Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52078
標題: Identification and quantification of Bifidobacterium in simulated fermented milk by real-time quantitative PCR
應用即時定量聚合酶連鎖反應於模擬發酵乳中雙歧桿菌之定性與定量檢測
作者: 劉佳欣
Liu, Jia-Xin
關鍵字: bifidobacterium;即時定量聚合酶鏈鎖反應;real-time quantitative PCR;simulated fermented milk;模擬發酵乳
出版社: 食品暨應用生物科技學系所
引用: 王芷宜。2007。篩選具抑制沙門氏菌之乳酸菌及其免疫效果評估。碩士論文。國立中興大學食品暨應用生物科技學系。台中。 李明達、陳柏翰。2007。有益微生物。科學發展 415: 11。 林姿杏。2008。應用 PCR-DGGE 與即時定量 PCR 於飼料中益生菌之定性與定量檢測。碩士論文。國立中興大學食品暨應用生物科技學系。台中。 吳樂竹。2007。以 Real-Time PCR 建立紫色不含硫光合作用細菌之最佳定量方法。碩士論文。國立中興大學環境工程學系所。台中。 張玉瓏、徐乃芝和許素菁。2003。生物技術。新文京開發出版。 陳信志。2008。應用聚合酶連鎖反應-變性梯度膠體電泳法檢測與鑑定乳酸桿菌、葡萄球菌與環脂酸芽孢桿菌。博士論文。國立中興大學食品暨應用生物科技學系。台中。 黃惠宇。2006。腸道系統守護神-乳酸菌。科學月刊 37 (2): 104。 許勝傑。2009。Tuf 基因序列用於乳酸菌之分子鑑定與定量及其與 16S rRNA 基因在雙歧桿菌親緣性分析之比較。博士論文。國立中興大學食品暨應用生物科技學系。台中。 鄔美雲。2004。應用分子技術於葡萄酒酵母菌之鑑定與分型。碩士論文。中興大學食品科學系。台中。 廖啟成。1998。乳酸菌之分類及應用。食品工業月刊 30:1。 廖啟成。2007。乳酸菌產業研發服務能量之建構。益生菌之益生機制與應用研討會。台灣乳酸菌協會。 廖啟成。2007。乳酸菌之保健功效與產品開發。農業生技產業季刊。食品生技。 蔡英傑。1998。乳酸菌應用綜論。生物產業 9(4):258。 ABI, Real-Time PCR Vs. Traditional PCR http://www.appliedbiosystems.com/ ABI, PROTOCOL ONLINE, http://www.protocol-online.org/ Alstschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J Mol Biol 215:403. Ayers, S. H. and Mudge, C. S. 1921. Two organisms of a commercial lactic Starter. J Dairy Sci 4:240. Bonjoch, X., Balleste. E. and Blanch, A. R., 2004. Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp. to identify sources of fecal pollution. Appl Environ Microbiol 70(5):3171-5. Brigidi, P., Vitali, B., Swennen, E., Altomare, L., Rossi, M. and Matteuzzi, D. 2000. Specific detection of Bifidobacterium strains in a pharmaceutical probiotic product and in human feces by polymerase chain reaction. Syst Appl Microbiol 23(3):391-9. Carr, F. J., Chill, D. and Maida, N. 2002. The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281. Castellanos, M. I., Chauvet, A, Deschamps, A. and Barreau, C. 1996. PCR methods for identification and specific detection of probiotic lactic acid bacteria. Curr Microbiol 33(2):100-3. Chomczynski P, Sacchi N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1(2):581-5. Coeuret, V., Gueguen, M. and Vernoux, J. P. 2004. Numbers and strains of lactobacilli in some probiotic products. Int J Food Microbiol 97(2):147-56. Collado, M. C., Moreno, Y., Cobo, J. M. and Hernández, M. 2006. Microbiological evaluation and molecular characterization of bifidobacteria strains in commercial fermented milks. Eur Food Res Technol 1-2: 112. Corless, C. E., Guiver,M. Borrow, R. Edwards-Jones, V. Kaczmarski, E. B. and Fox, A. J. 2000. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol 38:1747. Darby, I. A. 2002. In Situ Hybridization Protocols. Humana Press. Endo, A. and Okada, S. 2005. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis. J Biosci Bioeng 99(3):216-21. Ewaschuk, J. B. and Dieleman, L. A. 2006. Probiotics and prebiotics in chronic inflammatory bowel diseases. World J Gastroenterol 12(37):5941-50. Fandi, K. G., Ghazali, H. M, Yazid, A.M. and Raha, A. R. 2001. Purification and N-terminal amino acid sequence of fructose-6-phosphate phosphoketolase from Bifidobacterium longum BB536. Lett Appl Microbiol 32(4):235-9. Franks, A. H., Harmsen, H. J. M., Raangs, G. C., Jansen, G. J., Schut, F. and Welling, G.W. 1998. Variations of bacterial populations in human feces measured by fluorescent in situ hybridisation with group -specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 6 4: 3336. Furet, J. P., Quenee, P. and Tailliez, P. 2004. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 97(2):197. Gurtler, V. and Stanisich, V. A. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142 ( Pt 1)(Pt 1):3. Haarman, M. and Knol, J. 2005. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 71(5):2318-24. Heid, C. A., Stevens, J. Livak, K. J. and Williams, P. M. 1996. Real-time quantitative PCR. Genome Res 6:986. Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11(9):1026-30. Juste A, Thomma BP, Lievens B. 2008. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25(6):745-61. Kaufmann, P., Pfefferkorn, A., Teuber, M. and Meile, L. 1997. Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl Environ Microbiol 63(4):1268-73. Kaur, I.P., Chopra, K. and Saini, A. 2002. Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 15(1):1. Kok, R. G., de Waal, A., Schut, F., Welling, G. W., Weenk, G. and Hellingwerf, K. J. 1996. Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl Environ Microbiol 62(10):3668-72. Kurtzman, C. P. 1992. rRNA sequence comparisons for assessing phylogenetic relationships among yeasts. Int J Syst Bacteriol 42(1):1. Labrenz, M., Brettar, I., Christen, R., Flavier, S., Botel, J. and Hofle, M. G. 2004. Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central Baltic Sea. Appl Environ Microbiol 70(8):4971-9. Leblond-Bourget, N., Philippe, H., Mangin, I. and Decaris, B. 1996. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 46(1):102-11. Lin, M. Y., Savaiano, D. and Harlander, S. 1991. Influence of nonfermented dairy products containing bacterial starter cultures on lactose maldigestion in humans. J Dairy Sci 74(1):87. Liu, Y., Cai, X., Zhang, X., Gao, Q., Yang, X., Zheng, Z., Luo, M. and Huang, X. 2006. Real time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula. J Microbiol Methods 65(1):21. Love, J. L., Scholes, P., Gilpin, B., Savill, M., Lin, S. and Samuel, L. 2006. Evaluation of uncertainty in quantitative real-time PCR. J Microbiol Methods 67(2):349-56. Marteau, P., Pochart, P., Dore, J., Bera-Maillet, C., Bernalier, A. and Corthier, G. 2001. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67(10):4939-42. Masco, L., Vanhoutte, T., Temmerman, R., Swings, J. and Huys, G. 2007. Evaluation of real-time PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products. Int J Food Microbiol 113(3):351-7. Matsuki, T., Watanabe, K., Tanaka, R. and Oyaizu, H. 1998. Rapid identification of human intestinal bifidobacteria by 16S rRNA-targeted species- and group-specific primers. FEMS Microbiol Lett 167(2):113-21. Matsuki, T., Watanabe, K., Tanaka, R., Fukuda, M. and Oyaizu, H. 1999. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65(10):4506-12. Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, K., Oyaizu, H. and Tanaka, R. 2002. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68(11):5445-51. Matsuki, T., Watanabe, K. and Tanaka, R. 2003. Genus- and species-specific PCR primers for the detection and identification of bifidobacteria. Curr Issues Intest Microbiol 4(2):61-9. Matsuki, T., Watanabe, K., Fujimoto, J., Kado, Y., Takada, T., Matsumoto, K. and Tanaka, R. 2004. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70(1):167-73. Matsuoka, T., Kuribara, H., Akiyama, H., Miura, H., Goda, Y., Kusakabe, Y., Isshiki, K., Toyoda, M. and Hino, A. 2001. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize. Shokuhin Eiseigaku Zasshi 42(1):24. Matte-Tailliez, O., Quénée, P., Çibik, R., Van Opstal, J., Dessevre, F., Firmesse, O. and Tailliez, P. 2001. Detection and identification of lactic acid bacteria in milk and industrial starter culture with fluorescently labeled rRNA-targeted peptide nucleic acid probes. Lait 81: 237. Mattila-Sandholm, T. and Sarrela, M. 2003. Functional Dairy Products. Woodhead Publishing. Matto, J., Malinen, E., Suihko, M. L., Alander, M., Palva, A. and Saarela, M. 2004. Genetic heterogeneity and functional properties of intestinal bifidobacteria. J Appl Microbiol 97(3):459-70. Miyake, T., Watanabe, K., Watanabe, T. and Oyaizu, H. 1998. Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol Immunol 42(10):661-7. Myers, R. M., Lumelsky, N., Lerman, L. S. and Maniatis, T. 1985. Detection of single base substitutions in total genomic DNA. Nature 313(6002):495-8. O’sullivan, M. G., Thornton, G., O’sullivan, G. C., Collins, J. K. 1992. “ Probiotic bacteria : Myth or reality? ” Trends Food Sci Technol 3:309. O’Sullivan, D. J. 2001. Screening of intestinal microflora for effective probiotic bacteria. J. Agric Food Chem 49:1751. Parvez, S., Malik, K. A., Ah Kang, S., Kim, H. Y. 2006. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171-85. Perea Velez, M., Hermans, K., Verhoeven, T. L., Lebeer. S. E, Vanderleyden, J. and De Keersmaecker, S. C. 2007. Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products. J Appl Microbiol 103(3):666-74. Raeymaekers, L. 2000. Basic principles of quantitative PCR. Mol Biotechnol 15:115. Rantsiou, K., Alessandria, V., Urso, R., Dolci, P. and Cocolin, L. 2008. Detection, quantification and vitality of Listeria monocytogenes in food as determined by quantitative PCR. Int J Food Microbiol 121: 99. Rambaud, J. C., Bouhnik, Y., Marteau, P. and Pochart, P. 1993. Manipulation of the human gut microflora. Proc Nutr Soc 52(2):357-66. Reid, G. 1999. The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol 65(9):3763-6. Requena, T., Burton, J., Matsuki, T., Munro, K., Simon, M. A., Tanaka, R., Watanabe, K. and Tannock, G. W. 2002. Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol 68(5):2420-7. Roy, D., Ward, P. and Champagne, G. 1996. Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int J Food Microbiol 29(1):11. Saarela, M., Lahteenmaki, L., Crittenden, R., Salminen, S. and Mattila-Sandholm, T. 2002. Gut bacteria and health foods--the European perspective. Int J Food Microbiol 78(1-2):99. Sambrook, J. and Russel, D. 2001. Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York. Scheu, P. M., Berghof, K. and Stahl, U. 1998. Detection of pathogenic and spoilage micro-organisms in food with the polymerase chain reaction. Food Microbiol 15:13. Seksik, P., Rigottier-Gois, L., Gramet, G., Sutren, M., Pochart, P., Marteau, P., Jian, R. and Dore, J. 2003. Alterations of the dominant faecal bacterial groups in patients with Crohn''s disease of the colon Gut 52(2):237-42. Selma, M. V., Martínez-Culebras, P. V. and Aznar, R. 2008. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes. Int. J. Food Microbiol 122: 126. Sghir, A., Gramet, G., Suau, A., Rochet, V., Pochart, P. and Dore, J. 2000. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66(5):2263-6. Simpson, J. M., McCracken, V. J., White, B. A, Gaskins, H. R. and Mackie, R. I. 1999. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 36(3):167-79. Song, Y., Kato, N., Liu, C., Matsumiya, Y., Kato, H. and Watanabe, K. 2000. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol Lett 187(2):167-73. Stiles, M. E. and Holzapfel, W. H. 1997. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1. Stubbs, S. L., Brazier, J. S., O''Neill, G. L. and Duerden, B. I. 1999. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37(2):461-3. Tabasco, R., Janer, C., Peláez, C. and Requena, T. 2007. Selective enumeration and identification of mixed cultures of Streptococcus thermophilus , Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. Int Dairy J. 17: 1107. Takada, T., Matsumoto, K. and Nomoto, K. 2004. Development of multi-color FISH method for analysis of seven Bifidobacterium species in human feces. J Microbiol Methods 58(3):413-21. Theophilus, B. D. and Rapley, R. 2002. PCR Mutation Detection Protocols . Human Press. Trmcic, A., Obermajer, T., Rogelj, I. and Bogovic Matijasic, B. 2008. Short communication: culture-independent detection of lactic Acid bacteria bacteriocin genes in two traditional slovenian raw milk cheeses and their microbial consortia. J Dairy Sci 91(12):4535-41. Van der Werf, M. J. and Venema, K. 2001. Bifidobacteria: genetic modification and the study of their role in the colon. J Agric Food Chem 49(1):378-83. Ventura, M., Canchaya, C. an Sinderen, D. Fitzgerald, vG.F. and Zink, R. 2004. Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon, its genetic structure, characterization and phylogenic analysis. Appl Environ Microbiol 70:3110. Vernile, A., Giammanco, G., Spano, G., Beresford, T. P., Fox, P.F. and Massa, S. 2008. Genotypic characterization of lactic acid bacteria isolated from traditional Pecorino Siciliano cheese. Dairy Sci Technol 88: 619. Vitali, B., Candela, M. Matteuzzi, D. and Brigidi, P. 2003. Quantitative detection of probiotic Bifidobacterium strains in bacterial mixtures by usingreal-time PCR. Syst Appl Microbiol 26:269. Walter, J., Hertel, C., Tannock, G. W., Lis, C. M., Munro, K. and Hammes, W. P. 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67(6):2578-85. Wang, R. F., Cao, W. W. and Cerniglia, C. E. 1996. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 62(4):1242-7. Wolffs, P., Norling, B. and Radstrom, P. 2005. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells. J Microbiol Methods 60(3):315-23.
