Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52044
標題: 不同糖/鹽溶液對紫玉甘藷澱粉理化性質之影響
Effects of different sugar/salt solutions on the physical properties of Purple Jade sweet potato starch
作者: Sun, Yung-Yi
孫永怡
關鍵字: sweet potato starch;甘藷澱粉;sugar;salt;gelatinization;糖類;鹽類;糊化
出版社: 食品暨應用生物科技學系所
引用: 王俊權、王建文、張永和。不同品種芋頭澱粉的理化性質之探討。食品科學,1997,24,282-294。 行政院農委員會編製。九十六年農業統計年報,2007,p.10-11, p36-37.行政院農業委員會統計室。台北市。台灣。 行政院農委會。甘藷館。2007。 http://kminter.coa.gov.tw/subject/mp.asp?mp=190 行政院衛生署。台灣地區食品營養成分資料庫。2008。行政院衛生署編著。台北市。台灣。 黃淑雲。醣類對葛澱粉糊化及回凝之影響。碩士論文。中國文化大學生活應用科學研究所。台北。台灣。2006。 廖志倫。脫色仙草葉膠與澱粉間凝膠作用之研究。碩文論文。靜宜大學食品營養學系。台中。台灣。2000。 趙秀真、賴麗旭:鹽類對仙草凍動態流變性質之影響。食品科學, 1999,26(6),572-582。 蔡玫琳。澱粉顆粒及其分子之成糊行為。博士論文。台灣大學食品科技研究所。台北。台灣。1997。 賴永昌、李忠田、蔡武雄、鄭統隆。2007。甘藷新品種台農73號-“紫玉”之育成。農業試驗所技術服務。70:7-9。 Ahmad, F. B.; Williams, P. A. Effect of sugars on the thermal and rheological properties of sago starch. Biopolymers. 1999a, 50, 401-412. Ahmad, F. B.; Williams, P. A. Effect of Salts on the Gelatinization and Rheological Properties of Sago Starch. J. Agric. Food Chem. 1999b, 47, 3359-3366. Abd-Ghani, M. B.; Che-Man, Y. B.; Ali, A. B.; Mat-Hashim, D. B. Differential scanning calorimetry: gelatinization of sago starch in the presence of sucrose and sodium chloride. J Sci Food Agric. 1999, 79, 2001-2009. Baek, M. H.; Yoo, B.; Lim, S. T. Effects of sugars and sugar alcohols on thermal transition and cold stability of corn starch gel. Food Hydrocoll. 2004,18, 133–142. Bello-Perez, L. A.; Paredes-Lopez, O. Starch and amylopectin: effect of solutes on their calorimetric behavior. Food Chem. 1995, 53, 243-247. Billiadris, C. G.; Prokopowich, D. J. Effect of polyhydroxy compounds on waxy maize starch gels: A calorimetric study. Carbohydr. Polym. 1994, 23, 193-202. Chaisawang, M.; Suphantharika, M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocoll. 2006, 20, 641-649. Chang, S. M.; Liu, L. C. Retrogradation of Rice Starches Studied by Differential Scanning Calorimetry and Influence of Sugars, NaCl and Lipids. J. Food Sci. 1991, 56, 564 – 566. Chang, Y. H.; Lim, S. T.; Yoo, B. Dynamic rheology of corn starch–sugar composites. J. Food Eng. 2004, 64, 521-527. Chen, Z. H. Ph.D. Thesis, Wageningen University, The Netherlands, 2003. Chen, Z.; Schols, H. A.; Voragen, A. G. J. Physicochemical properties of starches obtained from three varieties of Chinese sweet potatoes. J. Food Sci. 2003, 68, 431-437. Chiang, W. C.; Chen, K. L. Comparison of physicochemical properties of starch and amylolytic enzyme activity of various sweet potato varieties. Shih Pin Ko Hsueh (Taipei). 1988, 15, 1-11. Chinachoti, P.; Steinberg, M. P.; Villota, R. A model for quantitating energy and degree of starch gelatinization based on water, sugar and salt contents. J. Food Sci. 1990, 55, 543-546. Chungcharoen, A.; Lund, D. B. Influence of solutes and water on rice starch gelatinization. Cereal Chem. 1987, 64, 240-243. Ciacco, C. F.; Fernandes, L. A. Effect of various ions on the kinetics of retrogradation of concentrated wheat starch gels. Starch-Starke. 1979, 31, 51-53. Clark, A. H.; Ross-Murphy, S. B. Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci. 1987, 83, 57-192. Delpeuch, F.; Favier, J. C. Characteristics of starches from tropical food plants; alpha amylase hydrolysis swelling and solubility patterns. Ann Technol Agric. 1980, 29, 53-67. Evans, I. D.; Haisman, D. R. The effect of solutes on the gelatinization temperature range of potato starch. Starch/Starke. 1982, 34, 224-231. Eliasson, A. C. Starch in Food: Structure, Function and Application. CRC Press: Boca Raton, Woodhead, Washington, New York, 2004, pp.160. Eliasson, A. C. Carbohydrates in food: starch: physicochemical and functional aspects. CRC Press: Boca Raton, New York, 2006, pp. 437-438. Gallant, D.J.; Bewa, M.; Buy, Q.H.; Bouchet, B.; Szylit, O.; Sealy, L. On ultrastructural nutritional aspects of some tropical tuber starches. Starch-Starke, 1982, 34, 255-262. Galliard, T.; Bowler, P. Morphology and composition of starch. In T. Galliard, Starch properties and potential. Chichester: Wiley. 1987, pp. 55-78. Germani, R.; Ciacco, C. F.; Rodriguez-Amaya, D. B. Effect of sugars, lipids and Type of starch on the mode and kinetics of retrogradation of concentrated corn starch gels. Starch-Starke, 1983, 35, 377-381. Gunaratne, A.; Ranaweera, S.; Corke, H. Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydr. Polym. 2007, 70, 112-122. Hansen, L. M.; Setser, C. S.; Paukstelis, J. V. Investigations of sugar-starch interactions using carbon-13 nuclear magnetic resonance. I. Sucrose. Cereal Chem. 1989, 66, 411-415. Hirashima, M.; Takahashi, R.; Nishinari, K. Changes in the viscoelasticity of maize starch pastes by adding sucrose at different stages. Food Hydrocoll. 2005, 19, 777-784. Hizukuri S. 1996. Starch: Analytical aspects. In: Eliasson A. editor. Carbohydrates in food. New York: Marcel Dekker, Inc. pp. 363-403. Hizukuri, S. X-ray diffractometric studies on starches. Part VI. Crystalline types of amylodextrin and effect of temperature and concentration of mother liquor on crystalline type. Agr. Biol. Chem. 1961, 25, pp. 45-4. Hizukuri, S.; Nikuni, Z. X-ray diffractometric studies on starches. Ⅱ. Structure of “C”-type crystallite. Nippon Nogei Kagaku Kaishi, 1957, 31, 525-527. Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr. Polym. 2001, 45, 253-267. Hoover, R.; Hadziyev, D. Characterization of potato starch and its monoglyceride complexes. Starch-Starke. 1981, 33, 290-300. Hoover, R.; Senanayake, N. Effect of sugars on the thermal and retrogradation properties of oat starches. J. Food Biochem. 1996, 20, 65-83. Jane, J. L. Mechanism of starch gelatinization in neutral salt solutions. Starch-Starke. 1993, 45, 161-166. Juhász, R.; Salgó, A. Pasting behavior of amylose, amylopectin and their mixtures as determined by RVA curves and first derivatives. Starch- Starke. 2008, 60, 70-78. Karim, A. A.; Norziah, M. H.; Seow, C. C. Methods for the study of starch retrogradation. Food Chem. 2000, 71, 9-36. Karin, S.; Hermansson, A. M. Shear induced changes in the viscoelastic behaviour of heat treated potato starch dispersions. Carbohydr. Polym. 1990, 13, 29-45. Katsuta, K., Miura, M., and Nishimura, A. Kinetic treatment for rheological properties and effects of saccharides on retrogradation of rice starch gels. Food Hydrocoll. 