Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52026
標題: 以微化均質處理評估酪梨汁混濁安定機制及理化性質變化
Estimation of Turbidity Stability Mechanism and Changes in the Physicochemical Properties of Avocado Juice by Micronization Homogeneous Treatments
作者: 蕭綵璿
Hsiao, Tsai-Hsuan
關鍵字: avocado juice;酪梨汁;homogenization;viscosity;particle size;turbidity;均質;黏度;粒徑;混濁度
出版社: 食品暨應用生物科技學系所
引用: 丘應模 1993 台灣的水果 渡假出版社有限公司 pp. 93-95 呂維明、呂文芳 1994 過濾技術 高立圖書有限公司 杜朋 1992 果蔬汁飲料工藝學 農業出版社 高寶珠 1998 黏度量測與標準 化工技術 6(1):148-156 江伯源、蕭綵璿 2007 蔬果篇─酪梨 農友月刊10月 朱芸芳 2000 菠菜汁混濁安定性之研究 台灣大學食品科技研究所碩 士論文 台北 台灣 宋祖塋 1995 番石榴果漿中混濁物之特性及其安定性之改進 中興大學食品科學研究所碩士論文 台中 台灣 林瑞雯 2002 金柑全果系果汁降低苦味與改善黏稠度之研究 台灣大 學園藝學研究所碩士論文 台北 台灣 施倩蓉 2003 不同加工處理對小麥草汁混濁安定性之影響 靜宜大學食品營養學系碩士論文 台中 台灣 陳義雄、王勝德、黃建榕 1996 法蘭克福香腸包裝後再殺菌處理效果之評估 中國畜牧學會會誌 25(3):325-334 陳李國 1987 番茄製品中蛋白質和果膠的交互作用及其對黏度的影響台灣大學食品科技研究所碩士論文 台北 台灣 陳國華 2003 不同均質壓力對罐裝咖啡牛乳物化性狀及官能特性之影響 屏東科技大學食品科學研究所碩士論文 屏東 台灣 黃文炎、鐘志明 1987 酪梨栽培技術 台南區農改場技術專刊 張振宙 1993 經濟果樹(下)第六版 豐年出版社 pp. 198-209 張湘文 2007 高壓均質技術在食品工業上之應用 食品工業39(8):16-24 張為憲 1996 蔬菜植物中果膠酯之純化、反應機制、理化性質、生理意義及應用性之研究(Ⅱ) 行政院國家科學委員會專題研究計劃成果報告 張為憲 李敏雄 呂政義 張永和 陳昭雄 孫璐西 陳怡宏 張基郁 顏國欽 林志城 林慶林 食品化學 華香園出版社 pp.110-170 張淑茹、程潤達 1998 蛋白飲料穩定性初探 食品工業科技 2:19-21. 張淑芬 1996 加工條件對西瓜汁品質變化及沈澱形成之探討 中興大 學食品科學研究所碩士論文 台中 台灣 曾國書、曾耀崑 2006 台灣產酪梨原料之物理特性與一般成分分析 台南科大學報 生活藝術類 25:1-14 曾昭宏 2000 防止澄清橫山梨果汁混濁生成之研究 台灣大學園藝學研究所碩士論文 台北 台灣 蔡宗添 2001 酪梨後熟、冷凍加工與凍藏時間對果肉與果漿品質之影響 國立台灣大學園藝學研究所碩士論文 台北 台灣 戴三堡 2006 澄清橫山梨果汁加熱後混濁生成機制之研究 台灣大學園藝學研究所碩士論文 台北 台灣 劉家瑞 2001 荔枝果汁混濁穩定性之研究 國立台灣大學園藝學研究所碩士論文 台北 台灣 劉居富、陳文凱 1979 防止水果酒沈澱之研究 II 防止鳳梨酒沈澱效果比較 酒廠研究年報 pp.85-96 楊智媛 2005 採收成熟度及採後處理對酪梨品質之影響 國立中興大學園藝學研究所碩士論文 台中 台灣 盧素珍 1985 酪梨果汁罐頭及殺菌軟袋熱加工可行性之探討 國立台灣大學食品科技研究所碩士論文 台北 台灣 鍾志明 1996 酪梨與人的營養一、從人體健康方面了解酪梨 中國園藝42(2):184-194 AOAC.“Official Methods of Analysis”. (17th ed.). 2000 Association of Official Analytical Chemists. Washington, DC. Anastasakis, M., Lindamood, J.B., Chism, G.W., and Hansen, P.M.T 1987. Enzymatic hydrolysis of carrot for extraction of a cloud-stable juice.Food Hydrocolloid. 1(3):247-261 Ashton, et al., 2006. Pigments in Avocado Tissue and Oil. Journal of Agricultural and Food Chemistry., 54 (26):10151-10158 Baker, R. A., & Cameron, R. G. 1999. Clouds and citrus juices and juice drinks. Food Technology, 53:64-69 Baker R. A., Bruemmer J.H. 1972. Pectinase stabilization of orange juice cloud. Journal of Agricultural and Food Chemistry., 20(6):1169-1173 Baker, R. A. 1976. Clarification of citrus juices with polygalacturonic acid. Journal of Food Science. 41:1198-2000 Berveridge, T. 1997. Haze and cloud in apple juices. Critical reviews in Food Science and Nutrition. 37(1):75-91 Bitter T, Muir H.M. 1962. A modified uronic acid carbazole reaction.Analytical Biochemistry. 4:330-334 Binnig. R. 1992. Light colour-stable cloudy apple juice. Fruit Processing. 2:133-136 Bianco, A., Chiacchio, U., Rescifina, A., Roneo G., and Uccella, N. 1997.Biomimeic supramolecular biophenol-carbohydrate and biophenol protein models by NMR experiments. Journal of Agricultural and Food Chemistry. 