Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorAn-Erl Kingen_US
dc.contributorHung-Ju Liaoen_US
dc.contributor.advisorLih-Shiuh Laien_US
dc.contributor.authorChi, Chung-Chienen_US
dc.identifier.citation王朝鐘、連櫻治、傅毓秀、許振東、劉嘉斌、顏國欽、蕭松瑞、林仁混:小麥草苗對四氯化碳誘發鼠肝損傷之保護作用。中華民國營養學會雜誌,1986,11 (3,4),19-31。 劉黃惠珠、王朝鐘、周秀琴、劉嘉斌、顏國欽、蕭松瑞:小麥苗粉對鼠體血脂的抑制作用。食品科學,1987,14 (3),214-21。 吳振森:微晶纖維素的製成因子對其材質與機械性能及應用功能性的影響。台北醫學大學藥學研究所博士論文,台北,台灣,2001。 許喻儒:熱處理對小麥草汁加工副產品抗氧化與膳食纖維特性之影響。國立中興大學食品暨應用生物科技學系碩士論文,台中,台灣,2008。 張逸婷:水稻台農67號誘變品系米穀粉裡話性質之因素分析及其應用。靜宜大學食品營養學系碩士論文,台中,台灣,2005。 賴滋漢、金安兒、柯文慶。食品加工學,台中,台灣,1992。 區少梅。食品感官品評學及實習,台中,台灣,2007。 莊志仁。食用膠之技術與應用,台北,台灣,2005。 AACC. (1982). “Approved Methods.” American Association of Cereal Chemists, St. Paul, MN. AOAC. (2000). Official Methods of Analysis, 17th edition Association of Official Analytical Chemists, 4. 1. 10, Washington, DC. Ardizzone, S.; Dioguardi, F. S.; Mussini, T.; Mussini, P. R.; Rondinini, S.; Vercelli, B.; Vertova, A. Microcrystalline cellulose powders: structure, surface features and water sorption capability. Cellulose, 1999, 6, 57-69. Ass, B. A. P.; Belgacem, M. N.; Frollini, E. Mercerized linters cellulose: characterization and acetylation in N, N-dimethylacetamide/lithium chloride. Carbohydrate Polymers, 2006, 63, 19–29. ASTM International. (2007). Standard Terminology of Cellulose and Cellulose Derivatives. American Society for Testing and Materials, D1695-07, West Conshohocken, PA. ASTM International. (2007). Standard Test Method for Intrinsic Viscosity of Cellulose. American Society for Testing and Materials, D1795-95, West Conshohocken, PA. Barbut, S.; Mittal, G. S. Effect of three cellulose gums on the texture profile and sensory properties of low fat frankfurters. International Journal of Food Science and Technology, 1996, 31, 241-247. Battista, O.A.; Smith, P. A. Microcrystalline cellulose. Industrial and Engineering Chemistry, 1962, 54, 20-29. Browning, B. L. Methods of wood chemistry. 1967, Institute of Paper Chemistry, Appleton, Wisconsin. Cadden, A. M. Comparative Effects of Particle Size Reduction on Physical Structure and Water Binding Properties of Several Plant Fibers. Journal of Food Science, 1987, 52, 1595-1599. Chou, T. D.; Kokini, J. L. Rheological properties and concentration of tomato paste pectins, citrus and apple pectins. Journal of Food Science, 1987, 52, 1658-1664. Chen, J. Y.; Piva, M.; Labuza, T. P. Evaluation of Water Binding Capacity (WBC) of Food Fiber Sources. Journal of Food Science, 1984, 49, 59-63. El-Sakhawy, M.; Hassan, ML. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 2007, 67, 1–10. Gaonkar, S. M.; Kulkarni, P. R. Microcrystalline cellulose from water hyacinth. Acta Polymerica, 1986, 37, 189-190. Gaonkar, S. M.; Kulkarni, P. R. Improved method for preparation of microcrystalline cellulose from water hyacinth. Textile Dyer & Printer, 1987, 19-22. Hassan, M. L.; Rowell, R. M.; Fadl, N. A.; Yacoub, S. F.; Christainsen, A. W. Thermoplasticization of bagasse. I. preparation and characterization of esterified bagasse fibers. Journal of Applied Polymer Science, 2000, 76. 761-574. Iijima, H.; Takeo, K. Microcrystalline cellulose: an overview. 