Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52090
標題: 利用乳酸鏈球菌表現甜味蛋白質
Expression of the recombinant sweet protein brazzein by food grade Lactococcus lactis
作者: 翟爾雅
Chai, Erh-Ya
關鍵字: Lactococcus lactis;乳酸鏈球菌;Brazzein;甜味蛋白質
出版社: 食品暨應用生物科技學系所
引用: 蘇政蕙。2005 年。挑選持續型強力啟動子並表現重組抗凍蛋白類似物於乳酸鏈球菌與乳酸桿菌中。國立中興大學食品科學系碩士論文。 彭宣融。2006 年。開發重組乳酸鏈球菌口服疫苗。國立中興大學食品科學系碩士論文。 葉鈞凱。2006 年。重組靈芝免疫調節蛋白質於枯草桿菌及乳酸鏈球菌之表現與純化最適化,及其生物活性分析。國立中興大學食品科學系碩士論文。 黃馨慧。2007 年。增進第一型重組抗凍蛋白質類似物於乳酸鏈球菌之分泌表現。國立中興大學食品科學系碩士論文。 姜彬,馮志彪。2005年。甜味劑發展概況。食品科技。 李春麗,何國慶。2004。植物brazzein基因的合成及其克隆。河南大學學報(自然科學版)第4期第34卷。 趙強。1995年。談「糖」與「糖的代用品」。美食天下第46期。 食品化學。1995年。華香園出版 Assadi-Porter, F. M., Aceti, D. J. &Markley, J. L. (2000). Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys 376(2): 259-265. Assadi-Porter, F. M., Maillet, E. L., Radek, J. T., Quijada, J., Markley, J. L. &Max, M. (2010). Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J Mol Biol 398(4): 584-599. Assadi-Porter, F. M., Patry, S. &Markley, J. L. (2008). Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in E. coli. Protein Expr Purif 58(2): 263-268. Berlec, A., Jevnikar, Z., Majhenic, A. C., Rogelj, I. &Strukelj, B. (2006). Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: a path toward sweet lactic acid bacteria. Appl Microbiol Biotechnol 73(1): 158-165. Berlec, A., Tompa, G., Slapar, N., Fonovic, U. P., Rogelj, I. &Strukelj, B. (2008). Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Lett Appl Microbiol 46(2): 227-231. Bermudez-Humaran, L. G., Langella, P., Commissaire, J., Gilbert, S., Le Loir, Y., L''Haridon, R. &Corthier, G. (2003a). Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224(2): 307-313. Bermudez-Humaran, L. G., Langella, P., Cortes-Perez, N. G., Gruss, A., Tamez-Guerra, R. S., Oliveira, S. C., Saucedo-Cardenas, O., Montes de Oca-Luna, R. &Le Loir, Y. (2003b). Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71(4): 1887-1896. Bolhuis, A., Broekhuizen, C. P., Sorokin, A., van Roosmalen, M. L., Venema, G., Bron, S., Quax, W. J. &van Dijl, J. M. (1998). SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 273(33): 21217-21224. Bolhuis, A., Tjalsma, H., Smith, H. E., de Jong, A., Meima, R., Venema, G., Bron, S. &van Dijl, J. M. (1999). Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Environ Microbiol 65(7): 2934-2941. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D. &Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11(5): 731-753. Caldwell, J. E., Abildgaard, F., Dzakula, Z., Ming, D., Hellekant, G. &Markley, J. L. (1998). Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Biol 5(6): 427-431. Castan, P., de Pedro, M. A., Risco, C., Valles, C., Fernandez, L. A., Schwarz, H. &Berenguer, J. (2001). Multiple regulatory mechanisms act on the 5'' untranslated region of the S-layer gene from Thermus thermophilus HB8. J Bacteriol 183(4): 1491-1494. Dahl, M. K., Degenkolb, J. &Hillen, W. (1994). Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. J Mol Biol 243(3): 413-424. Dalbey, R. E., & von Heijne, G. (2002). Protein targeting, transport & translocation. Amsterdam ; San Diego, CA: Academic Press. de Ruyter, P. G., Kuipers, O. P., Beerthuyzen, M. M., van Alen-Boerrigter, I. &de Vos, W. M. (1996). Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178(12): 3434-3439. de Vos, W. M., Kleerebezem, M. &Kuipers, O. P. (1997). Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content. Curr Opin Biotechnol 8(5): 547-553. De Vos, W. M., Simons, G. F. M. (1994). Gene cloning and expression systems in Lactococci. In: Genetics and biotechnology of lactic acid bacteria. (Gasson, M. J., de Vos, W. M., eds). Blackie, Glasgow UK . Dieye, Y., Usai, S., Clier, F., Gruss, A. &Piard, J. C. (2001). Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183(14): 4157-4166. Dougherty, B. A., Hill, C., Weidman, J. F., Richardson, D. R., Venter, J. C. &Ross, R. P. (1998). Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol Microbiol 29(4): 1029-1038. Drouault, S., Anba, J., Bonneau, S., Bolotin, A., Ehrlich, S. D. &Renault, P. (2002). The peptidyl-prolyl isomerase motif is lacking in PmpA, the PrsA-like protein involved in the secretion machinery of Lactococcus lactis. Appl Environ Microbiol 68(8): 3932-3942. Eichenbaum, Z., Federle, M. J., Marra, D., de Vos, W. M., Kuipers, O. P., Kleerebezem, M. &Scott, J. R. (1998). Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64(8): 2763-2769. Erlandson, K. A., Park, J. H., Wissam, El, K., Kao, H. H., Basaran, P., Brydges, S. &Batt, C. A. (2000). Dissolution of xylose metabolism in Lactococcus lactis. Appl Environ Microbiol 66(9): 3974-3980. Faraldo, M. M., de Pedro, M. A. &Berenguer, J. (1992). Sequence of the S-layer gene of Thermus thermophilus HB8 and functionality of its promoter in Escherichia coli. J Bacteriol 174(22): 7458-7462. Fernandez-Herrero, L. A., Olabarria, G. &Berenguer, J. (1997). Surface proteins and a novel transcription factor regulate the expression of the S-layer gene in Thermus thermophilus HB8. Mol Microbiol 24(1): 61-72. Foucaud-Scheunemann, C. &Poquet, I. (2003). HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 224(1): 53-59. Gartner, D., Degenkolb, J., Ripperger, J. A., Allmansberger, R. &Hillen, W. (1992). Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose. Mol Gen Genet 232(3): 415-422. Hellekant, G. &Danilova, V. (2005). Brazzein a small, sweet protein: discovery and physiological overview. Chem Senses 30 Suppl 1: i88-89. Hyyrylainen, H. L., Sarvas, M. &Kontinen, V. P. (2005). Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl Microbiol Biotechnol 67(3): 389-396. Israelsen, H., Madsen, S. M., Vrang, A., Hansen, E. B. &Johansen, E. (1995). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61(7): 2540-2547. Izawa, H., Ota, M., Kohmura, M. &Ariyoshi, Y. (1996). Synthesis and characterization of the sweet protein brazzein. Biopolymers 39(1): 95-101. Jana, S. &Deb, J. K. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67(3): 289-298. Jin, Z., Danilova, V., Assadi-Porter, F. M., Aceti, D. J., Markley, J. L. &Hellekant, G. (2003a). Critical regions for the sweetness of brazzein. FEBS Lett 544(1-3): 33-37. Jin, Z., Danilova, V., Assadi-Porter, F. M., Markley, J. L. &Hellekant, G. (2003b). Monkey electrophysiological and human psychophysical responses to mutants of the sweet protein brazzein: delineating brazzein sweetness. Chem Senses 28(6): 491-498. Kant, R. (2005). Sweet proteins--potential replacement for artificial low calorie sweeteners. Nutr J 4: 5. Kontinen, V. P. &Sarvas, M. (1993). The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8(4): 727-737. Kuipers, O. P., de Ruyter, P. G., Kleerebezem, M. &de Vos, W. M. (1997). Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol 15(4): 135-140. Kuipers, O. P., Rollema, H. S., Siezen, R. J. &De Vos, W. M. (1995). Lactococcal expression systems for protein engineering of nisin. Dev Biol Stand 85: 605-613. Kunji, E. R., Slotboom, D. J. &Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610(1): 97-108. Kurihara, K. &Beidler, L. M. (1968). Taste-modifying protein from miracle fruit. Science 161(847): 1241-1243. Lamphear, B. J., Barker, D. K., Brooks, C. A., Delaney, D. E., Lane, J. R., Beifuss, K., Love, R., Thompson, K., Mayor, J., Clough, R., Harkey, R., Poage, M., Drees, C., Horn, M. E., Streatfield, S. J., Nikolov, Z., Woodard, S. L., Hood, E. E., Jilka, J. M. &Howard, J. A. (2005). Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3(1): 103-114. Le Loir, Y., Azevedo, V., Oliveira, S. C., Freitas, D. A., Miyoshi, A., Bermudez-Humaran, L. G., Nouaille, S., Ribeiro, L. A., Leclercq, S., Gabriel, J. E., Guimaraes, V. D., Oliveira, M. N., Charlier, C., Gautier, M. &Langella, P. (2005). Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4(1): 2. Le Loir, Y., Gruss, A., Ehrlich, S. D. &Langella, P. (1998). A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180(7): 1895-1903. Le Loir, Y., Nouaille, S., Commissaire, J., Bretigny, L., Gruss, A. &Langella, P. (2001). Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67(9): 4119-4127. Llull, D. &Poquet, I. (2004). New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol 70(9): 5398-5406. Madsen, S. M., Arnau, J., Vrang, A., Givskov, M. &Israelsen, H. (1999). Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol Microbiol 32(1): 75-87. Madsen, S. M., Hindre, T., Le Pennec, J. P., Israelsen, H. &Dufour, A. (2005). Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB. Mol Microbiol 56(3): 735-746. Malten, M., Nahrstedt, H., Meinhardt, F. &Jahn, D. (2005). Coexpression of the type I signal peptidase gene sipM increases recombinant protein production and export in Bacillus megaterium MS941. Biotechnol Bioeng 91(5): 616-621. Masuda, T. &Kitabatake, N. (2006). Developments in biotechnological production of sweet proteins. J Biosci Bioeng 102(5): 375-389. McKay, L. L. (1983). Functional properties of plasmids in lactic streptococci. Antonie Van Leeuwenhoek 49(3): 259-274. Mierau, I. &Kleerebezem, M. (2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6): 705-717. Mierau, I., Leij, P., van Swam, I., Blommestein, B., Floris, E., Mond, J. &Smid, E. J. (2005a). Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microb Cell Fact 4: 15. Mierau, I., Olieman, K., Mond, J. &Smid, E. J. (2005b). Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4(1): 16. Ming, D. &Hellekant, G. (1994). Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355(1): 106-108. Miyoshi, A., Jamet, E., Commissaire, J., Renault, P., Langella, P. &Azevedo, V. (2004). A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol Lett 239(2): 205-212. Miyoshi, A., Poquet, I., Azevedo, V., Commissaire, J., Bermudez-Humaran, L., Domakova, E., Le Loir, Y., Oliveira, S. C., Gruss, A. &Langella, P. (2002). Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68(6): 3141-3146. Morello, E., Bermudez-Humaran, L. G., Llull, D., Sole, V., Miraglio, N., Langella, P. &Poquet, I. (2008). Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14(1-3): 48-58. Narita, J., Ishida, S., Okano, K., Kimura, S., Fukuda, H. &Kondo, A. (2006). Improvement of protein production in lactic acid bacteria using 5''-untranslated leader sequence of slpA from Lactobacillus acidophilus. Improvement in protein production using UTLS. Appl Microbiol Biotechnol 73(2): 366-373. Nouaille, S., Morello, E., Cortez-Peres, N., Le Loir, Y., Commissaire, J., Gratadoux, J. J., Poumerol, E., Gruss, A. &Langella, P. (2006). Complementation of the Lactococcus lactis secretion machinery with Bacillus subtilis SecDF improves secretion of staphylococcal nuclease. Appl Environ Microbiol 72(3): 2272-2279. Novotny, R., Scheberl, A., Giry-Laterriere, M., Messner, P. &Schaffer, C. (2005). Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis. FEMS Microbiol Lett 242(1): 27-35. Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A. &Gruss, A. (2000). HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35(5): 1042-1051. Poquet I, Bolotin A, Sorokin A, Gruss A (2006). Grampositive bacteria deprived of HtrA proteasic activity, and their uses. Patent US6994997 B1. Poquet I, Llull D (2006). Zinc-regulated prokaryotic expression cassettes. Patent application US2006199246. Ravn, P., Arnau, J., Madsen, S. M., Vrang, A. &Israelsen, H. (2003). Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 149(Pt 8): 2193-2201. Roper, S. D. (2007). Signal transduction and information processing in mammalian taste buds. Pflugers Arch 454(5): 759-776. Salminen, S., von Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W. M., Fonden, R., Saxelin, M., Collins, K., Mogensen, G., Birkeland, S. E. &Mattila-Sandholm, T. (1998). Demonstration of safety of probiotics -- a review. Int J Food Microbiol 44(1-2): 93-106. Sarvas, M., Harwood, C. R., Bron, S. &van Dijl, J. M. (2004). Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta 1694(1-3): 311-327. Song, S. &Park, C. (1997). Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol 179(22): 7025-7032. Titgemeyer, F., Reizer, J., Reizer, A. &Saier, M. H., Jr. (1994). Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140 ( Pt 9): 2349-2354. Tjalsma, H., Antelmann, H., Jongbloed, J. D., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J. Y., Westers, H., Zanen, G., Quax, W. J., Kuipers, O. P., Bron, S., Hecker, M. &van Dijl, J. M. (2004). Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev 68(2): 207-233. van Asseldonk, M., de Vos, W. M. &Simons, G. (1993). Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol Gen Genet 240(3): 428-434. van der Vossen, J. M., van der Lelie, D. &Venema, G. (1987). Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 53(10): 2452-2457. Westers, L., Westers, H. &Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694(1-3): 299-310. Wu, S. C. &Wong, S. L. (2002). Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin. Appl Environ Microbiol 68(3): 1102-1108. Yasuo, T., Kusuhara, Y., Yasumatsu, K. &Ninomiya, Y. (2008). Multiple receptor systems for glutamate detection in the taste organ. Biol Pharm Bull 31(10): 1833-1837. Yin, T., Lu, H. Y., Zhang, S. L., Liu, J. M. &Chen, D. M. (2009). [Fruit-specific expression of sweet protein Brazzein in transgenic tomato plants]. Yi Chuan 31(6): 663-667. Z. Guan, G. Hellekant and W. Yan (1995). Expression of sweet protein brazzein by Saccharomyces cerevisiae, Chem. Senses 20, p. 701.
