Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52075
標題: (一) 奈米鈣化合物對大鼠生物利用率之探討 (二) β-類澱粉蛋白干擾神經細胞葡萄糖之利用效應及橙皮素與橙皮苷之保護作用
1. Bioavailability of nano calcium in Sprague-Dawley rats 2. Impairment of glucose transport by amyloid β-protein in neuron cells: Protective effects of hesperetin and hesperidin
作者: Tsai, Shin-Yi
蔡欣怡
關鍵字: 奈米鈣;nano-calcium;血鈣;生物利用率;碳酸鈣;氯化鈣;阿茲海默症;β-類澱粉蛋白 (Aβ1-42);胰島素阻抗;糖尿病;葡萄糖吸收;plasma calcium;bioavailability;calcium carbonate (CaCO3);calcium chloride (CaCl2);Alzheimer's disease (AD);amyloid β-protein (Aβ1-42);insulin resistance;diabetes;glucose uptake
出版社: 食品暨應用生物科技學系所
引用: 奈米國家型科技計畫。2010。奈米國家型科技計畫-計畫簡介。取自 http://nano-taiwan.sinica.edu.tw 賴愛姬。1996。鰻骨粉與碳酸鈣為鈣源對老鼠鈣利用效果之比較。中華民國營養學會誌。21: 121-131。 賴奕忻、林旭陽、廖家鼎、闕麗卿和施養志。2009。奈米珍珠粉中奈米成分之研究與探討。行政院衛生署藥物食品檢驗局於 39 屆食科年會發表之壁報論文。 李奮生和史紅虎。2002。打造奈米經濟:引爆 21 世紀科技革命。書泉出版。 李鳳生和楊毅。2002。奈米/微米複合技術及應用。國防工業出版社:北京。 洪敏元、楊堉麟、劉良慧、林育娟、何明聰和賴明華。2005。當代生理學。華杏出版股份有限公司。4: 27-30, 401-404。 行政院衛生署食品資訊網。2010。食品添加物使用範圍及限量暨規格標準。取自 http://food.doh.gov.tw/foodnew。 張錦龍。2004。山藥酸乳酪添加奈米鈣對鈣質生物利用率之研究。國立臺灣海洋大學食品科學系碩士論文。 朱霈瑄。2008。探討小麥草汁混濁沉澱的形成。國立中興大學食品暨應用生物科技學系碩士論文。P38-40。 朱莉。2002。食品工業中的納米技術。食品科技。11: 6-8。 中國包裝機械網。2010。包裝功能材料應用探討。取自 http://www.chinabz.com.cn/Data_View.asp?id=6786。 陳仲仁。2007。濕式球磨技術與應用。食品工業發展研究所專題報導。39: 7-15。 陳相訓。2008。奈米化珍珠粉之理化特性與生體可用率。國立台灣大學食品科技研究所博士論文。 蔡敬民。2008。營養素辭典:鈣。行政院衛生署食品資訊網。Available from http://food.doh.gov.tw/FoodNew/library/Dictionary/Dictionary_a.aspx。 蔡適鋮。2007。奈米鈣之安全性評估及對人體生物利用率之影響。靜宜大學食品營養學系碩士論文。 楊毅、鄧國棟和尹強。2001。納米 TiO2/SiO2 複合食品抗菌材料。中國粉體技術。7: 23-26。 葉安義。2004。奈米科技與食品。科學發展。384: 44-49。 葉安義。2007。奈米科技與食品。科學發展。418: 42-47。 王崇人。2002。神奇的奈米科學。科學發展。354: 48-51。 王秀姿。2006。飲食少鈣、健康有礙。行政院衛生署官網。取自 http://www.doh.gov.tw/CHT2006/DM/SEARCH_RESULT.aspx 吳炫慧。2006。研究台灣與國際間可供食品使用之藥物植物及奈米食品之管理規範。國立中興大學食品暨應用生物科技學系碩士論文。 Bass, J. K. and Chan, G. M. 2006. Calcium nutrition and metabolism during infancy. Nutrition 22: 1057-1066. Bodmeier, R., Chen, H. G. and Paeratakul, O. 1989. A novel approach to the oral delivery of micro- or nanoparticles. Pharmaceut. Res. 6: 413-417. Bronner, F. and Pansu, D. 1999. Nutritional aspects of calcium absorption. J. Nutr. 129: 9-12. Buckley, M. and Bronner, F. 1980. Calcium-binding protein biosynthesis in the rat: regulation by calcium and 1,25-dihydroxyvitamin D3. Arch. Biochem. Biophys. 202: 235-241. BioDelivery Science International Incorporation (BDSI). 2010. Available from http://www.biodeliverysciences.com/ Cai, J., Zhang, Q., Wastney, M. E. and Weaver, C. M. 2004. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats. Exp. Biol. Med. (Maywood) 229: 40-45. Chau, C. F., Wu, S. H. and Yen G. C. 2007. The development of regulations for food nanotechnology. Trends Food Sci. Technol. 18: 269-280. Chen, H. S., Chang, J. H. and Wu, J. S. B. 2008. Calcium bioavailability of nanonized pearl powder for adults. J. Food Sci. 73: H246-251. Douroumis, D. and Fahr, A. 2006. Nano- and micro- particulate formulations of poorly water-soluble drugs by using a novel optimized technique. Eur. J. Pharm. Biopharm. 63: 173–175. Food Safety Authority of Ireland (FSAI). 2008. The Relevance for Food Safety of Applications of Nanotechnology in the Food and Feed Industries. Food Safety Authority of Ireland (FSAI) ISBN 1-904465-59-5. Available from http://www.fsai.ie/publications/reports/Nanotechnology_report.pdf. Gao, H., Chen, H., Chen, W., Tao, F., Zheng, Y., Jiang, Y. and Ruan, H. 2008. Effect of nanometer pearl powder on calcium absorption and utilization in rats. Food Chem. 109: 493-498. Garcia-Lopez, S. and Miller, G. D. 1991. Bioavailability of calcium from four different sources. Nutr. Res. 11: 1187-1196. Gekas, V., Baralla, G. and Flores, V. 1998. Applications of membrane technology in the food industry. Food Sci. Technol. Int. 4: 311-328. Kulp, K. S., Fortson, S. L., Knize, M. G. and Felton, J. S. 2003. An in vitro model system to predict the bioaccessibility of heterocyclic amines from a cooked meat matrix. Food Chem. Toxicol. 41: 1701-1710. Kuo, Y. M. and Chu, T. S. 1997. Hypercalcemia. Formosan J. Med. 1: 669-673. Liversidge, G. G. and Cundy, K. C. 1995. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm. 125: 91-97. Merisko-Liversidge, G. G. and Cooper, E. R. 2003. Nanosizing: a formulating approach for poorly water soluble compounds. Eur. J. PharmSci. 