1992a, 6, 187-198. Katsuta, K., Miura, M., and Nishimura, A. Effects of saccharides on stabilities of rice starch gels. I: Mono- and disaccharides. Food Hydrocoll. 1992b, 6, 387-398. Katz, J.R. Abhandlungen zur physikalischen Chemie der Starke und der Brotbereitung. Z. Phys. Chem. 1930, 150, 37- 59. Kim, C. S.; Walker, C. E. Effects of sugars and emulsifiers on starch gelatinization evaluated by differential scanning calorimetry. Cereal Chem. 1992, 69, 212- 217. Kim, Y. S.; Weisenborn, D. P.; Orr, P. H.; Grant, L. A. Screening potato starch for novel properties using differential scanning calorimetry. J. Food Sci. 1995, 60, 1060-1065. Kohyama, K.; Nishinari, K. Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. J. Agric. Food Chem. 1991, 39, 1406-1410. Lai, Y. C.; Li, C. T.; Tsai, W. H.; Jeng T. L. New sweat potato cultivar TNG 73 “ Purple Jade ”. Tech. Service. 2007, 70, 7-9. (in Chinese with English abstract) Lauzon, R. D.; Shiraishi, K.; Yamazaki, M.; Sawayama, S.; Wugiyama, N.; Kawbata, A. Physicochemical properties of cocoyam starch. Food Hydrocolloids. 1995, 9, 77-81. Lee, H. A.; Kim, N. H.; Nishinari, K. DSC and rheological studies of the effects of sucrose on the gelatinization and retrogradation of acorn starch. Thermochim. Acta. 1998, 322, 39-46. Levine, H.,; Slade, L. Non-equilibrium behavior of small carbohydrate water system. Pure Appl. Chem. 1988, 60, 1841–1847. Lii, C. Y.; Tsai, M. L.; Tseng, K. H. Effect of amylose content on the rheological property of rice starch. Cereal Chem. 1996, 73, 415-420. Lii, C. Y.; Lee, B. L. Heating A-, B- and C-type starches in aqueous sodium chloride: effect of sodium chloride concentration and moisture content on differential scanning calorimetry thermograms. Cereal Chem. 1993, 70, 188-192. Liu, S. C.; Lin, J. T.; Yang, D. J. Determination of cis- and trans- α- and β-carotenoids in Taiwanese sweet potatoes (Ipomoea batatas (L.) Lam.) harvested at various times. Food Chem. 2009, 116, 605-610. Madamba, L. S. P.; Bustrillos, A. R.; San Pedro, E. L. Sweet potato starch: physicochemical properties of the whole starch. Philippine Agriculturist (Philippines). 1975, 58, 338-350. Maxwell, J. L. and Zobel, H. F.. Model studies on cake staling. Cer. Foods World, 1978, 23, 124-128. Moorthy, S. N. Tuber crop starches, Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, India (pp. 1–40). 1994. Nara, S.; Komiya, T. Studied on .the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch-Starke. 1983, 35, 407-410. Nikuni, Z.; Hizukuri, S.; Fujii, M.; Doi, K.; Hasegawa, H.; Moriwaki, T.; Nara, S.; Maeda, I. Effect of cultivating soil temperature on the properties of sweet potato starch. Nippon Nogei Kagaku Kaishi. 1963, 37, 673-676. Nishinari, K. Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids. Colloid Polym. Sci. 1997, 275, 1093-1107. Nishinari, K.; Watase, M.; Kohyama, K.; Nishinari, N.; Oakenfull, D.; Koide, S.; Ogino, K.; Williams, P. A.; Phillips. G. O. The Effect of Sucrose on the Thermo-Reversible Gel-Sol Transition in Agarose and Gelatin. Polym. J. 1992, 24, 871-877. Nnam, N. M. Chemical, sensory and rheological properties of porridges from processed sorghum (Sorghum bicolor), bambara groundnut (Vigna subterranea L. Verdc) and sweet potato (Ipomoea batatas) flours. Plant Food Hum. Nutr. 2001, 56, 251–264. Noda, T.; Takahata, Y.; Sato, T.; Hisamatsu, M.; Yamada, T. Physicochemical Properties of Starches Extracted from Sweet Potato Roots Differing in Physiological Age. J. Agric. Food Chem.1995, 43, 3016–3020. Oosten, B. J. Interactions between starch and electrolytes. Starch-Starke. 1990, 42, 327-330. Oosten, B. J. Tentative hypothesis to explain how electrolytes affect the gelatinization temperature of starch in water. Starch-Starke. 1982, 34, 233-236. Osundahunsi, O. F.; Fagbemi, T. N.; Kesselman, E.; Shimoni, E. Comparison of the physicochemical properties and pasting characteristics of flour and starch from red and white sweet potato cultivars. J. Agric. Food Chem. 2003, 51, 2232-2236. Parker, R.; Ring, S. G. Aspects of the Physical Chemistry of Starch. J. Cereal Sci. 2001, 34, 1-17. Perry, P. A.; Donald, A. M. The effect of sugars on the gelatinisation of starch. Carbohydr. Polym. 2002, 49,155-165. Ring, S. G. Some studies on starch gelation. Starch-Starke, 1985, 73, 80-83. Prokopowich, D. J.; Biliaderis, C. G. A comparative study of the effect of sugars on the thermal and mechanical properties of concentrated waxy maize, wheat, potato and pea starch gels. Food Chem. 1995, 52, 255-262. Roulet, P.; Macinnes, W. M.; Gumy, D.; Wursch, P. Retrogradation kinetics of eight starches. Starch-Starke. 1990, 42, 99-101. Rahman, S. M. M.; Wheatley, C.; Rakshit, S. K. Selection of sweet potato variety for high starch extraction. Int. J. Food Prop. 2003, 6, 419-430. Rasper, V. Investigations on starches from major starch crops grown in Ghana. II. Sweling and solubility patterns: Amylociastic susceptibility. J. Sci. Food Agric. 1969, 20, 642-646. Ring, S. G. Some studies on starch gelation. Starch-Starke, 1985, 73, 80–83. Schoch, T. J. Swelling power and solubility of granular starches. In: Methods in Carbohydrate Chemistry. Whistler, R. L. Academic Press: New York, 1964, pp. 106-109. Soni, P. L.; Agarwal, A. The starch of Pueraria tuberosa –comparison with maize starch. Starch-Starke. 1983, 35, 4-7. Sopade, P. A.; Halley, P. J.; Junming, L. L. Gelatinisation of starch in mixtures of sugars. II. Application of differential scanning calorimetry. Carbohydr. Polym. 2004, 58, 311-321. Spies, R. D.; Hoseney, R. C. Effect of sugar on starch gelatinization. Cereal Chem. 1982, 59, 128–131. Suzuki, A.; Hizukuri, S.; Takeda, Y. Physicochemical studies of kuzu starch. Cereal Chem. 1981, 58, 286-290. Swinkels, J. J. M. Composition and properties of commercial native starches. Starch-Starke. 1985, 37, 1-5. Takeda, Y.; Tokunaga, N.; Takeda, C.; Hizukuri, S. Physicochemical Properties of Sweet Potato Starches. Starch-Starke. 1986, 38, 345-350. Tester, R. F.; Karkalas, J.; Qi, X. Starch—composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151-165. Tian, S. J.; Rickard, J. E.; Blanshard, J. M. V. Physicochemical properties of sweet potato starch. J. Sci. Food Agric. 