摘要: 
Lactic acid bacteria ( LAB ) strains with probiotics functions have been used for the processing of fermented food, milk products as well as food and feed supplements. Initial people used plate counts method to enumerate bacteria, but it often causes underestimation. Real-time quantitative PCR is a newly molecular technique that can be used to enumerate bacteria. Many studies indicated that real-time quantitative PCR with good operating conditions provided high sensitivity and accuracy. For quantitative analysis, we used PCR and real-time quantitative PCR to indentified and quantitative bifidobacteria in simulated fermented milk. At the same time, we also used plate count method to compare with real-time quantitative PCR. This study highlighted the advantage of real-time quantitative PCR and investigated the detection of simulated fermented milk products contain bifidobacteria.
The simulated fermented milk are composed of whole milk and bifidobacteria reference strains. For extracting complete DNA, we tried three methods and determine to the value of A260 /A280. For Qualitative analysis , PCR products were 231 bp by genus-specific primers F_allbif_IS and R_allbif_IS ; PCR products were 67 to 118 bp by species-specific primers, respectively. For quantitative, real-time quantitative PCR performed with species-specific primers to analyze 7 reference strains in simulated fermented milk products. By using the Ct (cycle threshold) and the concentration of bacteria cells could generate the standard curve of bifidobacteria reference strains. Substitution Ct value of simulated fermented milk into standard curve could evaluate the concentration of bacteria. The Student's t-test was used to compare each quantitative analysis between plating enumeration and real-time quantitative PCR. The result (p > 0.05) indicated that there was no significant difference between the two methods at a confidence level of 95 %. Besides, plate count method spent more time than real-time quantitative PCR.
This study describes a detection method for bifidobacteria in simulated fermented milk. The PCR analysis combined species -specific PCR is showing a great detection and identification potential using for seven species of bifidobacteria. The species-specific real-time quantitative PCR for evaluating the concentration of bacteria is no significant difference with the plate count method for enumeration. The result indicated that it has potential for developing a culture-independent bacteria enumeration procedure and set a foundation for future studies.

許多研究顯示乳酸菌對人體及動物具有保健效果,乳酸菌中又以乳酸桿菌 ( Lactobacillus ) 與雙歧桿菌 ( Bifidobacterium ) 兩屬被廣泛應用於發酵食品、乳製品以及食品或畜牧飼料添加物。早期常以平板計數方法進行菌量計算,但往往會發生低估之可能,即時定量聚合酶鏈鎖反應 ( real-time quantitative PCR ) 為分子生物技術應用於微生物定量之一大突破,於良好之設計條件下,即時定量 PCR具有更高之靈敏度與準確性。本研究擬應用 PCR 與即時定量 PCR 於檢測發酵乳產品中雙歧桿菌,同時搭配傳統定量方法進行比較,以期建立一有效且可靠之雙歧桿菌定性及定量檢測方法。
本研究以全脂乳混合標準菌株模擬市售之發酵乳產品,樣本DNA 萃取效率將影響即時定量 PCR 之靈敏度與準確性,為萃取完整 DNA,本研究測試三種萃取方法,以核酸偵測 ( A260 /A280 ) 之結果作為判斷依據。定性之部分:菌屬特異性引子組 F_allbif_IS 與 R_allbif_IS 經由 PCR 擴增之目標片段大小為 231 bp;菌種特異性引子組經由 PCR 擴增之目標片段大小介於 67 – 118 bp;定量之部分:以菌種特異性引子組進行即時定量 PCR,得到之 Ct 值對應菌液濃度之對數值繪製成標準曲線,將未知樣品之Ct 值代入標準曲線方程式,即可得知模擬發酵乳中所含之雙歧桿菌菌量。使用 Student’s t-test 比較以即時定量 PCR 得到之菌量與培養基培養之結果 ( p > 0.05 ),兩法間並無顯著差異。傳統培養定量之時間需求為2 - 7天,而以分子生物技術操作時間則縮短至八小時內完成,利用 culture-independent 之菌量計數具有應用之潛力。
本研究成功建立一快速鑑定與定量發酵乳中雙歧桿菌之方法,以PCR反應可區分發酵乳中雙歧桿菌菌種,以即時定量 PCR 可檢測發酵乳中雙歧桿菌菌量,更可提供未來研究之發展基礎。
URI: http://hdl.handle.net/11455/52078
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.