18: 113-120. Mohamed, E., Souhail, B., Olivier, R., Christophe, B., Claude, D., Nour-Eddine, D. and Hamadi, A. 2008. Date flesh: Chemical composition and characteristics of the dietary fibre. Food Chem. 111: 676-682. Moraru, C. I., Panchapakesan, C. P., Huang, Q., Takhistov, P., Liu, S. and Kokini, J. L. 2003. Nanotechnology: A new frontier in food science. Food Technol. 57: 24-29. National Cancer Institute. 2009. A snapshot of nanotechnology. Available from http://www.cancer.gov/aboutnci/servingpeople/snapshots/nanotech.pdf National Science Foundation (NSF). 2005. The national nanotechnology initiative at five years: assessment and recommendations of the national nanotechnology advisory panel. Available from http://www.nano.gov/FINAL_PCAST_NANO_REPORT.pdf Nordin, B. E. 1990. Calcium homeostasis. Clin Biochem. 23: 3-10. Nordin, B. E. 1997. Calcium and osteoporosis. Nutrition 13: 664-686. Rohner, F., Ernst, F. O., Arnold, M., Hilbe, M., Biebinger, R., Ehrensperger, F., Pratsinis, S. E., Langhans, W., Hurrell, R. F. and Zimmermann, M. B. 2007. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137: 614-619. Ross, S. A., Srinivas, P. R., Clifford, A. J., Lee, S. C., Philbert, M. A. and Hettich, R. L. 2004. New technologies for nutrition research. J. Nutr. 134:681-685. Roy, K., Mao, H. Q., Huang, S. K. and Leong, K.W. 1999. Oral gene delivery with chitosanBDNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Med. 5: 387-391. Sanguansri, P. and Augustin, M. A. 2006. Nanoscale materials development – a food industry perspective. Trends Food Sci. Technol. 17: 547-556. Sozer, N. and Kokini, J. L. 2009. Nanotechnology and its applications in the food sector. Trends Biotechnol. 27: 82-89. Srinivasan, V. S. 2001. Bioavailability of nutrients: a practical approach to in vitro demonstration of the availability of nutrients in multivitamin-mineral combination products. J. Nutr. 131: 1349S-1350S. Suzuki, H., Fukushima, M., Okamoto, S., Takahashi, O., Shimbo, T., Kurose, T., Yamada, Y., Inagaki, N., Seino, Y. and Fukui, T. 2005. Effects of through mastication on postprandial plasma glucose concentrations in nonobese Japanese subjects. Metabolism. 54: 1593-1599. Tiede, K., Boxall, A. B., Tear, S. P., Lewis, J., David, H. and Hassellov, M. 2008. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25: 795-821. Tsugawa, N., Yamabe, T., Takeuchi, A., Kamao, M., Nakagawa, K., Nishijima, K. and Okano, T. 1999. Intestinal absorption of calcium from calcium ascorbate in rats. J. Bone Miner Metab. 17: 30-36. Warczok, J., Ferrando, M., López, F. and Güell, C. 2004. Concentration of apple and pear juices by nanofiltration at low pressures. J. Food Eng. 63: 63-70. Weiss, J., Takhistov, P. and McClements, J. 2006. Functional materials in food nanotechnology. J. Food Sci. 71: R107-R116. World Health Organization (WHO). 2008. Nanotechnology. International Food Safety Authorities Network (INFOSAN) Information Note. Available from http://www.who.int/foodsafety/fs_management/No_01_nanotechnology_Feb08. Yang, L. C., Wu, J. B., Ho, G. H., Yang, S. C., Huang, Y. P. and Lin, W. C. 2008. Effects of poly-gamma-glutamic acid on calcium absorption in rats. Biosci. Biotechnol. Biochem. 72: 3084-3090. 劉宣良、陳錦文、林進中、蘇永成和吳宜靜。2005。人腦的神秘訪客:阿茲海默氏症。科學發展。389: 68-73。 Adamo, M., Raizada, M. K. and LeRoith, D. 1989. Insulin and insulin-like growth factor receptors in the nervous system. Mol. Neurobiol. 3: 71-100. Biessels, G.J., Kamal, A., Urban, I. J., Spruijt, B. M., Erkelens, D. W. and Gispen, W. H. 1998. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: Effects of insulin treatment. Brain Res. 800: 125-135. Biessels, G.J., Kamal, A., Ramakers, G. M., Urban, I. J., Spruijt, B. M., Erkelens, D. W. and Gispen, W. H. 1996. Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45: 1259-1266. Blass, J.P., Gibson, G. E. and Hoyer, S. 2002. The role of the metabolic lesion in alzheimer''s disease. J. Alzheimers Dis. 4: 225-232. Blum-Degen, D., Frolich, L., Hoyer, S. and Riederer, P. 1995. Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? J. Neural Transm. Suppl. 46: 139-147. Bu, L. and Lephart, E. D. 2005. Soy isoflavones modulate the expression of BAD and neuron-specific beta III tubulin in male rat brain. Neurosci. Lett. 385: 153-157. Cacabelos, R., Fernandez-Novoa, L., Lombardi, V., Kubota, Y. and Takeda, M. 2005. Molecular genetics of Alzheimer''s disease and aging. Methods Find. Exp. Clin. Pharmacol. 