Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/52056
標題: | Antioxidation and antiatherosclerosis of Streptococcus salivarius ssp. thermophilus ATCC 19258, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842, Lactobacillus delbrueckii ssp. bulgaricus MYL 2 and Bifidobacterium longum MYL 6 嗜熱鏈球菌ATCC 19258、保加利亞桿菌ATCC 11842、保加利亞桿菌MYL 2與龍根雙歧桿菌MYL 6抗氧化及抗動脈粥狀硬化之探討 |
作者: | 歐珠琴 Ou, Chu-Chyn |
關鍵字: | lactic acid bacteria;乳酸菌;antioxidative activity;lipid peroxidation;atherosclerosis;LDL oxidation;抗氧化能力;脂質過氧化作用;動脈粥狀硬化;LDL 氧化作用 | 出版社: | 食品暨應用生物科技學系所 | 引用: | References 1. Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol. 2000;78:80-8. 2. Parvez S, Malik KA, Ah Kang S, Kim HY. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100:1171-85. 3. Mann GV. Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr. 1974;27:464-9. 4. Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol. 1985;49:377-81. 5. Gill HS, Guarner F. Probiotics and human health: a clinical perspective. Postgrad Med J. 2004;80:516-26. 6. Kollath W. [The increase of the diseases of civilization and their prevention.]. Munch Med Wochenschr. 1953;95:1260-2. 7. Lilly DM, Stillwell RH. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science. 1965;147:747-8. 8. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365-78. 9. Grajek W, Olejnik A, Sip A. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol. 2005;52:665-71. 10. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1-66. 11. Reddy G, Altaf M, Naveena BJ, Venkateshwar M, Kumar EV. Amylolytic bacterial lactic acid fermentation - a review. Biotechnol Adv. 2008;26:22-34. 12. Axelsson L. Lactic acid bacteria: classification and physiology. New York: Marcel Dekker, Inc.; 2004. 13. Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol. 1997;179:5282-7. 14. Yi X, Kot E, Bezkorovainy A. Properties of NADH oxidase from Lactobacillus delbrueckii ssp. bulgaricus. . J Sci Food Agric. 1998;78:527-34. 15. Tamime AY, Marshall VM, Robinson RK. Microbiological and technological aspects of milks fermented by bifidobacteria. J Dairy Res. 1995;62:151-87. 16. Sanders ME. Probiotics: considerations for human health. Nutr Rev. 2003;61:91-9. 17. Chiu CH, Lu TY, Tseng YY, Pan TM. The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Appl Microbiol Biotechnol. 2006;71:238-45. 18. Taki K, Takayama F, Niwa T. Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr. 2005;15:77-80. 19. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MH, Hugenholtz J. Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol. 2003;69:4542-8. 20. Ranganathan R, Nicklas TA, Yang SJ, Berenson GS. The nutritional impact of dairy product consumption on dietary intakes of adults (1995-1996): the Bogalusa Heart Study. J Am Diet Assoc. 2005;105:1391-400. 21. Mallett AK, Bearne CA, Rowland IR. The influence of incubation pH on the activity of rat and human gut flora enzymes. J Appl Bacteriol. 1989;66:433-7. 22. Bharucha AE. Constipation. Best Pract Res Clin Gastroenterol. 2007;21:709-31. 23. An HM, Baek EH, Jang S, Lee do K, Kim MJ, Kim JR, Lee KO, Park JG, Ha NJ. Efficacy of Lactic Acid Bacteria (LAB) supplement in management of constipation among nursing home residents. Nutr J. 2010;9:5. 24. Bekkali NL, Bongers ME, Van den Berg MM, Liem O, Benninga MA. The role of a probiotics mixture in the treatment of childhood constipation: a pilot study. Nutr J. 2007;6:17. 25. Banaszkiewicz A, Szajewska H. Ineffectiveness of Lactobacillus GG as an adjunct to lactulose for the treatment of constipation in children: a double-blind, placebo-controlled randomized trial. J Pediatr. 2005;146:364-9. 26. Seki M, Karakama F, Terajima T, Ichikawa Y, Ozaki T, Yoshida S, Yamashita Y. Evaluation of mutans streptococci in plaque and saliva: correlation with caries development in preschool children. J Dent. 2003;31:283-90. 27. Nase L, Hatakka K, Savilahti E, Saxelin M, Ponka A, Poussa T, Korpela R, Meurman JH. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35:412-20. 28. Stecksen-Blicks C, Sjostrom I, Twetman S. Effect of long-term consumption of milk supplemented with probiotic lactobacilli and fluoride on dental caries and general health in preschool children: a cluster-randomized study. Caries Res. 2009;43:374-81. 