摘要: 
Lactococcus lactis被認為是異源蛋白質表現、分泌及遞送的優良宿主,具有長久發酵食品使用歷史,因此被認為是GRAS(generally recognized as safe)及安全菌株,作為異源蛋白質表現宿主具有應用於食品工業上之潛力。Brazzin為甜味蛋白質的一種,源自非洲果實Baillon中萃取出的水溶性蛋白質,與人類味蕾結合可產生甜味,其結構不易受pH值與溫度變化而影響且無後苦味,可用作天然低卡路里甜味劑。然其含量低,不易大量生產,使其在食品業應用方面受限,經濟效益低。本實驗構築MNICE與MPHI系統並將其應用於此重組甜味蛋白質之生產。

實驗中所有表現系統之培養基皆使用先前實驗室開發之FMB培養基,其成分來源安全且有助於提高菌體密度,所應用之蛋白質生產系統可視為食品級表現系統。實驗首先構築酸誘導系統,分為含有5UTL與不帶有此結構之表現系統,偵測重組甜味蛋白質表現發現不帶有此結構之MPHI系統可受酸誘導調控表現蛋白質,而帶有5UTL之MPHI系統因酸誘導調控之D box出現缺失,故只具有蛋白質表現能力而不具受乳酸調控之能力。接著表現系統使用PnisA啟動子帶有5UTL搭配先前實驗室挑選之最佳訊息胜肽SPsacB 分泌表現重組甜味蛋白質,其在蛋白質產量方面明顯優於MPHI系統。實驗在MNICE系統中找到蛋白質產量最高時間在誘導後12小時,而nisin誘導最佳劑量為60 μg/ml,可於誘導後4小時得蛋白質產量260.9 μg/ml。甜味測試方面由於發酵上清液之味道受FMB培養基之干擾,雖可以50 ~ 300 mg/ml cysteine作用37℃/1 hr增進甜味,但仍無法確切比較出甜度差異性。

The lactic acid bacterium Lactococcus lactis is considered as an advan- tageous host for protein expression, secretion and delivery. The bacterium has an established safety profile through its long use in fermented dairy products and is considered as a GRAS(generally recognize as safe)microorganism. Brazzein is a sweet protein which was found in a tropical plant. The brazzein is impractical due to its low content in nature fruit and thus limiting its availability in food industry. In this study, we construct MNICE and MPHI induction expression system to produce sweet protein by L. lactis.

All the expression systems used the FMB medium, which was a component sources safe and achieved high cell density, and thus considered as food grade expression system. In the first section, we examined the pH-inducible system, using P170 promoter with(MPHI) or without slpA 5UTL(PHI) to express rbrazzein protein. Results showed that PHI system exhibited pH-inducible and secretion ability in L. lactis NZ9000. MPHI system could not be induced by lactic acid, and was found a deletion on promoter D box. In another section, our lactococcal expression/secretion system, using both PnisA(with 5UTL), an expression cassette tightly controlled by environmental nisin(MNICE), and a consensus signal peptide, SPsacB, allows efficient production and secretion of the rbrazzein, as compared by protein yields (protein amount/biomass) to MPHI expression systems. In MNICE system, results showed the nisin induction time 12hr achieved highest rbrazzein expression and the best induction concentration was 60 μg/ml nisin which achieved rbrazzein protein 260.9 μg/ml at induction time 4 hr. The taste experiment was interfered by the heavy flavor of medium, adding 50 ~ 300 mg/ml cysteines and acting 37℃/1 hr could promote the sweetness, but still could not quantitative analysis the sweetness.
URI: http://hdl.handle.net/11455/52090
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.