27 Suppl A: 1-573. Carantoni, M., Zuliani, G., Munari, M. R., D''Elia, K., Palmieri, E. and Fellin, R. 2000. Alzheimer disease and vascular dementia: Relationships with fasting glucose and insulin levels. Dement. Geriatr. Cogn. Disord. 11: 176-180. Cho, J. 2006. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res. 29: 699-706. Choi, T.B., Boado, R. J. and Pardridge, W. M. 1989. Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus. Biochem. Biophys. Res. Commun. 164: 375-380. Citron, M. 2000. Secretases as targets for the treatment of Alzheimer''s disease. Mol. Med. Today 6: 392-397. Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., Luby, J., Dagogo-Jack, A. and Alderson, A. 1996. Memory improvement following induced hyperinsulinemia in Alzheimer''s disease. Neurobiol. Aging 17: 123-130. Craft, S., Dagogo-Jack, S. E., Wiethop, B. V., Murphy, C., Nevins, R. T., Fleischman, S., Rice, V., Newcomer, J. W. and Cryer, P. E. 1993. Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: A longitudinal study. Behav. Neurosci. 107: 926-940. Craft, S., Asthana, S., Schellenberg, G., Baker, L., Cherrier, M., Boyt, A. A., Martins, R. N., Raskind, M., Peskind, E. and Plymate, S. 2000. Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer''s disease differ according to apolipoprotein-E genotype. Ann. N. Y. Acad. Sci. 903: 222-228. Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., Wait, C., Petrova, A., Latendresse, S., Watson, G. S., Newcomer, J. W., Schellenberg, G. D. and Krohn, A. J. 2003. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer''s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28: 809-822. De Felice, F.G., Vieira, M. N., Bomfim, T. R., Decker, H., Velasco, P. T., Lambert, M. P., Viola, K. L., Zhao, W. Q., Ferreira, S. T. and Klein, W. L. 2009. Protection of synapses against Alzheimer''s-linked toxins: Insulin signaling prevents the pathogenic binding of abeta oligomers. Proc. Natl. Acad. Sci. U. S. A. 106: 1971-1976. de la Monte, S.M. and Wands, J. R. 2005. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: Relevance to Alzheimer''s disease. J. Alzheimers Dis. 7: 45-61. De Santi, S., de Leon, M. J., Rusinek, H., Convit, A., Tarshish, C. Y., Roche, A., Tsui, W. H., Kandil, E., Boppana, M., Daisley, K., Wang, G. J., Schlyer, D. and Fowler, J. 2001. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 22: 529-539. den Heijer, T., Vermeer, S. E., van Dijk, E. J., Prins, N. D., Koudstaal, P. J., Hofman, A. and Breteler, M. M. 2003. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46: 1604-1610. Dimpfel, W. 2006. Different anticonvulsive effects of hesperidin and its aglycone hesperetin on electrical activity in the rat hippocampus in-vitro. J. Pharm. Pharmacol. 58: 375-379. Dodart, J.C., Mathis, C., Bales, K. R., Paul, S. M. and Ungerer, A. 1999. Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Neurosci. Lett. 277: 49-52. Duelli, R. and Kuschinsky, W. 2001. Brain glucose transporters: Relationship to local energy demand. News Physiol. Sci. 16: 71-76. Duelli, R., Maurer, M. H., Staudt, R., Heiland, S., Duembgen, L. and Kuschinsky, W. 2000. Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res. 858: 338-347. Duering, M., Grimm, M. O., Grimm, H. S., Schroder, J. and Hartmann, T. 2005. Mean age of onset in familial Alzheimer''s disease is determined by amyloid beta 42. Neurobiol. Aging 26: 785-788. Erlund, I., Silaste, M. L., Alfthan, G., Rantala, M., Kesaniemi, Y. A. and Aro, A. 2002. Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur. J. Clin. Nutr. 56: 891-898. Frautschy, S.A., Baird, A. and Cole, G. M. 1991. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc. Natl. Acad. Sci. U. S. A. 88: 8362-8366. Giaume, C., Tabernero, A. and Medina, J. M. 1997. Metabolic trafficking through astrocytic gap junctions. Glia. 21: 114-123. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M. and Binder, L. I. 1986. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. U. S. A. 83: 4913-4917. Haber, R.S., Weinstein, S. P., O''Boyle, E. and Morgello, S. 1993. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 132: 2538-2543. Hardy, J. and Selkoe, D. J. 2002. The amyloid hypothesis of Alzheimer''s disease: Progress and problems on the road to therapeutics. Science 297: 353-356. Harr, S.D., Simonian, N. A. and Hyman, B. T. 1995. Functional alterations in Alzheimer''s disease: Decreased glucose transporter 3 immunoreactivity in the perforant pathway terminal zone. J. Neuropathol. Exp. Neurol. 