29. Ahola AJ, Yli-Knuuttila H, Suomalainen T, Poussa T, Ahlstrom A, Meurman JH, Korpela R. Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol. 2002;47:799-804. 30. Campbell AK, Waud JP, Matthews SB. The molecular basis of lactose intolerance. Sci Prog. 2009;92:241-87. 31. Lomer MC, Parkes GC, Sanderson JD. Review article: lactose intolerance in clinical practice--myths and realities. Aliment Pharmacol Ther. 2008;27:93-103. 32. Adolfsson O, Meydani SN, Russell RM. Yogurt and gut function. Am J Clin Nutr. 2004;80:245-56. 33. Pettoello Mantovani M, Guandalini S, Ecuba P, Corvino C, di Martino L. Lactose malabsorption in children with symptomatic Giardia lamblia infection: feasibility of yogurt supplementation. J Pediatr Gastroenterol Nutr. 1989;9:295-300. 34. Oozeer R, Goupil-Feuillerat N, Alpert CA, van de Guchte M, Anba J, Mengaud J, Corthier G. Lactobacillus casei is able to survive and initiate protein synthesis during its transit in the digestive tract of human flora-associated mice. Appl Environ Microbiol. 2002;68:3570-4. 35. He T, Priebe MG, Zhong Y, Huang C, Harmsen HJ, Raangs GC, Antoine JM, Welling GW, Vonk RJ. Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. J Appl Microbiol. 2008;104:595-604. 36. de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics--compensation for lactase insufficiency. Am J Clin Nutr. 2001;73:421S-9S. 37. Levri KM, Ketvertis K, Deramo M, Merenstein JH, D''Amico F. Do probiotics reduce adult lactose intolerance? A systematic review. J Fam Pract. 2005;54:613-20. 38. Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136:2015-31. 39. McFarland LV. Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol. 2008;3:563-78. 40. Barbut F, Lalande V, Burghoffer B, Thien HV, Grimprel E, Petit JC. Prevalence and genetic characterization of toxin A variant strains of Clostridium difficile among adults and children with diarrhea in France. J Clin Microbiol. 2002;40:2079-83. 41. McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101:812-22. 42. Jones K. Probiotics: preventing antibiotic-associated diarrhea. J Spec Pediatr Nurs. 2010;15:160-2. 43. Lonnermark E, Friman V, Lappas G, Sandberg T, Berggren A, Adlerberth I. Intake of Lactobacillus plantarum reduces certain gastrointestinal symptoms during treatment with antibiotics. J Clin Gastroenterol. 2010;44:106-12. 44. Katz J. Should probiotics be routine therapy for the prevention of antibiotic-associated diarrhea? J Clin Gastroenterol. 2010;44:83-4. 45. Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl. 1996;216:132-48. 46. Wullt M, Johansson Hagslatt ML, Odenholt I, Berggren A. Lactobacillus plantarum 299v enhances the concentrations of fecal short-chain fatty acids in patients with recurrent clostridium difficile-associated diarrhea. Dig Dis Sci. 2007;52:2082-6. 47. Ghadimi D, Folster-Holst R, de Vrese M, Winkler P, Heller KJ, Schrezenmeir J. Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobiology. 2008;213:677-92. 48. Sashihara T, Sueki N, Ikegami S. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J Dairy Sci. 2006;89:2846-55. 49. Pena JA, Versalovic J. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol. 2003;5:277-85. 50. Segawa S, Nakakita Y, Takata Y, Wakita Y, Kaneko T, Kaneda H, Watari J, Yasui H. Effect of oral administration of heat-killed Lactobacillus brevis SBC8803 on total and ovalbumin-specific immunoglobulin E production through the improvement of Th1/Th2 balance. Int J Food Microbiol. 2008;121:1-10. 51. Tsai YT, Cheng PC, Liao JW, Pan TM. Effect of the administration of Lactobacillus paracasei subsp. paracasei NTU 101 on Peyer''s patch-mediated mucosal immunity. Int Immunopharmacol. 2010;10:791-8. 52. Yasuda E, Serata M, Sako T. Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol. 2008;74:4746-55. 53. Chuang L, Wu KG, Pai C, Hsieh PS, Tsai JJ, Yen JH, Lin MY. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J Agric Food Chem. 2007;55:11080-6. 54. Kawase M, He F, Kubota A, Hiramatsu M, Saito H, Ishii T, Yasueda H, Akiyama K. Effect of fermented milk prepared with two probiotic strains on Japanese cedar pollinosis in a double-blind placebo-controlled clinical study. Int J Food Microbiol. 