45:4281-4285 Boyes, S., Striubi, P., and Dawes, H. 1997. Measurement of protein content in fruit juice, wine and plant extracts in the presence of endogenous organic compounds. Lebensmittel-Wissenschaft und-Technologie.30 (8):778-785 Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dry binding. Analytical Biochemistry.72:248-254 Buege, J.A., and Aust, S. D. 1978. Microsomal lipid peroxidation. Methodsin enzymology. 52:302-310 Carle R. 1998. Cloud stability of pulp-containing tropical fruit nectars.Fruit Processing. 7:266-272 Chou H.E., Breene W.M. 1972. Oxidative decoloration of β-carotene in low-moisture model systems. Journal of Food Science. 37:66-68 Crandall, P.G., Matthews, R.F., and Baker, R.A. 1983. Citrus beverage clouding agents- Review and status. Food Technology.37(12):106-109 Dalve,P.G. and Simeonova,L.S. 1995. Emulsifying properties of protein pectin complexes and their use in oil-containing foodstuffs. Journal of Agricultural and Food Chemistry., 68:203-206 Dickinson, E. 1994. Colloidal aspects of beverages. Food Chemistry. 51:343-347 Endo, A. 1965. Studies on pectolytic enzymes of molds. Part XVI:mechanism of enzymatic clarification of apple juice. Agricultural and Biological Chemistry. 29(3):229-233 Genovese D.B., Elustondo M.P., Lozano J.E.1997. Color and cloudstabilization in cloudy apple juice by steam heating during crushing. Journal of Food Science. 62:1171-1175 Genovese D.B., Lozano J.E. 2001. The effect of hydrocolloids on the stability and viscosity of cloudy apple juices. Food Hydrocollid.15(1):1-7 Groven, S. 1995. Hydrocolloids for use in soft drinks. Fruit Processing.12:388-393 Heatherbell, D. A. 1976. Haze and sediment formation in clarified apple juice and apple wine. II. The role of polyvalent cations, polyphenolics and protein. Food Technology. In New Zealand. 11:17-23 Heatherbell D.A. 1984. Fruit juice clarification and fining. Confructa. 28:192-196 Hsu, J. C. and Heatherbell, D. A. 1987. Isolation and characterization of soluble proteins in grape、grape juice and wine. American Journal of Enology and Viticulture. 38(1):6-10 Hsu, J. C., Heatherbell, D. A., Flores, J. H. and Watson, B. T. 1987. Heat unstable protein in grape juice and wine. American Journal of Enology and Viticulture. 38(1):17-22 Imeson, A.P., Ledward, D. A., and Mitchell, J. R. 1977. On the nature of the interaction between some anionic polysaccharides and proteins. Journal of the science of food and agriculture.28:661-668 Ishii, S. and Yokoyduks, T. 1972. Clarification of fruit juice by pectin trans-eliminase. Journal of agricultural and food chemistry.20(40):787 Jean-Marie Perrier-Cornet, et al., 2005. High-pressure inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum at subzero temperatures. Journal of Biotechnology. 115:405-412 Kao, S. V. and Mason, S.G. 1975. Dispersion of particles by shear. Nature. 253 : 619-621 Kilara, A. 1982. Enzyme and their uses in the processed apple industry:Review process. Biochemistry. 7:77-82 Klavons, J. A., Bennett, R. D., & Vannier, S. H. 1991. Nature of the protein constituent of commercial orange juice cloud. Journal of agricultural and food chemistry. 