez-Humaran, L. G., Langella, P., Commissaire, J., Gilbert, S., Le Loir, Y., L''Haridon, R., & Corthier, G. (2003a). Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiology Letters, 224(2), 307-313. Bermudez-Humaran, L. G., Langella, P., Cortes-Perez, N. G., Gruss, A., Tamez-Guerra, R. S., Oliveira, S. C., Saucedo-Cardenas, O., de Oca-Luna, R. M., & Le Loir, Y. (2003b). Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect. Immun., 71(4), 1887-1896. Bermudez-Humaran, L. G., Langella, P., Miyoshi, A., Gruss, A., Guerra, R. T., de Oca-Luna, R. M., & Le Loir, Y. (2002). Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Applied and Environmental Microbiology, 68(2), 917-922. Bernasconi, E., Germond, J. E., Delley, M., Fritsche, R., & Corthesy, B. (2002). Lactobacillus bulgaricus proteinase expressed in Lactococcus lactis is a powerful carrier for cell wall-associated and secreted bovine beta-lactoglobulin fusion proteins. Applied and Environmental Microbiology, 68(6), 2917-2923. Biet, F., Berjeaud, J. M., Worobo, R. W., Cenatiempo, Y., & Fremaux, C. (1998). Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general secretion pathway. Microbiology, 144 ( Pt 10), 2845-2854. Binet, R., Letoffe, S., Ghigo, J. M., Delepelaire, P., & Wandersman, C. (1997). Protein secretion by Gram-negative bacterial ABC exporters--a review. Gene, 192(1), 7-11. Blatny, J. M., Ertesvag, H., Nes, I. F., & Valla, S. (2003). Heterologous gene expression in Lactococcus lactis; expression of the Azotobacter vinelandii AlgE6 gene product displaying mannuronan C-5 epimerase activity. Fems Microbiology Letters, 227(2), 229-235. Blaudeck, N., Sprenger, G. A., Freudl, R., & Wiegert, T. (2001). Specificity of signal peptide recognition in Tat-dependent bacterial protein translocation. Journal of Bacteriology, 183(2), 604-610. Blight, M. A., & Holland, I. B. (1994). Heterologous protein secretion and the versatile Escherichia coli haemolysin translocator. Trends Biotechnol, 12(11), 450-455. Boels, I. C., Beerthuyzen, M. M., Kosters, M. H. W., Van Kaauwen, M. P. W., Kleerebezem, M., & de Vos, W. M. (2004). Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose biosynthesis. Journal of Bacteriology, 186(5), 1239-1248. Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S. D., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M., Pusch, G. D., Fonstein, M., Overbeek, R., Kyprides, N., Purnelle, B., Prozzi, D., Ngui, K., Masuy, D., Hancy, F., Burteau, S., Boutry, M., Delcour, J., Goffeau, A., & Hols, P. (2004). Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnology, 22(12), 1554-1558. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D., & Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403. Genome Research, 11(5), 731-753. Bossenmeyer-Pourie, C., Kannan, R., Ribieras, S., Wendling, C., Stoll, I., Thim, L., Tomasetto, C., & Rio, M. C. (2002). The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. Journal of Cell Biology, 157(5), 761-770. Brosius, J., Erfle, M., & Storella, J. (1985). Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem, 260(6), 3539-3541. Brurberg, M. B., Haandrikman, A. J., Leenhouts, K. J., Venema, G., & Nes, I. F. (1994). Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum. Appl Microbiol Biotechnol, 42(1), 108-115. Buchanan, G., de Leeuw, E., Stanley, N. R., Wexler, M., Berks, B. C., Sargent, F., & Palmer, T. (2002). Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Molecular Microbiology, 43(6), 1457-1470. Burgess, C., O''Connell-Motherway, M., Sybesma, W., Hugenholtz, J., & van Sinderen, D. (2004). Riboflavin production in Lactococcus lactis: Potential for in situ production of vitamin-enriched foods. Applied and Environmental Microbiology, 70(10), 5769-5777. Callanan, M., Kaleta, P., O''Callaghan, J., O''Sullivan, O., Jordan, K., McAuliffe, O., Sangrador-Vegas, A., Slattery, L., Fitzgerald, G. F., Beresford, T., & Ross, R. P. (2008). Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. Journal of Bacteriology, 190(2), 727-735. Callegari, M. L., Riboli, B., Sanders, J. W., Cocconcelli, P. S., Kok, J., Venema, G., & Morelli, L. (1998). The S-layer gene of Lactobacillus helveticus CNRZ 892: cloning, sequence and heterologous expression. Microbiology, 144 ( Pt 3), 719-726. Caluwaerts, S., Vandenbroucke, K., Steidler, L., Neirynck, S., Vanhoenacker, P., Corveleyn, S., Watkins, B., Sonis, S., Coulie, B., & Rottiers, P. (2010). AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral oncology, 46(7), 564-570. Carrasco, R., Pera, M., May, F. E. B., Westley, B. R., Martinez, A., & Morales, L. (2004). Trefoil factor family peptide 3 prevents the development and promotes healing of ischemia-reperfusion injury in weanling rats. Journal of Pediatric Surgery, 39(11), 1693-1700. Chadwick, M. P., Westley, B. R., & May, F. E. (1997). Homodimerization and hetero-oligomerization of the single-domain trefoil protein pNR-2/pS2 through cysteine 58. Biochem J, 327 ( Pt 1), 117-123. Chaillou, S., Champomier-Verges, M. C., Cornet, M., Crutz-Le Coq, A. M., Dudez, A. M., Martin, V., Beaufils, S., Darbon-Rongere, E., Bossy, R., Loux, V., & Zagorec, M. (2005). The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol, 23(12), 1527-1533. Chan, V. Y., Chan, M. W., Leung, W. K., Leung, P. S., Sung, J. J., & Chan, F. K. (2005). Intestinal trefoil factor promotes invasion in non-tumorigenic Rat-2 fibroblast cell. Regul Pept, 127(1-3), 87-94. Chapot-Chartier, M. P., Nardi, M., Chopin, M. C., Chopin, A., & Gripon, J. C. (1993). Cloning and sequencing of pepC, a cysteine aminopeptidase gene from Lactococcus lactis subsp. cremoris AM2. Appl Environ Microbiol, 59(1), 330-333. Chatel, J. M., Langella, P., Adel-Patient, K., Commissaire, J., Wal, J. M., & Corthier, G. (2001). Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin Diagn Lab Immunol, 8(3), 545-551. Chatel, J. M., Nouaille, S., Adel-Patient, K., Le Loir, Y., Boe, H., Gruss, A., Wal, J. M., & Langella, P. (2003). Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice. Applied and Environmental Microbiology, 69(11), 6620-6627. Chen, C., Snedecor, B., Nishihara, J. C., Joly, J. C., McFarland, N., Andersen, D. C., Battersby, J. E., & Champion, K. M. (2004). High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng, 85(5), 463-474. Chen, Y. H., Lu, Y., De Plaen, I. G., Wang, L. Y., & Tan, X. D. (2000). Transcription factor NF-kappaB signals antianoikic function of trefoil factor 3 on intestinal epithelial cells. Biochem Biophys Res Commun, 274(3), 576-582. Chinery, R., Bates, P. A., De, A., & Freemont, P. S. (1995a). Characterisation of the single copy trefoil peptides intestinal trefoil factor and pS2 and their ability to form covalent dimers. FEBS Lett, 357(1), 50-54. Chinery, R., & Playford, R. J. (1995b). Combined intestinal trefoil factor and epidermal growth factor is prophylactic against indomethacin-induced gastric damage in the rat. Clin Sci (Lond), 88(4), 401-403. Choi, J. H., Jeong, K. J., Kim, S. C., & Lee, S. Y. (2000). Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using theBacillus sp. endoxylanase signal sequence. Appl Microbiol Biotechnol, 53(6), 640-645. Choi, J. H., & Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 64(5), 625-635. Christie, P. J. (2001). Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol, 40(2), 294-305. Cibik, R., Tailliez, P., Langella, P., & Chapot-Chartier, M. P. (2001). Identification of Mur, an atypical peptidoglycan hydrolase derived from Leuconostoc citreum. Applied and Environmental Microbiology, 67(2), 858-864. Claesson, M. J., Li, Y., Leahy, S., Canchaya, C., van Pijkeren, J. P., Cerdeno-Tarraga, A. M., Parkhill, J., Flynn, S., O''Sullivan, G. C., Collins, J. K., Higgins, D., Shanahan, F., Fitzgerald, G. F., van Sinderen, D., & O''Toole, P. W. (2006). Multireplicon genome architecture of Lactobacillus salivarius. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6718-6723. Cook, G. A., Familari, M., Thim, L., & Giraud, A. S. (1999). The trefoil peptides TFF2 and TFF3 are expressed in rat lymphoid tissues and participate in the immune response. FEBS Lett, 456(1), 155-159. Cook, G. A., Thim, L., Yeomans, N. D., & Giraud, A. S. (1998). Oral human spasmolytic polypeptide protects against aspirin-induced gastric injury in rats. J Gastroenterol Hepatol, 13(4), 363-370. Cornelis, G. R., & Van Gijsegem, F. (2000). Assembly and function of type III secretory systems. Annu Rev Microbiol, 54, 735-774. Cornelis, P. (2000). Expressing genes in different Escherichia coli compartments. Current Opinion in Biotechnology, 11(5), 450-454. Cortes-Perez, N. G., Bermudez-Humaran, L. G., Le Loir, Y., Rodriguez-Padilla, C., Gruss, A., Saucedo-Cardenas, O., Langella, P., & Montes-de-Oca-Luna, R. (2003). Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. Fems Microbiology Letters, 229(1), 37-42. Corthier, G., Delorme, C., Ehrlich, S. D., & Renault, P. (1998). Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl Environ Microbiol, 64(7), 2721-2722. Curley, P., & van Sinderen, D. (2000). Identification and characterisation of a gene encoding aminoacylase activity from Lactococcus lactis MG1363. Fems Microbiology Letters, 183(1), 177-182. de Boer, H. A., Comstock, L. J., & Vasser, M. (1983). The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A, 80(1), 21-25. de Felipe, F. L., Kleerebezem, M., de Vos, W. M., & Hugenholtz, J. (1998). Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol, 180(15), 3804-3808. de Gier, J. W., & Luirink, J. (2001). Biogenesis of inner membrane proteins in Escherichia coli. Molecular Microbiology, 40(2), 314-322. de Keyzer, J., van der Does, C., & Driessen, A. J. M. (2003). The bacterial translocase: a dynamic protein channel complex. Cellular and Molecular Life Sciences, 60(10), 2034-2052. de Leeuw, E., Granjon, T., Porcelli, I., Alami, M., Carr, S. B., Muller, M., Sargent, F., Palmer, T., & Berks, B. C. (2002). Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. Journal of Molecular Biology, 322(5), 1135-1146. de Ruyter, P. G., Kuipers, O. P., & de Vos, W. M. (1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol, 62(10), 3662-3667. de Ruyter, P. G., Kuipers, O. P., Meijer, W. C., & de Vos, W. M. (1997). Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol, 15(10), 976-979. de Vos, W. M. (1999). Gene expression systems for lactic acid bacteria. Curr Opin Microbiol, 2(3), 289-295. de Vos WM, K. O., van der Meer JR, Siezen RJ (1995). Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Molecular Microbiology, 17(3), 427-437. De Vuyst, L., & Leroy, F. (2007). Bacteriocins from lactic acid bacteria: Production, purification, and food applications. Journal of Molecular Microbiology and Biotechnology, 13(4), 194-199. Dekker, C., de Kruijff, B., & Gros, P. (2003). Crystal structure of SecB from Escherichia coli. Journal of Structural Biology, 144(3), 313-319. DeLisa, M. P., Lee, P., Palmer, T., & Georgiou, G. (2004). Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. Journal of Bacteriology, 186(2), 366-373. DeLisa, M. P., Samuelson, P., Palmer, T., & Georgiou, G. (2002). Genetic analysis of the twin arginine translocator secretion pathway in bacteria. Journal of Biological Chemistry, 277(33), 29825-29831. Dieye, Y., Hoekman, A. J. W., Clier, F., Juillard, V., Boot, H. J., & Piard, J. C. (2003). Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Applied and Environmental Microbiology, 69(12), 7281-7288. Dieye, Y., Usai, S., Clier, F., Gruss, A., & Piard, J. C. (2001). Design of a protein-targeting system for lactic acid bacteria. Journal of Bacteriology, 183(14), 4157-4166. Dignass, A., Lynch-Devaney, K., Kindon, H., Thim, L., & Podolsky, D. K. (1994). Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J Clin Invest, 94(1), 376-383. Drew, D., Froderberg, L., Baars, L., & de Gier, J. W. L. (2003). Assembly and overexpression of membrane proteins in Escherichia coli. Biochimica Et Biophysica Acta-Biomembranes, 1610(1), 3-10. Driessen, A. J. M. (2001). SecB, a molecular chaperone with two faces. Trends in Microbiology, 9(5), 193-196. Drouault, S., Corthier, G., Ehrlich, S. D., & Renault, P. (2000). Expression of the Staphylococcus hyicus lipase in Lactococcus lactis. Applied and Environmental Microbiology, 66(2), 588-598. Drouault, S., Juste, C., Marteau, P., Renault, P., & Corthier, G. (2002). Oral treatment with Lactococcus lactis expressing Staphylococcus hyicus lipase enhances lipid digestion in pigs with induced pancreatic insufficiency. Applied and Environmental Microbiology, 68(6), 3166-3168. Dubchak, I., Grigoriev, I., Shabalov, I., Cantor, M., Dusheyko, S., Hornick, L., Hugenholtz, P., Korzeniewski, F., Minovitsky, S., & Nikitin, R. (2006a). Lactobacillus brevis ATCC 367., vol. 2009 (p. In: JGI. Available via DIALOG.). Dubchak, I., Grigoriev, I., Shabalov, I., Cantor, M., Dusheyko, S., Hornick, L., Hugenholtz, P., Korzeniewski, F., Minovitsky, S., & Nikitin, R. (2006b). Lactobacillus casei ATCC 334., vol. 2009 (p. In: JGI. Available via DIALOG). Dubchak, I., Grigoriev, I., Shabalov, I., Cantor, M., Dusheyko, S., Hornick, L., Hugenholtz, P., Korzeniewski, F., Minovitsky, S., & Nikitin, R. (2006c). Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293., vol. 2009 (p. In: JGI. Available via DIALOG.). Dubchak, I., Grigoriev, I., Shabalov, I., Cantor, M., Dusheyko, S., Hornick, L., Hugenholtz, P., Korzeniewski, F., Minovitsky, S., & Nikitin, R. (2006d). Pediococcus pentosaceus ATCC 25745., vol. 2009 (p. In: JGI. Available via DIALOG.). Dubchak, I., Grigoriev, I., Shabalov, I., Cantor, M., Dusheyko, S., Hornick, L., Hugenholtz, P., Korzeniewski, F., Minovitsky, S., & Nikitin, R. (2006e). Streptococcus thermophilus LMD-9., vol. 2009 (p. In: JGI. Available via DIALOG.). Economou, A. (1999). Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol, 7(8), 315-320. Eichler, J. (2003). Evolution of the prokaryotic protein translocation complex: a comparison of archaeal and bacterial versions of SecDF. Molecular Phylogenetics and Evolution, 27(3), 504-509. Eitan, A., & Bibi, E. (2004). The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY. Journal of Bacteriology, 186(8), 2492-2494. Elvin, C. M., Thompson, P. R., Argall, M. E., Hendry, P., Stamford, N. P., Lilley, P. E., & Dixon, N. E. (1990). Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene, 87(1), 123-126. Emami, S., Le Floch, N., Bruyneel, E., Thim, L., May, F., Westley, B., Rio, M., Mareel, M., & Gespach, C. (2001). Induction of scattering and cellular invasion by trefoil peptides in src- and RhoA-transformed kidney and colonic epithelial cells. FASEB J, 15(2), 351-361. Enouf, V., Langella, P., Commissaire, J., Cohen, J., & Corthier, G. (2001). Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Applied and Environmental Microbiology, 67(4), 1423-1428. Eser, M., & Ehrmann, M. (2003). SecA-dependent quality control of intracellular protein localization. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13231-13234. Fekkes, P., & Driessen, A. J. (1999). Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev, 63(1), 161-173. Fernandez, L. A., & de Lorenzo, V. (2001). Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Molecular Microbiology, 40(2), 332-346. FitzGerald, A. J., Pu, M., Marchbank, T., Westley, B. R., May, F. E. B., Boyle, J., Yadollahi-Farsani, M., Ghosh, S., & Playford, R. J. (2004). Synergistic effects of systemic trefoil factor family 1 (TFF1) peptide and epidermal growth factor in a rat model of colitis. Peptides, 25(5), 793-801. Flynn, S., van Sinderen, D., Thornton, G. M., Holo, H., Nes, I. F., & Collins, J. K. (2002). Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp salivarius UCC118. Microbiology-Sgm, 148, 973-984. Foucaud, C., Kunji, E. R., Hagting, A., Richard, J., Konings, W. N., Desmazeaud, M., & Poolman, B. (1995). Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di- and tripeptides. J Bacteriol, 177(16), 4652-4657. Francetic, O., Belin, D., Badaut, C., & Pugsley, A. P. (2000). Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. Embo Journal, 19(24), 6697-6703. Francetic, O., & Pugsley, A. P. (1996). The cryptic general secretory pathway (gsp) operon of Escherichia coli K-12 encodes functional proteins. J Bacteriol, 178(12), 3544-3549. Franz, C. M., van Belkum, M. J., Worobo, R. W., Vederas, J. C., & Stiles, M. E. (2000). Characterization of the genetic locus responsible for production and immunity of carnobacteriocin A: the immunity gene confers cross-protection to enterocin B. Microbiology, 146 ( Pt 3), 621-631. Frees, D., & Ingmer, H. (1999). ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol, 31(1), 79-87. Gaeng, S., Scherer, S., Neve, H., & Loessner, M. J. (2000). Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Applied and Environmental Microbiology, 66(7), 2951-2958. Gentschev, I., Dietrich, G., & Goebel, W. (2002). The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol, 10(1), 39-45. Geoffroy, M. C., Guyard, C., Quatannens, B., Pavan, S., Lange, M., & Mercenier, A. (2000). Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Applied and Environmental Microbiology, 66(1), 383-391. Gil, M. T., Perez-Arellano, I., Buesa, J., & Perez-Martinez, G. (2001). Secretion of the rotavirus VP8*protein in Lactococcus lactis. Fems Microbiology Letters, 203(2), 269-274. Gilbert, C., Robinson, K., Le Page, R. W., & Wells, J. M. (2000). Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect Immun, 68(6), 3251-3260. Giraud, A. S., Jackson, C., Menheniott, T. R., & Judd, L. M. (2007). Differentiation of the Gastric Mucosa IV. Role of trefoil peptides and IL-6 cytokine family signaling in gastric homeostasis. Am J Physiol Gastrointest Liver Physiol, 292(1), G1-5. Giuliano, M., Schiraldi, C., Marotta, M. R., Hugenholtz, J., & De Rosa, M. (2004). Expression of Sulfolobus solfataricus alpha-glucosidase in Lactococcus lactis. Applied Microbiology and Biotechnology, 64(6), 829-832. Goke, M. N., Cook, J. R., Kunert, K. S., Fini, M. E., Gipson, I. K., & Podolsky, D. K. (2001). Trefoil peptides promote restitution of wounded corneal epithelial cells. Experimental Cell Research, 264(2), 337-344. Gouffi, K., Gerard, F., Santini, C. L., & Wu, L. F. (2004). Dual topology of the Escherichia coli TatA protein. Journal of Biological Chemistry, 279(12), 11608-11615. Gronenborn, B. (1976). Overproduction of phage lambda repressor under control of the lac promotor of Escherichia coli. Mol Gen Genet, 148(3), 243-250. Grossman, T. H., Kawasaki, E. S., Punreddy, S. R., & Osburne, M. S. (1998). Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene, 209(1-2), 95-103. Guimaraes, V. D., Gabriel, J. E., Lefevre, F., Cabanes, D., Gruss, A., Cossart, P., Azevedo, V., & Langella, P. (2005). Internalin-expressing Lactococcus lactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells. Microbes Infect, 7(5-6), 836-844. Guzman, L. M., Belin, D., Carson, M. J., & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol, 177(14), 4121-4130. Hagting, A., Kunji, E. R., Leenhouts, K. J., Poolman, B., & Konings, W. N. (1994). The di- and tripeptide transport protein of Lactococcus lactis. A new type of bacterial peptide transporter. J Biol Chem, 269(15), 11391-11399. Haldimann, A., Daniels, L. L., & Wanner, B. L. (1998). Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol, 180(5), 1277-1286. Heijne, G. v. (1990). The signal peptide Journal of Membrane Biology, 115, 195-201. Hellendoorn, M. A., Franke-Fayard, B. M., Mierau, I., Venema, G., & Kok, J. (1997). Cloning and analysis of the pepV dipeptidase gene of Lactococcus lactis MG1363. J Bacteriol, 179(11), 3410-3415. Hernandez, C., Santamatilde, E., McCreath, K. J., Cervera, A. M., Diez, I., Ortiz-Masia, D., Martinez, N., Calatayud, S., Esplugues, J. V., & Barrachina, M. D. (2009). Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. British Journal of Pharmacology, 156(2), 262-272. Hesterkamp, T., Hauser, S., Lutcke, H., & Bukau, B. (1996). Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci U S A, 93(9), 4437-4441. Hickey, R. M., Ross, R. P., & Hill, C. (2004). Controlled autolysis and enzyme release in a recombinant lactococcal strain expressing the metalloendopeptidase enterolysin A. Applied and Environmental Microbiology, 70(3), 1744-1748. Hirata, I., Naito, Y., Handa, O., Hayashi, N., Mizushima, K., Adachi, S., Omatsu, T., Okayama, T., Kishimoto, E., Ichikawa, H., Takagi, T., Kokura, S., Otaka, M., & Yoshikawa, T. (2009). Heat-Shock Protein 70-Overexpressing Gastric Epithelial Cells Are Resistant to Indomethacin-Induced