2009;128:429-34. 55. Kim JY, Kwon JH, Ahn SH, Lee SI, Han YS, Choi YO, Lee SY, Ahn KM, Ji GE. Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatr Allergy Immunol. 2010;21:e386-93. 56. Helin T, Haahtela S, Haahtela T. No effect of oral treatment with an intestinal bacterial strain, Lactobacillus rhamnosus (ATCC 53103), on birch-pollen allergy: a placebo-controlled double-blind study. Allergy. 2002;57:243-6. 57. Folster-Holst R, Muller F, Schnopp N, Abeck D, Kreiselmaier I, Lenz T, von Ruden U, Schrezenmeir J, Christophers E, Weichenthal M. Prospective, randomized controlled trial on Lactobacillus rhamnosus in infants with moderate to severe atopic dermatitis. Br J Dermatol. 2006;155:1256-61. 58. Winkler P, Ghadimi D, Schrezenmeir J, Kraehenbuhl JP. Molecular and cellular basis of microflora-host interactions. J Nutr. 2007;137:756S-72S. 59. Li JX, Cao J, Lu XF, Chen SF, Yu DH, Duan XF, Wu XG, Gu DF. The effect of total cholesterol on myocardial infarction in Chinese male hypertension population. Biomed Environ Sci. 2010;23:37-41. 60. Kapila S, Sinha PR. Antioxidative and hypocholesterolemic effect of Lactobacillus casei ssp casei (biodefensive properties of lactobacilli). Indian J Med Sci. 2006;60:361-70. 61. Ataie-Jafari A, Larijani B, Alavi Majd H, Tahbaz F. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab. 2009;54:22-7. 62. Greany KA, Bonorden MJ, Hamilton-Reeves JM, McMullen MH, Wangen KE, Phipps WR, Feirtag J, Thomas W, Kurzer MS. Probiotic capsules do not lower plasma lipids in young women and men. Eur J Clin Nutr. 2008;62:232-7. 63. Greany KA, Nettleton JA, Wangen KE, Thomas W, Kurzer MS. Probiotic consumption does not enhance the cholesterol-lowering effect of soy in postmenopausal women. J Nutr. 2004;134:3277-83. 64. Lee do K, Jang S, Baek EH, Kim MJ, Lee KS, Shin HS, Chung MJ, Kim JE, Lee KO, Ha NJ. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids Health Dis. 2009;8:21. 65. Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M. The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr. 2010;103:1778-83. 66. Altmann SW, Davis HR, Jr., Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201-4. 67. Huang Y, Zheng Y. The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. Br J Nutr. 2010;103:473-8. 68. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903-13. 69. Minervini F, Algaron F, Rizzello CG, Fox PF, Monnet V, Gobbetti M. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl Environ Microbiol. 2003;69:5297-305. 70. Leclerc PL, Gauthier SF, Bachelard H, Santure M, Roy D. Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. Int Dairy J 2002;12:995-1004. 71. Pan D, Luo Y, Tanokura M. Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chemistry. 2005;91:123-9. 72. El-Nezami HS, Polychronaki NN, Ma J, Zhu H, Ling W, Salminen EK, Juvonen RO, Salminen SJ, Poussa T, Mykkanen HM. Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am J Clin Nutr. 2006;83:1199-203. 73. Rafter J. The effects of probiotics on colon cancer development. Nutr Res Rev. 2004;17:277-84. 74. Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, Kumar P, Poddar D, Aggarwal PK, Henry CJ, Jain S, Yadav H. Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr. 2010:1-24. 75. Ito M, Ohishi K, Yoshida Y, Yokoi W, Sawada H. Antioxidative effects of lactic acid bacteria on the colonic mucosa of iron-overloaded mice. J Agric Food Chem. 2003;51:4456-60. 76. Sun J, Hu XL, Le GW, Shi YH. Lactobacilli prevent hydroxy radical production and inhibit Escherichia coli and Enterococcus growth in system mimicking colon fermentation. Lett Appl Microbiol. 2010;50:264-9. 77. Ito M, Ohishi K, Yoshida Y, Okumura T, Sato T, Yokoi W, Sawada H. Preventive effect of Streptococcus thermophilus YIT 2001 on dextran sulfate sodium-induced colitis in mice. Biosci Biotechnol Biochem. 2008;72:2543-7. 78. Songisepp E, Kals J, Kullisaar T, Mandar R, Hutt P, Zilmer M, Mikelsaar M. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr J. 2005;4:22. 