Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/52095
標題: | Optimization for the production of liposomal berberine with the comparison of antihepatoma effects, and the apoptotic pathways of berberine solution or liposomal berberine on HepG2 cells 小檗鹼微脂體製程之最適化及小檗鹼溶液與其微脂體抗HepG2細胞生長能力和相關凋亡路徑之比較 |
作者: | 郭旃暥 Guo, Jhan-Yan |
關鍵字: | Nano-traditional Chinese medicine;奈米中藥;berberine liposome;HepG2 cell;cell apoptosis;鹽酸小檗鹼微脂體;HepG2細胞;細胞凋亡 | 出版社: | 食品暨應用生物科技學系所 | 引用: | 第陸章、參考文獻 于吉臣,李繼,王玉東,王曉來,傅經國。松蘿酸脂質體的製備及質量評價。中國藥科大學學報,2007,38(5),4004-406。 于愛華,翟光喜,崔晶,席延偉。葛根素微乳的製備及質量評價。中國醫藥工業雜誌,2006,37(7),471-473。 于濱。長循環長春新鹼脂質體抗癌作用的研究。沈陽醫學院學報,2006,8(2),96-109。 尤明強,人參微脂體減緩過氧化氫對細胞氧化傷害之評估與黃連及小檗鹼微脂體抗人類肝癌細胞之效能分析,國立中興大學碩士論文,2009。 王凱平,張玉,張俊。豬苓多糖長循環脂質體的制備。中草藥,2005,36(3),368-370。 王琳,蔡寶昌,李偉東,鄧旭坤。馬錢子鹼長循環脂質體的製備和質量評價。中國藥學雜誌,2006,41(18),1397-1400。 王慶偉,劉宏,呂惠蘭,張學鋒,程孝國。多烯紫杉醇免疫脂質體對結腸癌細胞的靶向放射增敏作用。中華實驗外科雜誌,2006,23(7),795-797。 田煦,朱家壁,王健松,李庭芳。粉防己鹼静脈注射乳劑的製備及對實驗性肺纖維化的治療作用。中國藥科大學學報,2005,36(3),225-229 向東,張莉,葉利民,張志榮。去甲斑蝥素微乳的製備和質量評價。華西藥學雜誌,2004,19(2),89-92。 行政院衛生署中華藥典編修委員會,中華藥典第六版,行政院衛生署,台北,台灣,2006,p. 192-193。 吳旭錦,歐陽五慶,朱小甫,陽寶平。紫蘇子油奈米乳的研製。中草藥,2007,38(11),1629-1632。 吳黛薇。奈米化中草藥對兔子骨髓間葉幹細胞生長影響之研究。中原大學醫學工程學系碩士學位論文,2006。 呂思寧,周玲,何強。納米技術與納米中草藥。中國科技論文在線,2009,12(4),905-909。 宋金春,黄嶺,陳佳麗。羥基喜樹鹼脂質體的製備及其包封率測定。中國醫院藥學雜誌,2007,27(10),1381-1383。 宋贇梅,平其能,吳正紅。水飛薊賓納米乳的製備及家兔體內藥動學。中國藥科大學學報,2005,36(5),427-431。 宏偉,陳大為,趙秀麗,喬明曦,胡海洋。薑黃素長循環脂質體的製備及評價。中國中藥雜誌,2008,33(8),889-892。 李卉芳,劉明星,劉清飛,羅國安,王川,王義名,陳奇。表面修飾的燈盞花素聚乳酸納米粒的製備和大鼠體內藥動學。中國新藥雜誌,2007,16(8),614-618。 李健,于耀宇,趙振偉,高立,劉琳娜,劉劍平。罌粟鹼明膠微球的合成和體外藥物釋放研究。醫學研究生學報,2010,23(1),13-16。 李寶玉,顧寧,魏于全。奈米生醫材料。五南圖書出版股份有限公司,台北,台灣,2006,p.187-317。 邢潔,張典瑞,張學順,高磊。冬凌草甲素聚乳酸奈米粒的製備和體外性質研究。中國藥學雜誌,2007,42(13),1006-1010。 幸海燕,王昆,趙凱,張敬如,黄复生。木犀草素脂質體製劑處方和工藝優化研究。第三軍醫大學學報,2008,30(9),810-813。 林愛華,李鴻燕,劉奕明,丘小惠。小檗鹼殼聚糖奈米粒的製備及其體外釋藥特性研究。中國藥房,2007,18(10),755-757。 柯學,許穎,嚴菲,平其能。漢黃芩素脂質體的製備及大鼠體內藥代動力學。中國藥科大學學報,2007,38(6),502-506。 查瑞濤,賀曉婷,杜田,袁直。肝靶向甘草次酸修飾的殼聚糖奈米粒子的合成和表徵。高等學校化學學報,2007,28(6),1098-1100。 胡曉麗,施中凱,吳曉岩,劉玉鳳,胡慧靜。奈米化四君子湯對免疫抑制小鼠腸道菌群的影響。成都中醫藥大學學報,2010,33(1),60-62。 孫紅武,歐陽五慶。黄連素口服奈米乳的研製、質量及安全性評價。上海交通大學學報(農業科學版),2007,25(1),60-65。 孫萍,鄧樹海,于維萍。PEG修飾大蒜素長循環脂質體的製備及藥物動力學研究。實用心腦肺血管病雜誌,2006,14(6),4 徐凌雲,曾繁典,葉寒青,楊祥良,徐輝碧。奈米雄黃抗腫瘤作用及在荷瘤小鼠組織中的分布。中國新藥雜誌,2006,15(21),1845-1849。 徐輝碧,楊祥良,謝長生,楊亞江。奈米技術在中藥研究中的應用。中國藥科大學學報,2001,32(3),161-165。 祝玉祥,范健,周衛,繆玉山。紫杉醇磁性脂質體製備及其性質的研究。實用臨床醫藥雜誌,2007,11(2),12-15、23。 張柯萍,藺勝照,陳國廣,李學明。鴉膽子油微乳的製備及穩定性研究。華西藥學雜誌,2005,20(3),199-201。 曹發昊,歐陽五慶,王艷萍,董紅賓。苦參鹼奈米乳的研製及其對小鼠抗氧化作用的影響。西北農林科技大學學報(自然科學版),2007,35(3),61-64。 許紅瑋,方琴,王季石,李芳瓊,王培明。紫杉醇嵌段共聚物奈米粒的製備及體外實驗研究。中國醫院藥學雜誌,2008,28(1),11-14。 陸偉耀,劉敏,潘俊,力弘,馬俊。葉酸-脂質體製備及對HeLa細胞靶向作用。上海醫科大學學報,2000,27(1),4-8。 傅若秋,何鳳慈,孟德勝,陳亮。紫杉醇聚乳酸奈米粒的製備。第三軍醫大學學報,2006,28,1573-1574。 華海嬰,劉琳,趙永星,張振中。紫蘇醇亞微乳劑的製備及其HPLC法測定。中國醫藥工業雜誌,2008,39(6),447-452。 陽祥良,徐碧輝,吳繼洲,謝長生。基於奈米技術的中藥基礎問題研究。華中理工大學學報,2000,28(12),104-105。 陽寶平,歐陽五慶,吳旭錦,胡穎。白藜蘆醇奈米乳的製備及其質量評價。西北農業學報,2008,17(2),20-23。 董曉東,鄧英杰,陳超,王曉宇。燈盞花素脂質體體外釋放及在酸和膽鹽中穩定性研究。