1991, 57, 459 – 491. Uedaira, H.; Ishimura, M. The relationship between the acoustic property and the hydration of saccharides. Bull. Chem. Soc. Jpn. 1989, 62, 574-575. Uedaira, H.; Ishimura, M.; Tsuda, S.; Uedaira, H. Hydration of oligosaccharides. Bull. Chem. Soc. Jpn. 1990, 63, 3376-3379. Vasanthan, T.; Bhatty, R. S. Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chem. 1996, 73, 199-207. Waigh, T.A.; Kato, K. L.; Donald, A. M.; Gidley, M. J.; Clarke, C. J.; Riekel, C. Side-chain liquid-crystalline model for starch. Starch-Starke, 2000, 52, 450-460. Wang, S.; Liu, H.; Gao, W.; Chen, H.; Yu, J.; Xiao, P. Characterization of new starches separated from different Chinese yam (Dioscorea opposita Thunb.) cultivars. Food Chem. 2006, 99, 30-37. Whittaker, L.E.; Al-Ruqaie, I. M.; Kasapis, S.; Richardson, R. K. Development of composite structures in the gellan polysaccharide / sugar system. Carbohydr. Polym. 1997, 33, 39-46. Wickramasinghe, H. A. M.; Takigawa, S.; Matsuura-Endo, C.; Yamauchi, H.; Noda, T. Comparative analysis of starch properties of different root and tuber crops of Sri Lanka. Food Chem. 2009, 112, 98-103. Williams, P. C.; Kuzina, F. D.; Hlynka, I. A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 1970, 47, 411-421. Wootton, M.; Bamunuarachchi, A. Application of differential scanning calorimetry to starch gelatinization. III. Effect of sucrose and sodium chloride. Starch-Starke. 1980, 32, 126-129. Yoo, D.; Yoo, B. Rheology of rice starch-sucrose composites. Starch-Starke. 2005, 57, 254-261. Zhang, T.; Oates, C. G. Relationship between α-amylase degradation and physico-chemical properties of sweet potato starches. Food Chem. 1999, 65, 157-163. Zobel, H. F. Molecules to granules : a comprehensive starch review. Starch-Starke. 1988a, 40, 44-50. Zobel, H. F. Starch crystal transformations and their industrial importance. Starch-Starke. 1988b, 40, 1-7.
摘要: 
本實驗旨在探討糖類和鹽類對台農73號紫玉甘藷澱粉理化特性之影響。生鮮甘藷含水份約74 %,乾物中粗蛋白約佔0.94 %、粗脂約佔0.21 %、灰份約佔0.63 % 以及粗纖維約佔0.9 %,其餘則為澱粉,其中直鏈澱粉約占總澱粉的31 %,破損澱粉約占總澱粉的1.52 %。澱粉顆粒表面光滑,偏圓狀多角形,大小約5-25 μm,屬Ca型澱粉,結晶度約為38 %,膨潤力和溶解度均隨溫度增加而上升。以快速黏度分析儀(RVA)和示差掃描熱分析儀(DSC)觀察其糊化間差異,並以動態流變儀觀察澱粉膠黏彈性質的改變。結果顯示,紫玉甘藷澱粉之糊化溫度、尖峰黏度和最終黏度皆隨著糖濃度的增加(5-40 %)而提高,且提高的效果依序為蔗糖>麥芽糖>葡萄糖>果糖>木糖。而由回升黏度值的結果可知,延緩凝膠及回凝的效果以木糖最明顯,蔗糖最弱;另外糖濃度愈高,裂解黏度值也增加,但若達臨界濃度後(雙醣30%、單糖40%),裂解黏度值反而下降,顯示提升澱粉對熱及剪切外力破壞的忍受力,雙醣的作用比單糖要強。熱分析的結果顯示,糊化起始、尖峰及終止溫度(TO、TP、TC)均和糖濃度呈正相關,顯示糖能穩定澱粉結晶區結構;黏彈性質的結果顯示,甘藷澱粉屬弱膠結構,糖的添加與否並不影響其弱膠的黏彈行為,貯存模量會隨溫度降低或糖的添加而增加,顯示適量糖濃度對澱粉分子間凝膠之網狀結構,有正面的貢獻。適量之鹽濃度(0.5-10 %)同樣也可提高澱粉系統的糊化溫度,但濃度達20 %時,糊化溫度反而下降,且雙價鹽影響力大於單價鹽(鎂離子>鈣離子>鈉離子>鉀離子)。裂解黏度值則因鹽類的添加而降低,但單價離子添加濃度愈高,裂解值會依序降低;若添加雙價離子,裂解值則有先降後升的趨勢,數值高於控制組,以鈣離子組別上升程度最顯著,顯示鈣離子穩定澱粉糊結構的能力最弱;熱分析的結果顯示,除添加20 %氯化鈣的組別外,TO、TP、TC隨鹽濃度增加(0.5-10 %)而上升,然當濃度達20 %時,TO、TP、TC反而降低;加鹽的膠體也趨向弱膠,頻率掃描所得之G’值隨鹽濃度增加會先升後降,正切值均小於1,高鹽環境(20 %)時,正切值會明顯增加,顯示高鹽系統對澱粉黏性性質有相當程度之貢獻,並以雙價離子之影響較明顯。