79. Terahara M, Kurama S, Takemoto N. Prevention by lactic acid bacteria of the oxidation of human LDL. Biosci Biotechnol Biochem. 2001;65:1864-8. 80. Lee J, Hwang KT, Heo MS, Lee JH, Park KY. Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress. J Med Food. 2005;8:299-304. 81. Saide JA, Gilliland SE. Antioxidative activity of lactobacilli measured by oxygen radical absorbance capacity. J Dairy Sci. 2005;88:1352-7. 82. Lin MY, Chang FJ. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci. 2000;45:1617-22. 83. Orrhage K, Sillerstrom E, Gustafsson JA, Nord CE, Rafter J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res. 1994;311:239-48. 84. Chalova VI, Lingbeck JM, Kwon YM, Ricke SC. Extracellular antimutagenic activities of selected probiotic Bifidobacterium and Lactobacillus spp. as a function of growth phase. J Environ Sci Health B. 2008;43:193-8. 85. Challa A, Rao DR, Chawan CB, Shackelford L. Bifidobacterium longum and lactulose suppress azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis. 1997;18:517-21. 86. Takeuchi H, Maehara Y, Tokunaga E, Koga T, Kakeji Y, Sugimachi K. Prognostic significance of natural killer cell activity in patients with gastric carcinoma: a multivariate analysis. Am J Gastroenterol. 2001;96:574-8. 87. Shida K, Suzuki T, Kiyoshima-Shibata J, Shimada S, Nanno M. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clin Vaccine Immunol. 2006;13:997-1003. 88. Takeda K, Okumura K. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity. J Nutr. 2007;137:791S-3S. 89. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S. Probiotics: mechanisma and established effects. International dairy Journal 1999;9:43-52. 90. Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem. 2002;277:50959-65. 91. Otte JM, Mahjurian-Namari R, Brand S, Werner I, Schmidt WE, Schmitz F. Probiotics regulate the expression of COX-2 in intestinal epithelial cells. Nutr Cancer. 2009;61:103-13. 92. Kim WR, Brown RS, Jr., Terrault NA, El-Serag H. Burden of liver disease in the United States: summary of a workshop. Hepatology. 2002;36:227-42. 93. McGlynn KA, Tsao L, Hsing AW, Devesa SS, Fraumeni JF, Jr. International trends and patterns of primary liver cancer. Int J Cancer. 2001;94:290-6. 94. Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med. 2003;34:1-10. 95. Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, Szabo G. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology. 2009;49:989-97. 96. Gerber T, Schomerus H. Hepatic encephalopathy in liver cirrhosis: pathogenesis, diagnosis and management. Drugs. 2000;60:1353-70. 97. Bajaj JS, Saeian K, Christensen KM, Hafeezullah M, Varma RR, Franco J, Pleuss JA, Krakower G, Hoffmann RG, Binion DG. Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am J Gastroenterol. 2008;103:1707-15. 98. Solga SF. Probiotics can treat hepatic encephalopathy. Med Hypotheses. 2003;61:307-13. 99. Loguercio C, Federico A, Tuccillo C, Terracciano F, D''Auria MV, De Simone C, Del Vecchio Blanco C. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol. 2005;39:540-3. 100. Cornwell T, Cohick W, Raskin I. Dietary phytoestrogens and health. Phytochemistry. 2004;65:995-1016. 101. Nettleton JA, Greany KA, Thomas W, Wangen KE, Adlercreutz H, Kurzer MS. The effect of soy consumption on the urinary 2:16-hydroxyestrone ratio in postmenopausal women depends on equol production status but is not influenced by probiotic consumption. J Nutr. 2005;135:603-8. 102. Chien HL, Huang HY, Chou CC. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 2006;23:772-8. 103. Nettleton JA, Greany KA, Thomas W, Wangen KE, Adlercreutz H, Kurzer MS. Plasma phytoestrogens are not altered by probiotic consumption in postmenopausal women with and without a history of breast cancer. J Nutr. 2004;134:1998-2003. 104. Panay N, Rees M. Alternatives to hormone replacement therapy for management of menopause symptoms. Curr Obst Gynaecol. 2005;15:259-66. 105. Lind L, Berne C, Lithell H. Prevalence of insulin resistance in essential hypertension. J Hypertens. 1995;13:1457-62. 106. Arunachalam K, Gill HS, Chandra RK. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur J Clin Nutr. 2000;54:263-7. 107. Yadav H, Jain S, Sinha PR. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition. 2007;23:62-8. 108. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, Song XY, Diehl AM. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343-50. 109. Mikelsaar M, Stsepetova J, Hutt P, Kolk H, Sepp E, Loivukene K, Zilmer K, Zilmer M. Lactobacillus sp. is associated with some cellular and metabolic characteristics of blood in elderly people. Anaerobe. 2010;16:240-6. 110. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006;295:1549-55. 111. Ho CS, Tsai AC. Prevalence of overweight and obesity and its associated factors in aboriginal Taiwanese: findings from the 2001 National Health Interview Survey in Taiwan. Asia Pac J Clin Nutr. 2007;16:572-9. 112. Tennyson CA, Friedman G. Microecology, obesity, and probiotics. Curr Opin Endocrinol Diabetes Obes. 2008;15:422-7. 113. Venema K. Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr Opin Clin Nutr Metab Care. 2010;13:432-8. 114. Sanz Y, Santacruz A, Gauffin P. Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc. 2010;69:434-41. 115. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature. 2009;457:480-4. 116. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070-5. 117. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022-3. 118. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. 119. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190-5. 120. Angelakis E, Raoult D. The increase of lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PLoS One. 2010;5:e10463. 121. Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. New York: Oxford University Press; 1999. 122. Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007;19:1807-19. 123. Pharm-Huy LA, He H, Pharm-Huy C. Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci. 2008;4:89-96. 124. Arafa HM, Hemeida RA, El-Bahrawy AI, Hamada FM. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem Toxicol. 2009;47:1311-7. 125. Hall CJ, Bouhafs L, Dizcfalusy U, Sandstedt K. Cryptococcus neoformans causes lipid peroxidation; therefore it is a potential inducer of atherogenesis. Mycologia. 2010;102:546-51. 126. Kedzierska M, Olas B, Wachowicz B, Jeziorski A, Piekarski J. The lipid peroxidation in breast cancer patients. Gen Physiol Biophys. 2010;29:208-10. 127. Tudek B, Winczura A, Janik J, Siomek A, Foksinski M, Olinski R. Involvement of oxidatively damaged DNA and repair in cancer development and aging. Am J Transl Res. 2010;2:254-84. 128. Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai. 2010;93:682-93. 129. Guglielmotto M, Giliberto L, Tamagno E, Tabaton M. Oxidative stress mediates the pathogenic effect of different Alzheimer''s disease risk factors. Front Aging Neurosci. 2010;2:3. 130. McCord JM. Superoxide dismutase, lipid peroxidation, and bell-shaped dose response curves. Dose Response. 2008;6:223-38. 131. Sies H. Oxidative Stress: Oxidants and Antioxidants. London: Academic Press; 1991. 132. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147-50. 133. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest. 1986;77:1312-20. 134. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37-56. 135. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. 136. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315-424. 137. Stocker R, Keaney JF, Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381-478. 138. Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci. 2007;52:2015-21. 139. Augustyniak A, Stankiewicz A, Skrzydlewska E. The Influence of L-Carnitine on Oxidative Modification of LDL In Vitro. Toxicol Mech Methods. 2008;18:455-62. 140. Himmetoglu S, Dincer Y, Ersoy YE, Bayraktar B, Celik V, Akcay T. DNA oxidation and antioxidant status in breast cancer. J Investig Med. 2009;57:720-3. 141. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142:231-55. 142. Aruoma OI, Halliwell B, Dizdaroglu M. Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase. J Biol Chem. 1989;264:13024-8. 143. Stevens JJ, Graham B, Walker AM, Tchounwou PB, Rogers C. The effects of arsenic trioxide on DNA synthesis and genotoxicity in human colon cancer cells. Int J Environ Res Public Health. 2010;7:2018-32. 