39:1546-1548 Klavons, J. A. and Bennett, R. D. 1985. The nature of the protein constituent of commercial lemon juice cloud. Journal of agricultural and food chemistry. 33:708-712 Lea, A. G. H. 1990. Apple juice. In ”Production and Packaging of Non-Carbonated Fruit Juice and Fruit Beverages” 1st ed., 183-225 Blackie and Son Ltd., New York, NY, U.S.A. Maskan, M. 2001. Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering. 48:167-17 McMillin K.W., et al., 1991. Flavor and oxidative stability of ground beef patties as affected by source and storage. Journal of Food Science. 56 (4):899-902 Mensah W.M., Reiter, M., Bail, R., Neidhart, S. and Carle, R. 2000. Cloud stabilizing potential l of pectin on pulp-containing fruit beverages. Fruit Processing. 2:47-54 M.W. Okoth, A.R. Kaahwa, J.K. Imungi. 2000. The effect of homogenisation, stabiliser and amylase on cloudiness of passion fruit juice. Food Control. 11:305-311 N. Cruz, M. Capellas, M. Herna’ndez, A.J. Trujillo, B. Guamis, V. Ferragut. 2007. Ultra high pressure homogenization of soymilk:Microbiological, physicochemical and microstructural characteristics. Food Research International. 40 (6):725-732 O’Brien, N.M., O’Connor, T.P., 2002. Lipid Oxidation. Encyclopedia of Dairy Science. pp.1600-1604 Ofelia B. O. Ashton et al., 2006. Pigments in Avocado Tissue and Oil. Journal of Agricultural and Food Chemistry. 54:10151-10158 Shomer, I. 1991. Protein coagulation cloud in citrus fruit extract. Formation of coagulates and their bound pectin and neutral sugars.Journal of Agricultural and Food Chemistry. 39:2263-2266 Sibebert, K.J., Troukhanova, N.V. and Lynn, P.Y. 1996. Nature of polyphenol-protein interactions. Journal of Agricultural and Food Chemistry. 40:80-85 Slater, G.G., Shankman, S., Sheherd, J.S., and Alfin-Slater, R.B. 1975. Seasonal variation in the composition of California avocados. Journal of Agricultural and Food Chemistry. 23(3):468-474 Tan, C. P., & Nakajima, M. 2005a. Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of b-carotene nanodispersions prepared by emulsification/evaporation method. Journal of the Science of Food and Agriculture. 85 : 121-126 Takada, N. and Nelson, P.E. 1983. A new consistency method for tomato product: the precipitate weight ratio. Journal of Food Science 48: 1460-1462 Tamime, A.Y., Robinson, R.K., 2007. Tamime and Robinson’s Yoghurt Science and Technology. Woodhead Publishing Ltd., Cambridge (England). Van Buren, J.P. 1989. Causes and prevention of turbidity in apple juice. In “Processed Apple Products", D.L. Downing (Ed.), pp. 97-120 Van Nostrand Reinhold, New York, NY, U.S.A. Verteeg, C., Rombouts. F.M., Spanaansen. C.H. and Pilnik. W. 1980.Thermostability and orange juice cloud destabilizing properties of multiple pectinesterases from orange. Journal of Food Science 45: 969-998 Yuan Yuan, et al. 2008. Characterization and stability evaluation of b-carotene nano emulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International. 41:61-68 Walker, J.R.L. 1977. Enzymatic browning in food: Its chemistry and control.Food Technology. In New Zealand. 