54: 38-41. Heidenreich, K.A., de Vellis, G. and Gilmore, P. R. 1988. Functional properties of the subtype of insulin receptor found on neurons. J. Neurochem. 51: 878-887. Heidenreich, K.A., Zahniser, N. R., Berhanu, P., Brandenburg, D. and Olefsky, J. M. 1983. Structural differences between insulin receptors in the brain and peripheral target tissues. J. Biol. Chem. 258: 8527-8530. Hirata, A., Murakami, Y., Shoji, M., Kadoma, Y. and Fujisawa, S. 2005. Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer Res. 25: 3367-3374. Hoyer, S. 2004. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic alzheimer disease: Therapeutic implications. Adv. Exp. Med. Biol. 541: 135-152. Hoyer, S. 2000. Brain glucose and energy metabolism abnormalities in sporadic alzheimer disease. causes and consequences: An update. Exp. Gerontol. 35: 1363-1372. Hwang, S.L. and Yen, G. C. 2009. Modulation of akt, JNK, and p38 activation is involved in citrus flavonoid-mediated cytoprotection of PC12 cells challenged by hydrogen peroxide. J. Agric. Food Chem. 57: 2576-2582. Johnston, J.A., Liu, W. W., Todd, S. A., Coulson, D. T., Murphy, S., Irvine, G. B. and Passmore, A. P. 2005. Expression and activity of beta-site amyloid precursor protein cleaving enzyme in Alzheimer''s disease. Biochem. Soc. Trans. 33: 1096-1100. Jung, H.A., Jung, M. J., Kim, J. Y., Chung, H. Y. and Choi, J. S. 2003. Inhibitory activity of flavonoids from prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch. Pharm. Res. 26: 809-815. Kainulainen, H., Schurmann, A., Vilja, P. and Joost, H. G. 1993. In-vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT3 in brain tissue from streptozotocin-diabetic rats. Acta Physiol. Scand. 149: 221-225. Kalaria, R.N. and Harik, S. I. 1989. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in alzheimer disease. J. Neurochem. 53: 1083-1088. Kar, S., Baccichet, A., Quirion, R. and Poirier, J. 1993. Entorhinal cortex lesion induces differential responses in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in the rat hippocampal formation. Neuroscience 55: 69-80. Keller, J.N., Pang, Z., Geddes, J. W., Begley, J. G., Germeyer, A., Waeg, G. and Mattson, M. P. 1997. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69: 273-284. Kim, J.Y., Jung, K. J., Choi, J. S. and Chung, H. Y. 2004. Hesperetin: A potent antioxidant against peroxynitrite. Free Radic. Res. 38: 761-769. Kowall, N.W., Beal, M. F., Busciglio, J., Duffy, L. K. and Yankner, B. A. 1991. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc. Natl. Acad. Sci. U. S. A. 88: 7247-7251. Lacor, P.N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., Viola, K. L. and Klein, W. L. 2007. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer''s disease. J. Neurosci. 27: 796-807. Lambert, M.P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A. and Klein, W. L. 1998. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U. S. A. 95: 6448-6453. Lee, H.K., Kumar, P., Fu, Q., Rosen, K. M. and Querfurth, H. W. 2009. The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol. Biol. Cell. 20: 1533-1544. Leibson, C.L., Rocca, W. A., Hanson, V. A., Cha, R., Kokmen, E., O''Brien, P. C. and Palumbo, P. J. 1997. Risk of dementia among persons with diabetes mellitus: A population-based cohort study. Am. J. Epidemiol. 145: 301-308. Li, Q.X., Fuller, S. J., Beyreuther, K. and Masters, C. L. 1999. The amyloid precursor protein of alzheimer disease in human brain and blood. J. Leukoc. Biol. 66: 567-574. Liao, F.F. and Xu, H. 2009. Insulin signaling in sporadic Alzheimer''s disease. Sci. Signal. 2: pe36. Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C. X. 2009. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer''s disease. J. Neurochem. 111: 242-249. Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I. and Gong, C. X. 2008. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in alzheimer disease. FEBS Lett. 582: 359-364. Lutz, A.J. and Pardridge, W. M. 1993. Insulin therapy normalizes GLUT1 glucose transporter mRNA but not immunoreactive transporter protein in streptozocin-diabetic rats. Metabolism 42: 939-944. Ma, Q.L., Yang, F., Rosario, E. R., Ubeda, O. J., Beech, W., Gant, D. J., Chen, P. P., Hudspeth, B., Chen, C., Zhao, Y., Vinters, H. V., Frautschy, S. A. and Cole, G. M. 2009. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29: 9078-9089. Magarinos, A.M. and McEwen, B. S. 2000. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc. Natl. Acad. Sci. U. S. A. 97: 11056-11061. Manach, C., Morand, C., Gil-Izquierdo, A., Bouteloup-Demange, C. and Remesy, C. 2003. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur. J. Clin. Nutr. 57: 235-242. Marder, M., Viola, H., Wasowski, C., Fernandez, S., Medina, J. H. and Paladini, A. C. 2003. 6-methylapigenin and hesperidin: New valeriana flavonoids with activity on the CNS. Pharmacol. Biochem. Behav. 75: 537-545. Mark, R.J., Pang, Z., Geddes, J. W., Uchida, K. and Mattson, M. P. 1997. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation. J. Neurosci. 17: 1046-1054. Matsumoto, H. and Rhoads, D. E. 1990. Specific binding of insulin to membranes from dendrodendritic synaptosomes of rat olfactory bulb. J. Neurochem. 54: 347-350. Mayeux, R., Honig, L. S., Tang, M. X., Manly, J., Stern, Y., Schupf, N. and Mehta, P. D. 2003. Plasma A[beta]40 and A[beta]42 and Alzheimer''s disease: Relation to age, mortality, and risk. Neurology 61: 1185-1190. McEwen, B.S. and Reagan, L. P. 2004. Glucose transporter expression in the central nervous system: Relationship to synaptic function. Eur. J. Pharmacol. 490: 13-24. Meneilly, G.S. and Hill, A. 1993. Alterations in glucose metabolism in patients with Alzheimer''s disease. J. Am. Geriatr. Soc. 41: 710-714. Messier, C. and Gagnon, M. 1996. Glucose regulation and cognitive functions: Relation to Alzheimer''s disease and diabetes. Behav. Brain Res. 75: 1-11. Moloney, A.M., Griffin, R. J., Timmons, S., O''Connor, R., Ravid, R. and O''Neill, C. 2010. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer''s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 31: 224-243. Mooradian, A.D., Chung, H. C. and Shah, G. N. 1997. GLUT-1 expression in the cerebra of patients with Alzheimer''s disease. Neurobiol. Aging 18: 469-474. Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K. and Ihara, Y. 1993. Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10: 1151-1160. Nagamatsu, S., Sawa, H., Inoue, N., Nakamichi, Y., Takeshima, H. and Hoshino, T. 1994. Gene expression of GLUT3 glucose transporter regulated by glucose in vivo in mouse brain and in vitro in neuronal cell cultures from rat embryos. Biochem. J. 300 ( Pt 1): 125-131. Ott, A., Stolk, R. P., Hofman, A., van Harskamp, F., Grobbee, D. E. and Breteler, M. M. 1996. Association of diabetes mellitus and dementia: The Rotterdam Study. Diabetologia 39: 1392-1397. Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A., Hofman, A. and Breteler, M. M. 1999. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53: 1937-1942. Park, C.R. 2001. Cognitive effects of insulin in the central nervous system. Neurosci. Biobehav. Rev. 25: 311-323. Parpura-Gill, A., Beitz, D. and Uemura, E. 1997. The inhibitory effects of beta-amyloid on glutamate and glucose uptakes by cultured astrocytes. Brain Res. 754: 65-71. Pessin, J.E. and Saltiel, A. R. 2000. Signaling pathways in insulin action: Molecular targets of insulin resistance. J. Clin. Invest. 106: 165-169. Pike, C.J., Cummings, B. J. and Cotman, C. W. 1992. Beta-amyloid induces neuritic dystrophy in vitro: Similarities with Alzheimer pathology. Neuroreport 3: 769-772. Pike, C.J., Burdick, D., Walencewicz, A. J., Glabe, C. G. and Cotman, C. W. 1993. Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13: 1676-1687. Piroli, G.G., Grillo, C. A., Hoskin, E. K., Znamensky, V., Katz, E. B., Milner, T. A., McEwen, B. S., Charron, M. J. and Reagan, L. P. 2002. Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol. 452: 103-114. Pollard, S.E., Whiteman, M. and Spencer, J. P. 2006. Modulation of peroxynitrite-induced fibroblast injury by hesperetin: A role for intracellular scavenging and modulation of ERK signalling. Biochem. Biophys. Res. Commun. 347: 916-923. Rainey-Smith, S., Schroetke, L. W., Bahia, P., Fahmi, A., Skilton, R., Spencer, J. P., Rice-Evans, C., Rattray, M. and Williams, R. J. 2008. Neuroprotective effects of hesperetin in mouse primary neurones are independent of CREB activation. Neurosci. Lett. 438: 29-33. Reagan, L.P. 2002. Glucose, stress, and hippocampal neuronal vulnerability. Int. Rev. Neurobiol. 