144. Commane D, Hughes R, Shortt C, Rowland I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat Res. 2005;591:276-89. 145. Burns AJ, Rowland IR. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat Res. 2004;551:233-43. 146. Venturi M, Hambly RJ, Glinghammar B, Rafter JJ, Rowland IR. Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis. 1997;18:2353-9. 147. Matsuura E, Hughes GR, Khamashta MA. Oxidation of LDL and its clinical implication. Autoimmun Rev. 2008;7:558-66. 148. Diaz MN, Frei B, Vita JA, Keaney JF, Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med. 1997;337:408-16. 149. Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun. 1989;6:67-75. 150. Bhalodkar NC, Blum S, Enas EA. Accuracy of the ratio of triglycerides to high-density lipoprotein cholesterol for predicting low-density lipoprotein cholesterol particle sizes, phenotype B, and particle concentrations among Asian Indians. Am J Cardiol. 2006;97:1007-9. 151. Kocaturk PA, Akbostanci MC, Isikay C, Ocal A, Tuncel D, Kavas GO, Mutluer N. Antioxidant status in cerebrovascular accident. Biol Trace Elem Res. 2001;80:115-24. 152. Ryglewicz D, Rodo M, Roszczynko M, Baranska-Gieruszczak M, Szirkowiec W, Swiderska M, Wehr H. Dynamics of LDL oxidation in ischemic stroke patients. Acta Neurol Scand. 2002;105:185-8. 153. Cherubini A, Polidori MC, Bregnocchi M, Pezzuto S, Cecchetti R, Ingegni T, di Iorio A, Senin U, Mecocci P. Antioxidant profile and early outcome in stroke patients. Stroke. 2000;31:2295-300. 154. Durak I, Kacmaz M, Cimen MY, Buyukkocak U, Ozturk HS. Blood oxidant/antioxidant status of atherosclerotic patients. Int J Cardiol. 2001;77:293-7. 155. Oka K, Yasuhara M, Suzumura K, Tanaka K, Sawamura T. Antioxidants suppress plasma levels of lectinlike oxidized low-density lipoprotein receptor-ligands and reduce atherosclerosis in watanabe heritable hyperlipidemic rabbits. J Cardiovasc Pharmacol. 2006;48:177-83. 156. Niki E. Antioxidants and atherosclerosis. Biochem Soc Trans. 2004;32:156-9. 157. Lapointe A, Couillard C, Lemieux S. Effects of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem. 2006;17:645-58. 158. Chopra M, O''Neill ME, Keogh N, Wortley G, Southon S, Thurnham DI. Influence of increased fruit and vegetable intake on plasma and lipoprotein carotenoids and LDL oxidation in smokers and nonsmokers. Clin Chem. 2000;46:1818-29. 159. Earnest CP, Wood KA, Church TS. Complex multivitamin supplementation improves homocysteine and resistance to LDL-C oxidation. J Am Coll Nutr. 2003;22:400-7. 160. Chang SK, Hassan HM. Characterization of superoxide dismutase in Streptococcus thermophilus. Appl Environ Microbiol. 1997;63:3732-5. 161. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A. Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol. 2002;72:215-24. 162. Araki Y, Sugihara H, Hattori T. The free radical scavengers edaravone and tempol suppress experimental dextran sulfate sodium-induced colitis in mice. Int J Mol Med. 2006;17:331-4. 163. Virtanen T, Pihlanto A, Akkanen S, Korhonen H. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J Appl Microbiol. 2007;102:106-15. 164. Lee J, Hwang KT, Chung MY, Cho DH, Park CS. Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect. J Food Sci 2005;70:M388-M91. 165. Amanatidou A, Smid EJ, Bennik MH, Gorris LG. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations. FEMS Microbiol Lett. 2001;203:87-94. 166. Mikelsaar M, Zilmer M. Lactobacillus fermentum ME-3 - an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis. 2009;21:1-27. 167. Lin MY, Yen CL. Antioxidative ability of lactic acid bacteria. J Agric Food Chem. 1999;47:1460-6. 168. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats'' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr. 2003;90:449-56. 169. Tsai TY, Chu LH, Lee CL, Pan TM. Atherosclerosis-Preventing Activity of Lactic Acid Bacteria-Fermented Milk-Soymilk Supplemented with Momordica charantia. J Agric Food Chem. 2009. 170. Terahara M, Nishide S, Kaneko T. Preventive effect of lactobacillus delbrueckii subsp. bulgaricus on the oxidation of LDL. Biosci Biotechnol Biochem. 