中國藥學雜誌,2010,45(8),597-601。 蔣天智,劉少友。新型長循環紫杉醇脂質體的製備及其細胞毒性。中國組織工程研究與臨床康復,2007,11(26),5113-5116。 鄭國燊,李俊芝。石菖蒲揮發油複乳的研製。中藥材,2006,29(5),477-479。 黎玲,王東凱,李林穗,賈軍,常笛,艾麗。注射用多烯紫杉醇亞微乳的製備。沈陽藥科大學學報,2007,24(12),736-739。 錢湧,岳鐳。珍珠粉碎工藝的比較。中成藥,1998,5(10),20。 魏銘,劉小平,李惠,唐自元,李航森。苦參鹼脂質體的研究。武漢理工大學學報,2006,28(8),46-49、53。 羅宇翔、林志峰、楊世群、吳明忠。細胞週期的新標靶在抗癌藥物的發展。化學,2008,66(4),293-308。 邊可君,楊祥良,徐輝碧,謝長生,管竟環,馬威。奈米石決明的研究。中成藥,2003,25(4),296-299。 Abe S, Hasegawa M, Yamamoto K, Kurata M, Nakagawa Y, Suzuki K, Takizawa T, and Kitagawa M. Rapid induction of IAP family proteins and Smac/DIABLO expression after proapoptotic stimulation with doxorubicin in RPMI 8226 multiple myeloma cells. Experimental and Molecular Pathology, 2007; 83(3): 405-412. Abuchowski A, McCoy JR, Palczuk NC, van Es T, and Davis FF: Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 1977; 252(11): 3582-3586. Allen TM, Murray L, MacKeigan S, Shah M. Chronic liposome administration in mice: Effects on reticuloendothelial function and tissue distribution. Journal of Pharmacology and Experimental Therapeutics, 1984; 229(1): 267-275. Bánfalvi G. Apoptotic Chromatin Changes. Springer Publisher, 2009; p. 212-248. Bangham AD, Standish MM, and Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 1965; 13: 238-252. Barnadas-Rodríguez R, and Sabés M. Factors involved in the production of liposomes with a high-pressure homogenizer. International Journal of Pharmaceutics, 2001; 213: 175-186. Chang CC, Liu DZ, Lin SY, Liang HJ, Hou WC, Huang WJa, Chang CH, Ho, FM and Liang YC. Liposome encapsulation reduces cantharidin toxicity. Food Chemistry and Toxicology, 2008; 46: 3116-3121. Dadashzadeh S, Vali AM and Rezaie M. The effect of PEG coating on in vitro cytotoxicity and in vivo disposition of topotecan loaded liposomes in rats. Pharmaceutical Nanotechnology, 2008; 353(1-2): 251-259. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 2007; 35(4): 495-516. Evans T, Rosenthal TE, Youngblom J, Distel D, and Hunt T. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 1983; 33: 389-396. Freile ML, Giannini F, Pucci G, Sturniolo A, Rodero L, Pucci O, Balzareti V, and Enriz RD. Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Fitoterapia, 2003; 74: 702-705. Garbuzenko O, Barenholz Y, and Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chemistry and Physics of Lipids, 2005; 135: 117-129. Gao L, Zhang D, Chen M, Duan C, Dai W, Jia Le, and Zhao W. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. International Journal of Pharmaceutics, 2008; 355: 321-327. Gubernator J, Chwastek G, Korycińska M, Stasiuk M, Grynkiewicz G, Lewrick F, Süss R, and Kozubek A. The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. Journal of Controlled Release, 2010; 146(1): 68-75. Hartwell LH, and Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science, 1989: 246, 629-634. Hayashi K, Minoda K, Nagaoka Y, Hayashi T and Uesato S. Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorganic and Medicinal Chemistry Letters, 2007; 17: 1562-1564. He W, Yang JX, Yang J, and Yin WH. The research on liver targeting delivery system of cantharidin polyphase liposome modified by strengthened targeting material. Journal of China Pharmaceutical University, 1998; 20: 413-417. Hsu WH, Hsieh YS, Kuo HC, Teng CY, Huang HI, Wang CJ, Yang SF, Liou YS, and Kuo WH: Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Archives of Toxicology, 2007, 81(10): 719-728. Hwang JM, Kuo HC, Tseng TH, Liu JY, and Chu CY: Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Archives of Toxicology, 2006; 80(2): 62-73. Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, and Miura M. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila. Biochemical and Biophysical Research Communications, 2007; (4)18: 993-997. Imura T , Otake K , Hashimoto S , Gotoh T, Yuasa M , Yokoyama S, and Sakai H, Rathman JF, snd Abe M. Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method. Colloids and Surfaces B: Biointerfaces, 2003; 27: 133-140. Ito C, Itoigawa M, Nakao K, Murata T, Tsuboi M, Kaneda N, and Furukawa H. Induction of apoptosis by carbazole alkaloids isolated from Murraya koenigii. Phytomedicine, 2006; 13: 359-365. Jantova S, Cipak L, and Letasiova S. Berberine induces apoptosis through a mitochondrial/caspase pathway in human promonocytic U937 cells. Toxicology in Vitro, 2007; 21: 25-31. Jerzak M and Bischof P. Apoptosis in the first trimester human placenta: the role in maintaining immune privilege at the maternal–foetal interface and in the trophoblast remodeling. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2002; 100(2): 138-142. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CYJ, Sasaki T, Elia AJ, Cheng HYM, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY., Zuñiga-Pflücker JC, Kroemer G and Penninger JM. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 2001; 410: 549-554. Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, and Lee KT. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Letters, 2003, 196: 143-152. Katas H and Alpar Oya H. Development and characterisation of chitosan nanoparticles for siRNA delivery. Journal of Controlled Release, 2006; 115: 216-225. Kerr JFR, Wyllie AH and Currrie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. British Journal of Cancer, 1972; 26: 239-257. Kogianni G, Mann V, Ebetino F, Nuttall M, Nijweide P, Simpson H. Noble. Fas/CD95 is associated with glucocorticoid-induced osteocyte apoptosis. Life Sciences 2004; 75(24): 2879-2895. Kondoh Y, Kawada T, and Urade R. Activation of caspase 3 in HepG2 cells by elaidic acid (t18:1). Biochimica et Biophysica Acta, 2007; 1771: 500-505. Kuo CL, Chi CW, and Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Letters, 2004; 203: 127-137. Kuo LC, Chou