51: 289-324. Reaven, G.M. 1995. Pathophysiology of insulin resistance in human disease. Physiol. Rev. 75: 473-486. Rivera, E.J., Goldin, A., Fulmer, N., Tavares, R., Wands, J. R. and de la Monte, S. M. 2005. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer''s disease: Link to brain reductions in acetylcholine. J. Alzheimers Dis. 8: 247-268. Rovet, J.F., Ehrlich, R. M. and Hoppe, M. 1987. Intellectual deficits associated with early onset of insulin-dependent diabetes mellitus in children. Diabetes Care. 10: 510-515. Rovner S. L. 2009. Alzheimer’s scary link to diabetes. Science and technology. 87: 42-46. Available from http://pubs.acs.org/cen/science/87/8720sci1.html Ryan, C., Vega, A. and Drash, A. 1985. Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics. 75: 921-927. Ryan, C.M. 1988. Neurobehavioral complications of type I diabetes. Examination of possible risk factors. Diabetes Care 11: 86-93. Schubert, D. 2005. Glucose metabolism and Alzheimer''s disease. Ageing Res. Rev. 4: 240-257. Schwartz, M.W., Figlewicz, D. P., Baskin, D. G., Woods, S. C. and Porte, D.,Jr. 1992. Insulin in the brain: A hormonal regulator of energy balance. Endocr. Rev. 13: 387-414. Simpson, I.A., Chundu, K. R., Davies-Hill, T., Honer, W. G. and Davies, P. 1994. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer''s disease. Ann. Neurol. 35: 546-551. Skenazy, J.A. and Bigler, E. D. 1984. Neuropsychological findings in diabetes mellitus. J. Clin. Psychol. 40: 246-258. Soto, C. 1999. Plaque busters: Strategies to inhibit amyloid formation in Alzheimer''s disease. Mol. Med. Today. 5: 343-350. Suzuki, M., Tabuchi, M., Ikeda, M., Umegaki, K. and Tomita, T. 2004. Protective effects of green tea catechins on cerebral ischemic damage. Med. Sci. Monit. 10: BR166-174. Vannucci, S.J., Gibbs, E. M. and Simpson, I. A. 1997. Glucose utilization and glucose transporter proteins GLUT-1 and GLUT-3 in brains of diabetic (db/db) mice. Am. J. Physiol. 272: E267-74. Vannucci, S.J., Clark, R. R., Koehler-Stec, E., Li, K., Smith, C. B., Davies, P., Maher, F. and Simpson, I. A. 1998. Glucose transporter expression in brain: Relationship to cerebral glucose utilization. Dev. Neurosci. 20: 369-379. Vauzour, D., Vafeiadou, K., Rice-Evans, C., Williams, R. J. and Spencer, J. P. 2007. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem. 103: 1355-1367. Wang, Q., Yu, S., Simonyi, A., Rottinghaus, G., Sun, G. Y. and Sun, A. Y. 2004. Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem. Res. 29: 2105-2112. Weinreb, O., Mandel, S., Amit, T. and Youdim, M. B. 2004. Neurological mechanisms of green tea polyphenols in Alzheimer''s and parkinson''s diseases. J. Nutr. Biochem. 15: 506-516. Xing, Y. and Higuchi, K. 2002. Amyloid fibril proteins. Mech. Ageing Dev. 123: 1625-1636. Yankner, B.A., Duffy, L. K. and Kirschner, D. A. 1990. Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides. Science 250: 279-282. Yano, H., Seino, Y., Inagaki, N., Hinokio, Y., Yamamoto, T., Yasuda, K., Masuda, K., Someya, Y. and Imura, H. 1991. Tissue distribution and species difference of the brain type glucose transporter (GLUT3). Biochem. Biophys. Res. Commun. 174: 470-477. Yoon, I., Lee, K. H. and Cho, J. 2004. Gossypin protects primary cultured rat cortical cells from oxidative stress- and beta-amyloid-induced toxicity. Arch. Pharm. Res. 27: 454-459. Youdim, K.A., Dobbie, M. S., Kuhnle, G., Proteggente, A. R., Abbott, N. J. and Rice-Evans, C. 2003. Interaction between flavonoids and the blood-brain barrier: In vitro studies. J. Neurochem. 85: 180-192. Zeller, K., Duelli, R., Vogel, J., Schrock, H. and Kuschinsky, W. 1995. Autoradiographic analysis of the regional distribution of Glut3 glucose transporters in the rat brain. Brain Res. 698: 175-179. Zhao, W., Chen, H., Xu, H., Moore, E., Meiri, N., Quon, M. J. and Alkon, D. L. 1999. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem. 274: 34893-34902. Zhao, W.Q. and Alkon, D. L. 2001. Role of insulin and insulin receptor in learning and memory. Mol. Cell. Endocrinol. 177: 125-134. Zhao, W.Q., De Felice, F. G., Fernandez, S., Chen, H., Lambert, M. P., Quon, M. J., Krafft, G. A. and Klein, W. L. 2008. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 22: 246-260.