2000;64:1868-73. Chapter I REFERENCES 1. Chandan, R. C. 1989. Yogurt: Nutritional and health properties. National Yogurt Association, McLean, Virginia, USA. 2. Ahotupa, M., Saxelin, M. and Korpela, R. 1996. Antioxidative properties of Lactobacillus GG. Nutr. Today 31: 51S-52S. 3. Korpela, R., Peuhkuri, K., Lahteenmaki, T., Sievi, E., Saxelin, M. and Vapaatalo, H. 1997. Lactobacillus rhamnosus GG shows antioxidative properties in vascular endothelial cell culture. Milchwissenschaft 52: 503-505. 4. Lin, M. Y. and Yen, C. L. 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47: 1460- 1466. 5. Sanders, J. W., Leehouts, K. J., Haandrikmam, A. J., Venema, G. and Kok, J. 1995. Stress response in Lactobacillus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177: 5254-5260. 6. Kaizu, H., Sasaki, M., Nakajima, H. and Suzuki, Y. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76: 2493- 2499. 7. Halliwell, B. and Chirico, S. 1993. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57: 715S-725S. 8. Halliwell, B. and Gutteridage, J. M. C. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-4. 9. Blau, B., Kohen, R., Bass, P. and Rubinstein, A. 2000. Relation between colonic inflammation severity and total low-molecular-weight antioxidant profiles in experiential colitis. Dig. Dis Sci. 45: 1180-1187. 10. Kruidenier, L., Kuiper, I., Lamers C. B. and Verspaget, H. W. 2003. Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization and association with mucosal antioxidants. J. Pathol. 201: 28-36. 11. Thomas, A., Hemphill, D. and Jeejeebhoy, K. N. 1998. Oxidative stress and antioxidants in intestinal disease. Dig. Dis. 16: 152-158. 12. Simic, M. C. 1988. Mechanisms of inhibition of freeradical processed in mutagenesis and carcinogensis. Mutat. Res. 202: 377-386. 13. Chateau, N., Deschamps, A. M. and Hadjsassi, A. 1994. Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Lett. Appl. Microbiol. 18: 42-44. 14. Gilliland, S. E. and Walker, D. K. 1990. Factors to consider when selecting a dietary adjunct | 摘要: | 乳酸菌被應用在食品發酵上,已有一段深遠的歷史,而醱酵乳品和人類生活形成緊密關係。尤其近年來,許多文獻相繼提出乳酸菌的保健益生功能,其中,特別提及的即是乳酸菌抗氧化能力在疾病預防上可能扮演重要角色。大部分的研究都專注在活菌體的益生功能,不過,在1993年乳酸菌胞內物抗氧化能力首度被日本學者Kaizu證實。本研究第一部分即利用兩種脂質過氧化作用之抑制作用模式系統,包括游離脂肪酸(亞麻油酸)系統與生理性脂質(血漿脂質)系統,來評估優格菌株胞內物的抗氧化能力。Streptococcus salivarius ssp. thermophilus ATCC 19258 和Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 對亞麻油酸過氧化作用的抑制率分別為61%和57%,而S. salivarius ssp. thermophilus ATCC 19258 和 L. delbrueckii ssp. bulgaricus ATCC 11842 對血漿脂質過氧化作用的抑制率分別為57%和41%,由這兩種脂質過氧化作用模式系統,證實這兩株優格菌株具有高度的抗氧化能力。本研究再進一步利用 Intestine 407 細胞株模式系統,來探討優格菌株的抗氧化能力對降低氧化劑過氧化氫所引起氧化傷害之效果,結果顯示優格菌株胞內物確實可以降低氧化劑過氧化氫的氧化性傷害,雖然 L. delbrueckii ssp. bulgaricus ATCC 11842 對降低DNA 損傷的效果較弱,然而 S. salivarius ssp. thermophilus ATCC 19258 則表現對保護 Intestine407 對抗氧化劑過氧化氫所引起的基因毒性良好之能力。同時,這兩株優格菌株也發揮抑制過氧化氫細胞毒性的能力,S. salivarius ssp. thermophilus ATCC 19258 和 L. delbrueckii ssp. bulgaricus ATCC 11842所表現的細胞毒性抑制率分別為71%和48%。 由於國人的十大死因已轉變為以慢性疾病為主要的型態,其中以心血管相關疾病增加最為明顯。氧化傷害與心血管相關疾病的發生息息相關,例如氧化傷害在動脈粥狀硬化的形成過程扮演重要角色。本研究第二部分即比較兩株乳酸菌Bifidobacterium longum MYL2和 Lactobacillus delbrueckii ssp. bulgaricus MYL6其活菌體及胞內物的抗氧化能力。結果顯示,B. longum MYL2和 L. delbrueckii ssp. bulgaricus MYL6在109cfu/mL 時,菌體及胞內物具有清除α-diphenyl-β-picrylhydrazyl (DPPH)自由基能力(63~75%)、抑制liposome 過氧化(25~31%)以及顯著降低Intestine 407腸細胞脂質過氧化物 (malondialdehyde, MDA) 的生成。此外,本研究再進一步利用這兩株具有抗氧化能力乳酸菌的活菌體及其胞內物,探討對腦中風病人(cerebrovascular accident, CVA)和健康受試者血液中低密度脂蛋白(low density lipoprotein, LDL)氧化作用的影響。LDL的氧化作用是以監測LDL conjugated dienes 形成的起始時間(lag time)為指標。當B. longum MYL2和 L. delbrueckii subsp. bulgaricus MYL6以109cfu/mL 的菌數分別處理LDL時,LDL 氧化作用的起始時間顯著被延長,健康受試者血液中LDL氧化被抑制效果優於腦中風病人,而當以B. longum MYL2和 L. delbrueckii ssp. bulgaricus MYL6 109cfu/mL 菌數的胞內物處理腦中風病人及健康受試者的LDL時,LDL 氧化作用的起始時間顯著被延長超過180分鐘,此結果表示,抑制LDL氧化作用以乳酸菌的胞內物優於菌體。推論乳酸菌的胞內物具有效的抑制因子。 上述結果證實乳酸菌具有抗氧化傷害能力,抗氧化能力以乳酸菌的胞內物優於菌體。 