Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52089
標題: 枯草桿菌xylose誘導型系統以及融合廣效性流感病毒HA抗原疫苗之枯草桿菌表現研究
Study on Bacillus subtilis xylose induce system and expression of fusion broad-spectrum influenza HA epitope vaccine by Bacillus subtilis
作者: Wu, Po-Yen
吳柏彥
關鍵字: HA高保留性抗原;HA highly-conserved antigen;融合蛋白;枯草桿菌表現系統;枯草桿菌雙質體系統;靈芝免疫調節蛋白;第一型重組蛋白類似物1A;fusion protein;Bacillus subtilis expression system;Bacillus subtilis dual plasmid system;Ganoderma lucidum immune regulatory protein LZ-8;recombinant type Ιantifreeze protein analogue
出版社: 食品暨應用生物科技學系所
引用: 褚佩瑜,2006。免疫學速攻.藝軒圖書出版社。台北。台灣 王志鵬,2001。一、枯草桿菌Bacillus subtilis DB104 電轉形效率之增進。二、設計、合成第一型抗凍蛋白基因及其在枯草桿菌、大腸桿菌中之表現。國立中興大學食品科學系碩士論文。 王志鵬,2007。開發枯草桿菌持續型及誘導型表現系統以應用於自體、同源及異源蛋白質之表現暨建立芽孢桿菌益生菌表現系統。國立中興大學食品科學系博士論文。 行政院衛生署疾病管制局(Centers for Disease Control, R.O.C., Taiwan) http://www.cdc.gov.tw/ 99.07.02 蘇芳仙,2001。最佳σA 啟動子及多重啟動子之構築及其於枯草桿菌中之表現。國立中興大學食品科學系碩士論文。 葉鈞凱,2006。重組靈芝免疫調節蛋白質於枯草桿菌及乳酸鏈球菌之表現與純化最適化及其生物活性分析。國立中興大學食品暨應用生物科技學系碩士論文。 羅秋梅,2005。建立地衣芽孢桿菌表現系統以應用於靈芝免疫調節蛋白之生產。國立中興大學食品科學系碩士論文 European Centre for Disease Prevention and Control, (ECDC)., European Union http://www.ecdc.europa.eu/en/Pages/home.aspx 99.07.02 Akita, M., Sasaki, S., Matsuyama, S., & Mizushima, S. (1990). SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. The Journal of Biological Chemistry, 265(14), 8164-8169. Bouvier, N. M., & Palese, P. (2008). The biology of influenza viruses. Vaccine, 26 Suppl 4, D49-53. Briggs, M. S., & Gierasch, L. M. (1986). Molecular mechanisms of protein secretion: The role of the signal sequence. Advances in Protein Chemistry, 38, 109-180. Choudhary, D. K., & Johri, B. N. (2009). Interactions of bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493-513. Chun, S., Li, C., Van Domselaar, G., Wang, J., Farnsworth, A., Cui, X., et al. (2008). Universal antibodies and their applications to the quantitative determination of virtually all subtypes of the influenza A viral hemagglutinins. Vaccine, 26(48), 6068-6076. Cross, K. J., Langley, W. A., Russell, R. J., Skehel, J. J., & Steinhauer, D. A. (2009). Composition and functions of the influenza fusion peptide. Protein and Peptide Letters, 16(7), 766-778. Deuerling, E., Mogk, A., Richter, C., Purucker, M., & Schumann, W. (1997). The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Molecular Microbiology, 23(5), 921-933. Doherty, P. C., & Kelso, A. (2008). Toward a broadly protective influenza vaccine. The Journal of Clinical Investigation, 118(10), 3273-3275. Errington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nature Reviews.Microbiology, 1(2), 117-126. Haak-Frendscho, M., Kino, K., Sone, T., & Jardieu, P. (1993). Ling zhi-8: A novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cellular Immunology, 150(1), 101-113. Hsu, H. C., Hsu, C. I., Lin, R. H., Kao, C. L., & Lin, J. Y. (1997). Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. The Biochemical Journal, 323 (Pt 2), 557-565. Jakeman, K. J., Tisdale, M., Russell, S., Leone, A., & Sweet, C. (1994). Efficacy of 2''-deoxy-2''-fluororibosides against influenza A and B viruses in ferrets. Antimicrobial Agents and Chemotherapy, 38(8), 1864-1867. Katagiri, S., Ohizumi, A., & Homma, M. (1983). An outbreak of type C influenza in a children''s home. The Journal of Infectious Diseases, 148(1), 51-56. Kino, K., Mizumoto, K., Sone, T., Yamaji, T., Watanabe, J., Yamashita, A., et al. (1990). An immunomodulating protein, ling zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice. Diabetologia, 33(12), 713-718. Kino, K., Sone, T., Watanabe, J., Yamashita, A., Tsuboi, H., Miyajima, H., et al. (1991). Immunomodulator, LZ-8, prevents antibody production in mice. International Journal of Immunopharmacology, 13(8), 1109-1115. Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., et al. (1989). Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. The Journal of Biological Chemistry, 264(1), 472-478. Ko, J. L., Hsu, C. I., Lin, R. H., Kao, C. L., & Lin, J. Y. (1995). A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. European Journal of Biochemistry / FEBS, 228(2), 244-249. Lemon, S. M., & Mahmoud, A. A. (2005). The threat of pandemic influenza: Are we ready? Biosecurity and Bioterrorism : Biodefense Strategy, Practice, and Science, 3(1), 70-73. Lin, W. H., Hung, C. H., Hsu, C. I., & Lin, J. Y. (1997). Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. The Journal of Biological Chemistry, 272(32), 20044-20048. Ling Lin, F., Zi Rong, X., Wei Fen, L., Jiang Bing, S., Ping, L., & Chun Xia, H. (2007). Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnology Advances, 25(1), 1-12. Merchante, R., Pooley, H. M., & Karamata, D. (1995). A periplasm in Bacillus subtilis. Journal of Bacteriology, 177(21), 6176-6183. Miyasaka, N., Inoue, H., Totsuka, T., Koike, R., Kino, K., & Tsunoo, H. (1992). An immunomodulatory protein, ling zhi-8, facilitates cellular interaction through modulation of adhesion molecules. Biochemical and Biophysical Research Communications, 186(1), 385-390. Osterhaus, A. D., Rimmelzwaan, G. F., Martina, B. E., Bestebroer, T. M., & Fouchier, R. A. (2000). Influenza B virus in seals. Science (New York, N.Y.), 288(5468), 1051-1053. Parrish, C. R., & Kawaoka, Y. (2005). The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses. Annual Review of Microbiology, 59, 553-586. Potter, C. W. (2001). A history of influenza. Journal of Applied Microbiology, 91(4), 572-579. Steinhauer, D. A. (1999). Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology, 258(1), 1-20. Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C., & Wilson, I. A. (2006). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science (New York, N.Y.), 312(5772), 404-410. Sui, J., Hwang, W. C., Perez, S., Wei, G., Aird, D., Chen, L. M., et al. (2009). Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Structural & Molecular Biology, 16(3), 265-273. Tai, M. W., & Sweet, B. V. (2006). Nattokinase for prevention of thrombosis. American Journal of Health-System Pharmacy : AJHP : Official Journal of the American Society of Health-System Pharmacists, 63(12), 1121-1123. Tanaka, S., Ko, K., Kino, K., Tsuchiya, K., Yamashita, A., Murasugi, A., et al. (1989). Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). an immunomodulator from a fungus, ganoderma lucidium, having similarity to immunoglobulin variable regions. The Journal of Biological Chemistry, 264(28), 16372-16377. Tjalsma, H., Bolhuis, A., Jongbloed, J. D., Bron, S., & van Dijl, J. M. (2000). Signal peptide-dependent protein transport in bacillus subtilis: A genome-based survey of the secretome. Microbiology and Molecular Biology Reviews : MMBR, 64(3), 515-547. Trifonov, V., Khiabanian, H., & Rabadan, R. (2009). Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. The New England Journal of Medicine, 361(2), 115-119. Von Heijne, G. (1985). Signal sequences. the limits of variation. Journal of Molecular Biology, 184(1), 99-105. Waites, W. M., Kay, D., Dawes, I. W., Wood, D. A., Warren, S. C., & Mandelstam, J. (1970). Sporulation in bacillus subtilis. correlation of biochemical events with morphological changes in asporogenous mutants. The Biochemical Journal, 118(4), 667-676. Wang, T. T., & Palese, P. (2009). Universal epitopes of influenza virus hemagglutinins? Nature Structural & Molecular Biology, 16(3), 233-234. Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochimica Et Biophysica Acta, 1694(1-3), 299-310.