摘要: 
本論文區分為兩大部份,第一部份乃探討奈米鈣化合物對大鼠生物利用率之影響,藉以釐清鈣質之生物利用率可否因奈米化處理後而提升。第二部份以細胞培養模式探討β-類澱粉蛋白 (amyloid β-protein, Aβ1-42) 對神經元細胞葡萄糖吸收之影響與介入橙皮素和橙皮苷之保護作用以及相關之分子機轉。
(一) 奈米科技 (nanotechnology) 於食品之應用日趨廣泛與多元,唯市面上多數奈米產品是將奈米物質以食品添加物形式與半成品混和製成,以此宣稱奈米化能提升產品吸收效果及生物利用率 (bioavailability)。然而生物利用率可否因其粒徑縮小而有所提升,目前仍具爭議且未有充足的文獻可循。本研究目的在探討市售之奈米鈣化合物與水溶性氯化鈣於大鼠體內鈣質生物利用率之差異。實驗設計給予 Sprague Dawley 大鼠奈米碳酸鈣、碳酸鈣和氯化鈣之鈣化合物 (100 mg Ca/kg of b.w.),利用原子吸收光譜儀 (Atomic Absorption Spectrophotometer, AAS) 分析其於七小時內之血鈣濃度變化,以及給予奈米碳酸鈣、碳酸鈣後 24 小時內之尿鈣含量及糞便鈣含量之差異,並以電子顯微鏡與奈米粒子分析儀觀察樣品粒子之形態及粒徑分布情況。結果發現,奈米碳酸鈣的粒徑範圍廣 (100–1000 nm) 且有聚集與無法均勻分散於水溶液中之現象。在血鈣值方面,氯化鈣組其血鈣濃度上升幅度較其他兩種鈣化合物樣品為高,原因可能與其較佳之溶解性有關。碳酸鈣組之血鈣濃度 Tmax 為 60 min,較給樣前提高 4.4%。而給予奈米碳酸鈣之大鼠,其 Tmax 為 180 min,較攝取前增加 5.6% (p<0.05),且與碳酸鈣組相比可維持較長時間之高血鈣濃度。於採樣時間內,給予 SD 大鼠碳酸鈣之尿鈣含量顯著地高於奈米碳酸鈣組 (p<0.05),而糞便鈣含量則無明顯之差異。綜合上述,奈米化可增加鈣質於生理之滯留時間,鈣化合物溶解性為決定其生物利用率之關鍵,而奈米化與否則對生物利用率之影響較為有限,其原因可能與奈米粒子聚集而削弱表面積效應有關,有待進一步探討。
(二) 臨床研究顯示,糖尿病患者有較常人高之阿茲海默症 (Alzheimer’s disease, AD) 罹患率與急劇之 AD 病程發展,此現象可能與 β-類澱粉蛋白 (β-amyloid protein, Aβ) 誘發神經元細胞產生葡萄糖代謝異常有關。本研究利用 Neuro-2A 神經元細胞,探討 Aβ1-42 對該細胞葡萄糖吸收之影響及相關分子機轉,並介入柑橘屬橙皮素 (hesperetin) 與橙皮苷 (hesperidin) 類黃酮化合物以評估其對神經細胞之保護效應。結果顯示,Aβ1-42 於 100–500 nM 作用劑量下,可顯著降低 Neuro-2A 神經元細胞之葡萄糖吸收;在胰島素訊息調控機轉方面,Aβ1-42 (500 nM) 可抑制胰島素膜受器之基因表現,與 protein kinase B (Akt) 蛋白之磷酸化,並降低葡萄糖運輸蛋白 (Glucose transporter proteins, GLUTs) GLUT3 和 GLUT4 之蛋白質表現量,但對於轉錄因子 Hypoxia-inducible factor 1α (HIF-1α) 則無顯著影響。此外,預先介入 hesperetin 和 hesperidin可顯著改善 Aβ1-42 對於神經元細胞葡萄糖吸收利用之干擾,並維持上述與胰島素訊息傳遞相關之基因與蛋白質之正常表現。綜合上述結果,柑橘屬類黃酮化合物可抑制 Aβ1-42 所誘導之神經元細胞胰島素訊息傳遞路徑與葡萄糖運輸蛋白 GLUT3 和 GLUT4 表現量之異常,進而改善其葡萄糖之吸收作用,因此推測可能具有延緩 AD 發展之保健功效。

This thesis includes two topics. The first topic was to study the bioavailability and uptake of nano-calcium in Sprague Dawley rats. The second topic was to study the protective effect of citrus flavonoids, hesperetin and hesperidin, against amyloid β-protein (Aβ1-42) induced damage and influencing glucose uptake in neuronal cells.