Lactic acid bacteria have long been used in fermented foods which are likely to be more desirable for daily lives. Recently, lactic acid bacteria are reported to have health-promoting characteristics in many studies. Above all, the anti-oxidative effects of lactic acid bacteria have been proven to play an important role in disease prevention. However, most of the researches focus on the probiotic effects of viable cell. Yet, it was first demonstrated anti-oxidative effects of intracellular extract of lactic acid bacteria by Kaizu et al in 1993. The first part of this study aims to confirm such anti-oxidative activities of yogurt bacteria. The anti-oxidative activity of intracellular extracts of yogurt bacteria was measured based on the inhibition of lipid peroxidation of two model systems, namely a free fatty acid (linoleic acid) system and a biological lipid (plasma lipid) system. The inhibitory rate on linoleic acid peroxidation was 61 and 57% for Streptococcus salivarius ssp. thermophilus ATCC 19258 and Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842, respectively. The inhibitory rate on plasma lipid peroxidation was 57 and 41% for S. salivarius ssp. thermophilus ATCC 19258 and L. delbrueckii ssp. bulgaricus ATCC 11842, respectively. Results from both systems demonstrated that these two yogurt strains were potentially highly antioxidative. Further experiments were done on Intestine 407 cells to determine the antioxidative effects of yogurt bacteria on reducing oxidative damage of oxidant H2O2. Intracellular extracts of yogurt bacteria reduced the genotoxicity of H2O2. Although L. delbrueckii ssp. bulgaricus ATCC 11842 had only minor effects on reducing DNA damage, S. salivarius ssp. thermophilus ATCC 19258 showed excellent potential for protecting the Intestine 407 cells from the genotoxicity of oxidant H2O2. Both yogurt bacteria demonstrated high cytotoxicity inhibitory ability for oxidant H2O2. The cytotoxicity inhibition rate was 71 and 48% for S. salivarius ssp. thermophilus ATCC 19258 and L. delbrueckii ssp. bulgaricus ATCC 11842, respectively. According to the top ten domestic mortality reports, the chronic diseases are the major causes nowadays in which cardiovascular-related disease has increased dramatically. Furthermore, oxidative stress and cardiovascular-related disease are highly correlated which for example, oxidative damage plays a vital role in the progression of atherosclerosis. The second part of this study aims to compare the anti-oxidative ability of intact cells and intracellular extracts of two lactic acid bacterial strains, Bifidobacterium longum MYL2 and Lactobacillus delbrueckii ssp. bulgaricus MYL6. Results showed that both intact cells and intracellular extracts of 109 cells of B. longum MYL2 and L. delbrueckii ssp. bulgaricus MYL6 had the ability to scavenge α-diphenyl-β-picrylhydrazyl (DPPH) free radical by 70.4-75.1%, to inhibit liposome peroxidation by 25-31%, and to decrease significantly the malondialdehyde (MDA) production in Intestine 407 cells. The effect of intact cells and intracellular extracts of these two bacterial strains on the oxidation of low density lipoprotein (LDL) isolated from cerebrovascular accident (CVA) patients and healthy subjects were also compared. Oxidation of LDL was monitored by measuring the lag time for the formation of conjugated dienes in isolated LDL particles. When LDL was treated respectively with 109 intact cells of B. longum MYL2 and L. delbrueckii ssp. bulgaricus MYL6, the lag time of oxidation of LDL was prolonged significantly. The extent of inhibition was greater on LDL isolated from healthy subjects than from CVA patients. When LDL from either CVA patients or healthy subjects was treated with intracellular extracts of 109 cells of B. longum MYL2 and L. delbrueckii ssp. bulgaricus MYL6, respectively, the copper-mediated oxidation was extensively inhibited with a lag time exceeding 180 min. Results from this study show a greater inhibitory effect on LDL oxidation exerted by the intracellular extract than intact cells, suggesting the presence of effective inhibitory factors in the intracellular extract. In summary, lactic acid bacteria are though to be a promising candidate to diminish oxidative stress. In addition, intracellular extracts of lactic acid bacteria have exhibited higher antioxidant activity than that of intact cells. |
URI: | http://hdl.handle.net/11455/52056 |
Appears in Collections: | 食品暨應用生物科技學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.