12(3):19 Weemaes, C.A., Ludikhuyze, L.R., Van-den-Broeck, I., hendrickx, M.E., and Tobback, P.P. 1998a. Activity, electrophoretic characteristics and heat inactivation of polyphenoloxidases from apples, avocados, grapes, pears and plums. Lebensmittel-Wissenschaft und-Technologie. 31:44-49 Werman, M.J., and Neeman, I. 1986. Effectiveness of antioxidants in refined, bleached avocado oil. Journal of the American Oil Chemists’ Society. 63(3):352-355 Werman, M.J., and Neeman, I. 1987. Avocado oil production and chemical charactertistics. Journal of the American Oil Chemists’ Society. 64(2): 229-232 Wenrich, J.A. 1946. A study of the theory of the mechamism of milk homogenization. Thesis Cornell University. Woolf, A.B., Watkins, C.B., Bowen, J.H., Lay-Yee, M., Maindonald, J.H., and Ferguson, I.B. 1995. Reducing external chilling injury in stored ''Hass'' avocados with dry heat treatments. Journal of the American Society for Horticultural Science.120(6):1050-1056 Woolf, A.B., and Lay-Yee, M. 1997. Pretreatments at 38 degrees C ''Hass'' avocado confer thermotolerance to 50 degrees C hot water treatments. Hortscience. 32(4):705-708 Will, F. and Dietrich, H. 1992. Isolation, purification and characterization of neutral polysaccharides from extracted apple juices. Carbohydrate Polymers.18:109-117 Zauberman, G., and Jobin-Decor, M.P. 1995. Avocado (Persea americana Mill.) quality changes in response to low-temperature storage. Postharvest Biology and Technology.5(3):235-243
摘要: 
Avocado juice has a bright yellow appearance, smooth mouth feel, excellent flavor and high nutritional value, but owing to its high content of crude lipid and crude protein, unstable phenomenon like phase separation, creaming, flocculation, etc. are easily produced. This study examines the effects of different micronization homogeneous model systems (waring blender, polytron and APV) on the turbidity stability and physicochemical changes of avocado juice, which can be provided as references for food processors in the quality improvement of avocado juice. The research findings showed that the avocado juice produced in the waring blender homogeneous system had better color and turbidity stability than that of the polytron homogeneous system. The color and turbidity stability was higher when the speed was higher. The results of the effects of high-pressure homogenization system (0, 250, 500, 750, 1000, 1250, 1500 bar) and different homogenization cycles (1-5) on the turbidity and quality of avocado juice showed that along with the increase in homogenization pressures and cycles, the outer appearance of the avocado juice became smoother, brighter and the d4, 3 particle size was decreased and the turbidity stability was also increased. However, if the homogeneous pressure or cycles were too high, there was a decrease in the turbidity stability and brightness of avocado juice. In this experiment, the avocado juice at 1500 bar showed that the turbidity stability was the best (63.44 %), the particle size distribution was denser and more average. The