Chapter 1 was aimed to investigate the bioavailability of nano-calcium in Sprague-Dawley (SD) rats. The application of nanotechnology in food industry has become widely diverse. Numerous commercial nano-food products have been made by blending nanomaterials as food additives with half-finished goods. Nanosized ingredients usually be claimed to be able to enhance absorption and bioavailability in human body. Until now, the literature data concerning the effect of decreasing the particle size of bioactive compound in improving its bioavailability are limited. In this study, we investigated the difference of bioavailability of calcium between nano-calcium powder and calcium compounds. Sprague Dawley (SD) rats were orally administered with 100 mg Ca/kg of body weight of nanosized calcium carbonate, calcium carbonate or calcium chloride. Sequence blood samples were taken periodically up to 7 h, then the urine and fecal samples were collected after administration. The calcium contents in plasma, urine and fecal were analyzed using atomic absorption spectrophotometer (AAS). The characteristics of nano-particles were determined by tabletop electron microscope and dynamic laser particle size analyzer. Results showed that nano-calcium compounds with a wide range in particle size (100-1000 nm) tended to agglomerate and did not disperse into a nanoparticulate dispersion. The plasma calcium content of rats administered with calcium chloride was significantly higher than those of nanosized calcium carbonate and calcium carbonate groups because of its high solubility. The plasma calcium in rats administered with calcium carbonate reached the maximum concentration (Cmax), and was elevated by 4.4% (p<0.05) after 60 min (Tmax), whereas those with nano-calcium carbonate reached the Cmax after 180 min (increased by 5.6%, p<0.05). Nano-calcium carbonate group maintained a longer period of high blood calcium level than that of carbonate group. The urinary calcium of calcium carbonate group was significantly (p <0.05) higher than that of nano-calcium carbonate group; however, there was no significant difference in fecal calcium content. These results indicated that nanonizaton increased the retention time of calcium in rats. The solubility of calcium compounds was a determinant of calcium bioavailability. However, further studies were needed to explore the effect of nanonization on bioavailability from poorly soluble calcium compound due to agglomeration and the reduction of surface area.
Chapter 2 was aimed to investigate the protective effects of hesperetin and hesperidin against Aβ1-42-induced damage in neuronal cells and involved molecular mechanism. Clinical and experimental evidence have suggested that diabetics faced a higher risk of developing Alzheimer's disease (AD) and had a more rapid symptom development than nondiabetics. This phenomenon might be related to the abnormalities of basal glucose utilization in neuron cells caused by Aβ1-42. In this study, we investigated the effect of Aβ1-42 on glucose uptake in Neuro-2A cells and involved molecular mechanism. We also evaluated the neuroprotection of hesperetin and hesperidin which were the major citrus flavonoids against Aβ1-42-induced damage in Neuro-2A cells. Results showed that Aβ1-42 (100-500 nM) significantly inhibited the insulin stimulated glucose uptake in Neuro-2A cells. The possible mechanism underlying this action was that Aβ1-42 treated-neuron caused a decrease in the gene expression of insulin receptor and protein kinase B (Akt) activation in insulin signaling pathway. Additionally, the protein expressions of GLUT3 and GLUT4 were attenuated in Aβ1-42-treated cells which might be associated with the deficiency of glucose uptake. The expression of hypoxia-induced factor-1α (HIF-1α) and GLUTs genes had no change in Aβ1-42-treated neurons. Treatments with hesperetin or hesperidin could significantly improve the interference of glucose absorption in neuronal cells and inhibit the damage effects on the above gene and protein expressions in insulin signaling cascade caused by Aβ1-42. Therefore, the present study demonstrated that Aβ1-42 impaired the basal glucose uptake of neuronal cells via downregulating the expression of GLUT3 and insulin signaling cascade. Supplementation of citrus flavonoid compounds (hesperetin and hesperidin) could protect neuronal cells against Aβ1-42-induced damage. Results suggest that dietary citrus flavonoids might have potential to delay AD progression.
URI: http://hdl.handle.net/11455/52075
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.