2000, Asahi Chemical Industry Co. Limited, Japan. Krässig, H. A. Cellulose – Structure, Accessibility and Reactivity. 1993, Gordon and breach science publishers, Switzerland. Ilharco, L. M.; Garcia, A. R.; da Silva, J. L.; Ferreira, L. F. V. Infrared Approach to the Study of Adsorption on Cellulose: Influence of Cellulose Crystallinity on the Adsorption of Benzophenone. Langmuir, 1997, 13, 4126-4132. Labuza, T. P. Sorption phenomenon in food. Food Technology, 1968, 22(3), 215. López, G.; Rincón, F.; Periago, M. J.; Martínez, M. C.; Ortuño, J. Relationship between Physical and Hydration Properties of Soluble and Insoluble Fiber of Artichoke. Journal of Agricultural and Food Chemistry, 1996, 44, 2773-2778. Marton, J.; Sparks, H. E. Determination of lignin in pulp and paper by infrared multiple internal reflectance. Tappi Journal, 1967, 50, 363. Mongeau R.; Brassard R. Insoluble dietary fiber from breakfast cereals and brans: bile salt binding and water-holding capacity in relation to particle size. Cereal Chemistry, 1982, 59, 413. Munguti, J. M.; Liti, D. M.; Waidbacher, H.; Straif, M.; Zollitsch, W. Proximate composition of selected potential feedstuffs for Nile tilapia (Oreochromis niloticus Linnaeus) production in Kenya. Die Bodenkultur, 2006, 57, 131-141. Nelson, M. L.; O''Connor, R. T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. Journal of Applied Polymer Science, 1964, 8, 1311-1324. Nelson, M. L; O''Connor, R. T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. Journal of Applied Polymer Science, 1964, 8, 1325-1341. O''Connor, R. T.; DuPre, E. F.; Mitcham, D. Applications of Infrared Absorption Spectroscopy to Investigations of Cotton and Modified Cottons. Textile Research Journal, 1958, 28, 382-392. Oh, S. Y.; Yoo, D. I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 2005a, 340, 417-428. Oh, S. Y.; Yoo, D. I.; Shin, Y.; Kim, H. C.; Kim, H. Y.; Chung, Y. S. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 2005b, 340(15), 2376-2391. Parakilar, K. M.; Bhatawdekar, S. P. Microcrystalline cellulose from Bagasse pulp. Biological Wastes, 1988, 24. 75-77. Rasper, V. F. Effect of preparative procedureon the evaluation of in vitro indigestible residue (dietary fiber). In “Food Carbohydrater,” D.R. Lineback and G.E. Inglett (Ed.), 1982, p.333. AVI Publ. Co. Inc., Westport, CT. Revol, J. F.; Bradford, H.; Giasson, J.; Marchessault, R. H.; Gray, D. G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 1992, 14, 170. Richter, U.; Krause, T.; Schempp, T. Untersuchungen zur alkalibehandlung von cellulosefasern. Teil 1. Infrarotspektroskopische und röntgenographische beurteilung der änderung des ordnungszustandes. Die Angewandte Makromolekulare Chemie, 1991, 185, 155-167. Robertson, J. A.; Eastwood, M. A. An investigation of the experimental conditions which could affect water-holding capacity of dietary fibre. Journal of the Science of Food and Agriculture, 1981, 32, 819-825. Robertson, J. A.; de Monredon, F. D.; Dysseler, P.; Guillon, F.; Amado, R.; Thibault, J. –F. Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. Lebensm.-Wiss.u.-Technol, 2000, 33, 72-79. Sahan, N.; Yasar, K.; Hayalogku, A. A.; Karaca, O. B.; Kaya A. Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese. Journal of Dairy Research, 2008, 75, 1-7. Segal, L.; Creely, J. J; Martin, J. A. E; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 1959, 29, 786-794. Tang, L. G.; David, N. S. H.; Pan, S. H.; Zhu, Y. Q.; Wang, Z.; Wang, Z. Z. Evaluation of microcrystalline cellulose. I. Changes in ultrastructural characteristics during preliminary acid hydrolysis. Journal of Applied Polymer Science, 1996, 59,483-488. TAPPI. (1988). Alpha-, beta- and gamma-cellulose in pulp, Technical Association of the Pulp and Paper Industry, T203 om-88, S Norcross, GA. TAPPI. (1989). Viscosity of pulp (capillary viscometer method), Technical Association of the Pulp and Paper Industry, T230 om-89, S Norcross, GA. Uesu, N. Y.; Pineda, E. A. G.; Hechenleitner, A. A. W. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. International Journal of Pharmaceutics, 2000, 206, 85-96. Van Soest, P. J. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology, 2006, 130, 137-171. Warwicker, J. O. Swelling of cotton in alkalis and acids. Journal of Applied Polymer Science, 1967, 13, 41. Yamada, T.; Saito, N.; Imai, T.; Otagiri, M. Effect of Grinding with Hydroxypropyl Cellulose on the Dissolution and Particle Size of a Poorly Water-Soluble Drug. Chemical & Pharmaceutical Bulletin, 1999, 47, 1311-1313.zh_TW
dc.description.abstractThe objective of this study is to evaluate the feasibility of producing microcrystalline cellulose (MCC) from the waste during wheat (Triticum aestivum L.) seedling juice processing by using different concentration of alkaline, acid treatments and drying methods and then measure the physicochemical properties of wheat seedling pomace MCC powders as well as the effects on the texture of jelly products. The results showed that the amount of crude fiber was 39 % and α-cellulose content through purification procedure was 72-77 %, so it was adequate to produce wheat seedling pomace MCC. By the manufacturing procedure of this study, either the X-ray diffraction angle or FTIR spectrum of wheat seedling pomace MCC were almost the same as the commercial one so that it represented that the method of this study was available to produce MCC. When using 17.5 %NaOH, it would cause transformation from cellulose Ⅰto cellulose Ⅱ, besides, 17.5 %NaOH-treated samples (cellulose Ⅱ) had higher crystallinity index by XRD and FTIR, and it also had properties of high heat stable abilities, bulk desities and etc,. The DP of 17.5 %NaOH-treated samples (cellulose Ⅰ) was close to the commercial one and its freeze-dried samples could maintain better long rod shape on SEM graph. According to different acid treatments, HCl-treated samples had better CrI, higher heat degradation temperature, and bulk and tapping densities than H2SO4-treated samples. On the aspect of different drying methods, vacuum-dried samples were spherical-like because of the folding of rod fibers, and the 1.5 % NaOH-treated following freeze-dried samples had two to four folds of WRC compared with the other ones. Furthermore, when applying to the jelly products for texture analysis, almost all the hardness, gumminess, springiness, cohesiveness, chewiness and resilience of wheat seedling MCC jelly were higher than the commercial one. At last, according to the result of sensory evaluation, almost all of the samples were better than the commercial one on all the parameters, but there were no differences between them. In summary, we could know that producing wheat seedling MCC was available, and in addition to improve the quality of food, it could achieve the goal of utilization of agricultural wastes as well.en_US