The aim of this study is to characterize the physicochemical properties of starch isolated from Purple Jade sweet potato. Effect of sugar or salt solutions would be investigated as well. It was found that fresh sweet potato contains approximately 74.7 % moisture, 0.94 % crude protein, 0.21 % crude fat, 0.63 % curde ash and 0.9 % crude fiber. The amylose and damaged starch content of Purple Jade sweet potato starch were 31 and 1.52 %, respectively. Starch granules isolated from Purple Jade sweet potato appeared to be round polygonal shape with smooth surface and the granule size ranged from 5-25 μm. X-ray diffraction pattern revealed that the crystallinity type belonged to Ca-type with approximately 38% crystallinity. Swelling power and solubility of starch increased exponentially with increasing temperature. The gelatinization behavior of sweet potato starch were further studied by using RVA and DSC. The visco-elastic properties were then studied by using dynamic rheological measurement. The pasting temperature, peak viscosity and final viscosity increased with increasing sugar concentration in the following order: sucrose> maltose> glucose>fructose> xylose. As indicated by the setback values, xylose showed strongest impact on inhibiting gelation and retrogradation reactions. In constrast, sucrose showed the weakest impact. Breakdown values generally increased with the sugar concentration to a certain extent, then decreased with further increase in sugar concentration (30% and 40% for disaccharide and monosaccharide, respectively). Such results implied that disaccharide could enhance the resistance of starch to high temperature or shear force more as compared to monosaccharide. DSC results revealed that the onset, peak and conclusion temperature (TO, TP, TC) for starch gelatinization had positive correlation with sugar concentration, suggesting that sugar could stabilize the crystalline structure of starch. Dynamic rheological results indicated the weak gel structure of starch paste with or without sugar addition. The storage modulus (G') of starch paste increased with increasing sugar concentration, suggesting that sugars had a positive contribution on the gel network structure. The pasting temperature also increased with increasing salt concentration to a certain extent(0.5-10 %) in the following order : Mg2+ >Ca2+ > Na+ >K+, then decreased with further increase in salt concentration (20 %). In contrast, the breakdown value decreased by salt addition. It generally decreased with increasing monovalent salt concentration, but decreased with increasing divalent salt concentration only to a certain extent, then increased with further increase in divalent salt concentration, particularly for calcium ions. Such results implied that calcium ions had the least capabilities to stabilize starch gel structure. DSC results revealed the TO,TP, TC for starch gelatinization also increased with increasing salt concentration up to 10%, then decreased with further increase in salt concentration to 20 %. Starch paste with salt addition exhibited a weak gel structure as characterized by dynamic rheological evaluation. The G' generally increased with salt addition to a certain extent, then dropped with further increase in salt concentration. The significant increase in tanδ with high salt concentration revealed the viscous contribution of high concentration of salt , particularly for divalent salts.
URI: http://hdl.handle.net/11455/52044
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.