percentage volume of the big particle size ( > 48.27 μm) was lower, about 10.49%. The d4,3 was 14.39 ± 0.79 μm and the d3, 2 was 5.35 ± 0.21 μm; the color was the brightest (71.84 ± 1.15); the browning index was the lowest (83.60); viscosity was 394.32 cps. The reason for the decrease in the viscosity was due to the changes in the size of the particles and an increase in the temperatures. The water-soluble pectin was 21.46 ± 1.97 AGA mg/100 mL. This could be due to the reason that the pressures were too high, thereby, causing the breaking of hydrocolloid. Appropriate homogeneous pressures and cycles can increase the turbidity stability of turbid juice and decrease the browning reaction of the juice. This can be used as references for the manufacturing of turbid juices or similar products. It was found that the storage of high-pressure homogenization treated avocado juice at 4 ℃ and 25 ℃ caused coagulation, bad color and outer appearance due to the decrease in particle size and increase in charge exposure. There was an increase in the coagulated solids along with an increase in the homogeneous pressures. This can be due to the reason that after the avocado juice was treated under high homogeneous treatments, there was a decrease in the average particle size; the charge exposure became acute, and there was a considerable increase in coagulation, water soluble protein, water soluble pectin and total phenol contents. When stored at 25 ℃, the avocado juice that was not treated under high homogeneous pressures, produced bad odor after storing for 16 hours. The avocado juice treated at 500 bar, produced bad odor after storing for 20 hours. The avocado juice treated at 1000 bar and 1500 bar, produced bad odor only after storing for 24 hours. From this, it can be shown that avocado juice can be stored at low temperatures.
After treating avocado juice under high homogeneous pressures, the mouth feel became smoother and finer, the color became brighter; however, the bad phenomenon caused during storage must be overcome.

酪梨汁外觀呈亮麗黃(綠)色,口感細緻,風味佳及營養價值高,因其粗脂質、粗蛋白含量高,容易發生分層、上浮、凝聚等不安定情形。本研究主要探討不同微化均質系統(Waring blender、Polytron及APV)對酪梨汁混濁安定性及理化性質變化之影響,藉以作為食品加工業者改善酪梨汁品質之參考。
實驗結果:Waring blender均質處理酪梨汁之色澤及混濁安定度優於Polytron均質處理酪梨汁,且轉速越快,其色澤亮度與混濁安定度越高;高壓均質系統(0、250、500、750、1000、1250、1500 bar)和不同均質循環次數(1-5次),對酪梨汁混濁安定性及品質影響之實驗結果顯示:隨著均質壓力及循環次數增加,酪梨汁外觀愈呈細緻、亮麗,體積平均粒徑隨之減少,混濁安定度隨之增加;另均質壓力太高或均質循環次數過多,則造成酪梨汁混濁安定性及亮度下降。本實驗以1500 bar均質酪梨汁,其混濁安定性最佳(63.44 %),粒徑分佈較集中、均勻,大粒徑顆粒(> 48.27 μm)之體積百分比最少,僅有10.49 %,體積平均粒徑為14.39 ± 0.79 μm,面積平均粒徑為5.35 ± 0.21 μm,色澤最亮(71.84 ± 1.15),褐變指標最小(83.60),黏度為394.32 cps,水溶性果膠含量為21.46 ± 1.97 AGA mg/100 mL。其黏度下降和粒徑變小及溫度升高有關;均質壓力如太高,易使膠體崩解;適當的均質壓力及均質循環次數,能使混濁果汁之混濁安定性增加及減少果汁之褐變反應的進行,可作為混濁果汁或相關產品之製程參考。經高壓均質處理酪梨汁貯存於4 ℃及25 ℃,在貯存期間皆會有凝塊現象、不良色澤及外觀產生,且凝固增加量會隨著均質壓力提高而增加,其造成原因可能是經高壓均質處理後,其平均粒徑變小,電荷曝露情形更為嚴重,凝固現象和水溶性蛋白質、水溶性果膠及總酚含量之變化有高度相關性。
酪梨汁經高壓均質處理後,其口感更為滑順、細膩、色澤更為亮麗,但易在貯存期間,發生褐變、凝塊等不安定的現象,如何改善酪梨汁均質後品質及修飾技術之研究將成為另一研究主題。
URI: http://hdl.handle.net/11455/52026
Appears in Collections:食品暨應用生物科技學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.