dc.description.abstract本研究擬探討利用不同鹼濃度、酸處理及乾燥方法製備小麥草渣微晶纖維素之可行性,並探討小麥草微晶纖維素物化特性及添加於果凍中對其質地之影響。結果發現,小麥草渣之粗纖維含量約占39 %,且經純化處理可得約72-77 %之α-纖維素含量,可用來製作小麥草渣微晶纖維素。利用本實驗的微晶纖維素製作方法,不管在X-ray繞射角度或FTIR圖譜上皆和市售樣品極為相似,顯示以本實驗之方法製備微晶纖維素之可行性。使用17.5 %NaOH可有效使cellulose Ⅰ轉換到cellulose Ⅱ,另外也使17.5 %NaOH處理樣品 (cellulose Ⅱ)在X-ray及FTIR上都有較高的結晶度產生,而其也具有熱穩定性高、體積密度高等特性。1.5 %NaOH處理樣品 (cellulose Ⅰ)的聚合度與市售樣品較相近類似,而其冷凍乾燥樣品在SEM上可維持較好的纖維長條形狀。在不同酸處理方面,鹽酸處理樣品比起硫酸樣品具有較好結晶度、高熱裂解溫度、高體積和振實密度。在不同乾燥方法,真空乾燥樣品多呈因棒狀纖維堆疊的球狀,而冷凍乾燥在1.5 %NaOH處理下,保水力是其他組的2-4倍。從果凍上應用來看,幾乎所有小麥草渣MCC果凍於質地分析之硬度、膠性、彈性、黏聚性、咀嚼度跟回復性都要比市售質地來得高。最後由感官品評結果發現,添加市售和小麥草渣微晶纖維素之果凍樣品於混濁度、硬度、Q度及整體接受度皆優於未添加微晶纖維素之果凍樣品,不過各樣品間較無顯著差異。因此,綜合上述,可知利用搾汁剩餘的小麥草渣製作微晶纖維素是可行的,除了可達到改善食品品質外,也達到農業廢棄物回收利用的目的。zh_TW
dc.description.tableofcontents摘要 I Abstract III 目錄 V 表目錄 X 圖目錄 XI 壹、前言 1 貳、文獻回顧 2 一、小麥草簡介 2 二、纖維素及其衍生物 5 (一) 纖維素 (Cellulose)、木質素 (Lignin)及半纖維素 (Hemicellulose)介紹 5 a、纖維素 (Cellulose) 5 b、木質素(Lignin) 7 c、半纖維素 (Hemicellulose) 7 (三) 不同cellulose type之介紹 9 a、Cellulose I,Ⅱ, Ⅲ, Ⅳ之定義 9 b、Cellulose I和Ⅱ之差異 10 c、鹼作用對纖維素之影響 10 d、Cellulose I和Ⅱ之x-ray之繞射 12 e、Cellulose I和Ⅱ之FTIR光譜 13 三、微晶纖維素 (Microcrystalline Cellulose) 20 (一) 背景 20 (二) 簡介 20 (三) 來源及功用 21 (四) 不同微晶纖維素之理化特性 24 a、粉末級MCC (Powder type MCC) 24 b、膠態級MCC (Colloidal type MCC) 24 四、不同乾燥方法介紹 25 (一) 真空乾燥 25 (二) 冷凍乾燥 25 參、 研究目的 27 肆、 材料與方法 28 一、 試藥 28 二、 小麥草 29 三、 搾汁 31 四、 熱風乾燥 31 五、 小麥草渣粉製備 31 六、 小麥草渣微晶纖維素之製備 31 七、 基本成分分析 32 (一) 水分 32 (二) 灰分 32 (三) 粗脂肪 34 (四) 粗蛋白 34 (五) 粗纖維 35 (六) 金屬離子含量 35 八、 小麥草渣MCC粉末特性測定 36 (一) α- 纖維素含量測定 36 (二) 場發式電子顯微鏡 (Field-emission scanning electron microscope, FE-SEM)微結構觀察 37 (三) 結晶度 (Crystallinity index, CrI) 及結晶大小 (Crystallite size) 測定 37 (四) 聚合度 (Degree of polymerization, DP) 39 (五) 傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy, FTIR) 測定 40 (六) 熱重分析 ( Thermogravimetric analysis) 40 (七) 粒徑分析 (Particle size analysis) 41 (八) 體積密度 (Bulk density) 和 振實密度 (Tapping density) 測定 41 (九) 保水力 (Water Retention Capacity, WRC) 42 (一) 小麥草渣MCC果凍樣品的製備 42 (二) 小麥草渣MCC應用於果凍樣品對其理化性質影響之測定 43 a、糖度 (Brix, %) 測定 43 b、pH值之測定 43 c、質地剖面分析 (Texture profile analysis, TPA) 43 d、感官品評 (Sensory Evaluation) 44 九、 統計分析 44 伍、 結果與討論 46 一、 基本成分分析 46 二、小麥草MCC粉末性質測定 48 (一) α- 纖維素含量測定 48 (二) SEM微結構觀察 50 (三) 結晶度 (Crystallinity index, CrI) 及結晶大小 (Crystallite size) 測定 51 (四) 聚合度 (Degree of polymerization, DP) 55 (五) 傅立葉轉換紅外線光譜儀 (FTIR) 測定 58 (六) 熱重分析 ( Thermogravimetric analysis, TGA) 69 (七) 粒徑分析 (Particle size analysis) 70 (八) 體積密度 (Bulk density) 和 振實密度 (Tapping density) 測定 74 (九) 保水力 (Water Retention Capacity, WRC) 78 (十) 小麥草渣MCC應用於果凍樣品對其理化性質之影響 81 陸、結論 88 柒、參考文獻 90zh_TW
dc.subjectwheat grassen_US
dc.subjectmicrocrystalline celluloseen_US
dc.titlePreparation of microcrystalline cellulose from by-products of wheat seedling juice and its applicationsen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:食品暨應用生物科技學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.