摘要: 
Bacillus subtilis is recognized as GRAS (generally recognized as safe) bacteria and has been applied in many industries, such as fermented food , enzymes, and special chemicals. Bacillus subtilis has been used as a probiotic or as plant disease control agents. At 2009, a global outbreak of a new strain H1N1 influenza virus was spreed in just a few months. The global pandemic quickly lead to serious disaster. The main reason is that the traditional manufacture of influenza virus vaccine only against the targeted virus strain, and preparation of enough vaccines take several months. A broad-spectrum influenza vaccine thus been considered as a new strategy. In this study, the highly conserved influenza virus hemagglutinin HA2 N terminal 14 amino acid fragment was choosen as antigen, and the gene was synthesized by PCR. The epitope was fused to Previously constructed Ganoderma lucidum immune regulatory protein LZ-8 as carrier protein and the recombinant antifreeze protein analogue 1A as linker, the designed LZ8-1A-HA(e) recombinant protein was expressed by Bacillus subtilis expression system. The LZ8-1A-HA(e) was used to immunize mice to examine the potency as influenza vaccine.
Another part of this study, aims to decrease the basal level of previously conststructed Bacillus subtilis xylose inducible dual plasmid system. However, in the 3 constructed system, the basal level did not decrease as expected.

枯草桿菌(Bacillus subtilis)為GRAS (generally recognized as safe)級菌種,已應用在許多產業上,如在發酵食品之製造、酵素及特用化學品之生產、作為益生菌(probiotic)及作為植物病害防治試劑等。2009年所爆發的H1N1新型流感病毒,在短短數個月的時間於全球快速傳播,造成大流行導致嚴重災情。由於傳統流感病毒疫苗只能針對特定製造疫苗病毒株,而且疫苗製備需耗時數月。發展廣效性流感疫苗成為現今新的治療流感病毒策略。本實驗設計以流感病毒中高度保留的血球凝集素HA2 N端14個胺基酸抗原片段,並融合了本實驗室之前所構築的重組靈芝免疫調節蛋白LZ-8與第一型重組抗凍蛋白類似物1A,設計出LZ8-1A-HA(e) 重組融合蛋白,利用枯草桿菌表現系統生產,並評估以枯草桿菌表現系統生產出的LZ8-1A-HA(e) 作為疫苗之效果,進行動物試驗檢測其抗體產生情形。結果顯示LZ8-1A-HA(e) 可誘發針對LZ8、1A與LZ8-1A-HA(e) 與2009年大流行性流感病毒疫苗(A/H1N1) HA抗原的特異性抗體。
另一方面,在之前本實驗室所構築的枯草桿菌xylose雙質體誘導系統上,存在著基礎表現量過高的問題,所以本實驗另一部分試圖改善枯草桿菌xylose誘導型雙質體系統於未添加入誘導物的基礎表現量,結果在搭配不同表現質體與調控質體的菌株其有無添加誘導物的表現量毫無差異。
URI: http://hdl.handle.net/11455/52089
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.