Apoptosis. Digestion, 79(4), 243-250. Hoffmann, W., & Hauser, F. (1993). The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia? Trends Biochem Sci, 18(7), 239-243. Holo, H., & Nes, I. F. (1995). Transformation of Lactococcus by electroporation. Methods Mol. Biol, 47, 195-199. Horn, N., Fernandez, A., Dodd, H. M., Gasson, M. J., & Rodriguez, J. M. (2004). Nisin-controlled production of pediocin PA-1 and colicin V in nisin- and non-nisin-producing Lactococcus lactis strains. Applied and Environmental Microbiology, 70(8), 5030-5032. Horn, N., Martinez, M. I., Martinez, J. M., Hernandez, P. E., Gasson, M. J., Rodriguez, J. M., & Dodd, H. M. (1998). Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl Environ Microbiol, 64(3), 818-823. Hugenholtz, J., Sybesma, W., Groot, M. N., Wisselink, W., Ladero, V., Burgess, K., van Sinderen, D., Piard, J. C., Eggink, G., Smid, E. J., Savoy, G., Sesma, F., Jansen, T., Hols, P., & Kleerebezem, M. (2002). Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 82(1-4), 217-235. Israelsen, H., Madsen, S. M., Vrang, A., Hansen, E. B., & Johansen, E. (1995). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol, 61(7), 2540-2547. Itoh, H., Tomita, M., Uchino, H., Kobayashi, T., Kataoka, H., Sekiya, R., & Nawa, Y. (1996). cDNA cloning of rat pS2 peptide and expression of trefoil peptides in acetic acid-induced colitis. Biochem J, 318 ( Pt 3), 939-944. Ize, B., Gerard, F., Zhang, M., Chanal, A., Voulhoux, R., Palmer, T., Filloux, A., & Wu, L. F. (2002). In vivo dissection of the tat translocation pathway in Escherichia coli. Journal of Molecular Biology, 317(3), 327-335. Jakowlew, S. B., Breathnach, R., Jeltsch, J. M., Masiakowski, P., & Chambon, P. (1984). Sequence of the pS2 mRNA induced by estrogen in the human breast cancer cell line MCF-7. Nucleic Acids Res, 12(6), 2861-2878. Joly, J. C., Leung, W. S., & Swartz, J. R. (1998). Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci U S A, 95(6), 2773-2777. Jorgensen, K. D., Diamant, B., Jorgensen, K. H., & Thim, L. (1982a). Pancreatic spasmolytic polypeptide (PSP): III. Pharmacology of a new porcine pancreatic polypeptide with spasmolytic and gastric acid secretion inhibitory effects. Regul Pept, 3(3-4), 231-243. Jorgensen, K. H., Thim, L., & Jacobsen, H. E. (1982b). Pancreatic spasmolytic polypeptide (PSP): I. Preparation and initial chemical characterization of a new polypeptide from porcine pancreas. Regul Pept, 3(3-4), 207-219. Kahala, M., & Palva, A. (1999). The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl Microbiol Biotechnol, 51(1), 71-78. Kandler O, W. N., ed (1986). Bergey''s manual of systematic bacteriology. Baltimore: Williams and Wilkins. Kane, J. F. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 6(5), 494-500. Keenan, R. J., Freymann, D. M., Stroud, R. M., & Walter, P. (2001). The signal recognition particle. Annu Rev Biochem, 70, 755-775. Kim, J. F., Jeong, H., Lee, J. S., Choi, S. H., Ha, M., Hur, C. G., Kim, J. S., Lee, S., Park, H. S., Park, Y. H., & Oh, T. K. (2008). Complete genome sequence of Leuconostoc citreum KM20. Journal of Bacteriology, 190(8), 3093-3094. Kindon, H., Pothoulakis, C., Thim, L., Lynch-Devaney, K., & Podolsky, D. K. (1995). Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology, 109(2), 516-523. Kinoshita, K., Taupin, D. R., Itoh, H., & Podolsky, D. K. (2000). Distinct pathways of cell migration and antiapoptotic response to epithelial injury: Structure-function analysis of human intestinal trefoil factor. Molecular and Cellular Biology, 20(13), 4680-4690. Kjellev, S. (2009). The trefoil factor family - small peptides with multiple functionalities. Cellular and Molecular Life Sciences, 66(8), 1350-1369. Kjellev, S., Nexo, E., Thim, L., & Poulsen, S. S. (2006). Systemically administered trefoil factors are secreted into the gastric lumen and increase the viscosity of gastric contents. British Journal of Pharmacology, 149(1), 92-99. Kjellev, S., Thim, L., Pyke, C., & Poulsen, S. S. (2007). Cellular localization, binding sites, and pharmacologic effects of TFF3 in experimental colitis in m
Digestive system damages are common problems in people who lived in a stressful life. Mucosal defense in gastrointestinal tract includes local gastric mucosal defense mechanisms and neurohormonal regulation. The surface epithelial cells secrete mucus, bicarbonate and generate prostaglandins, heat shock proteins, trefoil factor peptides (TFFs), and cathelicidins to defense or regulate the mucosal damages. The TFFs mediate mucosal repair by stimulating cell migration, inhibiting apoptosis and inflammation, and promote the barrier function of mucus.
In this study, attempts of expressing recombinant human trefoil factor 1 (TFF1) by well known Escherichia coli and GRAS Lactococcus lactis were proceeded. In the first part of this study, a novel recombinant human TFF1 gene was designed according to the preferred codons of L. lactis. Then the recombinant human TFF1-expressing plasmids were constructed. The recombinant human TFF1-expressed plasmids for L. lactis including constitutive pNZDSASm-sacBATFF1, and nisin-inducible pNZNS-sacBATFF1 and pNZNUB-TFF1. Isopropyl β-D-1-thiogalactopyranoside (IPTG)-indicible pET-sacBATFF1 and pET-TFF1 are the recombinant human TFF1-expressed plasmids of E. coli. Owing to the unstable expression of L. lactis system, the optimized recombinant human TFF1 was purified from fermented E. coli BL21(DE3) transformants and the purified recombinant human TFF1 was identified by native-PAGE, Western blot, and peptide fingerprinting. The bioactivity of recombinant human TFF1 was analyzed by wound healing assay of C2BBe1 cell (clone of Caco-2 cell). Results showed that the recombinant human TFF1 exhibited reclosing up wound of C2BBe1 cell monolayer and could be improved is increased by adding few FBS. The recombinant human TFF1, treated with modified gastrointestinal pH, pH 2.4 and pH 7.0 buffer showed that the recombinant human TFF1 is more active after pH 2.4 treatment. Results suggest that the acidic environment in stomach might be benefitial to active conformation of recombinant human TFF1.

本研究嘗試以熟知的大腸桿菌及食品級乳酸鏈球菌表現重組人類第一型三葉因子,首先設計並合成最佳化密碼子之新穎性基因,分別構築重組人類第一型三葉因子之表現質體。乳酸鏈球菌表現重組人類第一型三葉因子之質體包含持續型之pNZDSASm-sacBATFF1,以及以乳酸鏈球菌素誘導之pNZNS-sacBATFF1與pNZNUB-TFF1質體;大腸桿菌使用之表現質體則是以異丙基-β-D-硫代半乳糖苷誘導之pET-sacBATFF1與pET-TFF1質體。由於乳酸鏈球菌之系統表現再現性不高,選用大腸桿菌發酵誘導表現、取菌體之可溶部份純化重組人類第一型三葉因子,可得到0.719 mg/L rTFF1及1.766 mg/L rSTFF1之產量,並經由原態蛋白質電泳、西方墨點及蛋白質身份鑑定確認蛋白質具有單體及雙體結構。最後利用細胞傷口癒合試驗觀察重組人類第一型三葉因子之生物活性,結果顯示重組人類第一型三葉因子具有對於人類結腸癌表皮細胞傷口癒合之效果,且可藉由添加低量胎牛血清提高細胞傷口癒合速度。進一步以pH 2.4與pH 7.0模擬腸胃道之pH環境測試重組人類第一型三葉因子之pH穩定性,由結果可知儲存於pH 2.4之重組人類第一型三葉因子的細胞傷口癒合活性明顯較佳(P < 0.05),推測胃中酸性環境可能有利於重組人類第一型三葉因子之構形及活性。
其他識別: U0005-2607201114415200
Appears in Collections:食品暨應用生物科技學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.