CC, and Yung YMB: Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells. Cancer Letters, 1995; 93(2): 193-200. Lee CH, Chen JC, Hsiang CY, Wu SL, Wu HC, and Ho TY. Berberine suppresses inflammatory agents-induced interleukin-1β and tumor necrosis factor-α productions via the inhibition of IκB degradation in human lung cells. Pharmacological Research, 2007; 56: 193-201. Li DC, Zhong XK, Zeng ZP, Jiang JG, Li L, Zhao MM, Yang XQ, Chen J, Zhang BS, Zhao QZ, Xie MY, Xiong H, Deng ZY, Zhang XM, Xu SY, and Gao YX. Application of targeted drug delivery system in Chinese medicine. Journal of Controlled Release, 2009; 138: 103-112. Li P, Nijhawan D, Budihardjo I, Srinivasula MS, Ahmad M, Alnemri SE, and Wang X. Cytochrome C and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997; 91: 479-489. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C. Cell, 1996; 86(1): 147-157. Liu Z, Liu Q, Xu B, Wu J, Guo C, Zhu F, Yangc Q, Gao G, Gong Y, and Shao C. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutation Research, 2008; 662: 75-83. Lou H, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, and Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. International Journal of Pharmaceutics, 2009; 379: 181-186. Manojlovic V, Winkler K, Bunjes V, Neub A, R Schubert, B Bugarski, and Leneweit G. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Colloids and Surfaces B: Biointerfaces, 2008; 64: 284-296. Meeran SM, Katiyar S, and Katiyar SK: Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicology and Applied Pharmacology, 2008; 229(1): 33-43. Menezes DEL, Linda Pilarski M, and Theresa M. Allen.. In Vitro and in Vivo Targeting of Immunoliposomal Doxorubicin to Human B-Cell Lymphoma. Cancer Research, 1998, 58, 3320-3330. Nahar M, Mishra D, Dubey V, and Jain KN. Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008; 4: 252-261. New RRC. Liposomes a practical approach, 1st Edition. Oxford University Press, New York, USA, 1990; p.1-161. Nicholas RA, Scott JM, Kennedy IN, and Jones NM. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Biochimica et Biophysica Acta, 2000; 1463: 167-178. Nurse P. Cyclin dependent kinases and cell cycle control. (Nobel Lecture). ChemBioChem, 2002; 3: 596-603. Nurse P. Regulation of the eukaryotic cell cycle. European Journal of Cancer, 1997; 33(7): 1002-1004. Papagiannaros A, Hatziantoniou S, Dimas K, Papaioannou Th.G, and Demetzos C. A liposomal formulation of doxorubicin, composed of hexadecylphosphocholine (HePC): physicochemical characterization and cytotoxic activity against human cancer cell lines. Biomedicine & Pharmacotherapy, 2005; 60: 36-42. Peng YR, Li YB, Liu XD, Zhang JF, and Duan JA. Apoptosis induced by caudatin in human hepatoma cell line SMMC7721. Chinese Journal of Natural Medicines, 2008; 6(3), 210-213. Piyanuch R, Sukhthankar M, Wandee G, and Baek SJ: Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Letters, 2007; 258(2): 230-240. Piyanuch R, Sukhthankar M, and Baek JS. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Letters, 2007; 258(2): 230-240. Raffray M and Cohen MG. Apoptosis and Necrosis in Toxicology: A Continuum or Distinct Modes of Cell Death? Pharmacology and Therapeutics, 1997; 75(I): 153-177. Rongen HAH, Bult A, and van Bennekom WP. Liposomes and immunoassays. Journal of Immunological Methods, 1997; 204: 105-133. Roco CM. Nanotechnology: convergence with modern biology and medicine. Current Opinion in Biotechnology, 2003; 14: 337-346. Rudner J, Elsaesser JS, Müller AC, Belka C, and Jendrossek V. Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on Celecoxib-induced apoptosis. Biochemical Pharmacology, 2010; 79: 10-20. Schneider T, Sachse A, Röβling G, Brandl M. Generation of contrast-carrying liposomes of defined size with a new continuous high pressure extrusion method. International Journal of Pharmaceutics, 1995; 117: 1-12. Shakeel F, Baboota S, Ahuja A, Ali J and Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. Journal of Nanobiotechnology, 2008; 6(8): 1-11. Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, Shinohara A, Eriguchi M, Yanagie H, and Maruyama K. Effective anti-tumor activity of oxaliplatin encapsulated in transferring-PEG-liposome. International Journal of Pharmaceutics, 2008; 346(12): 143-150. Stein SG and Pardee BA. Cell cycle and growth control. Wiley & Sons, Inc., Hoboken, New Jersey, 2004; p. 4-6. Torchilin V and Weissig V. Liposomes 2nd Edition. Oxford University Press, New York, USA, 2003; p.4-24. Wang X, Yao X, Zhu Z, Tang T, Dai K, Sadovskaya I, Flahaut S, and Jabbouri S. Effect of berberine on Staphylococcus epidermidis biofilm formation. International Journal of Antimicrobial Agents, 2009; 34: 60-66. Yadav KA, Mishra P, Mishra KA, Mishra P, Jain S, and Agrawal PG. Development and characterization of hyaluronic acid–anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007; 3: 246-257. Yan D, Jin C, Xiao XH, and Dong XP. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. Journal of Biochemical and Biophysical Methods, 2008; 70: 845-849. Yang T, Choi MK, Cui FD, Kim SJ, Chung SJ, Shim CK, and Kim DD. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. Journal of Controlled Release, 2007; 120: 169-177. Yonish-Rouach E, Deguin V, Zaitchouk T, Breugnot C, Mishal Z, Jenkins JR, and May E. Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53. Oncogene, 1995; 11(11): 2197-2205. | 摘要: | 奈米中藥是指將中藥有效成分、有效部位、原藥或複方製劑與奈米技術相結合而製造出粒徑小於100 nm的中藥劑型,進而提高生物利用度、控制藥物釋放速率和延長藥物的作用時間來增進治療效果。小檗鹼是中草藥黃連的主要功效成分,具有抗菌、抗病毒、抗發炎、抑制腫瘤生長及誘導癌細胞凋亡的功效。本研究目的是以微脂體包覆鹽酸小檗鹼以提高其對於肝癌細胞的毒殺作用。首先先探討鹽酸小檗鹼微脂體的脂質組成及製備方式對鹽酸小檗鹼微脂體的粒徑、粒徑分佈及鹽酸小檗鹼包覆率的影響,確立鹽酸小檗鹼微脂體的最適化製程。結果顯示1,2-distearoyl-3-sn-phosphatidylcholine(DSPC)及hydrogenated soy phosphatidylcholine(HSPC)兩種脂質不影響鹽酸小檗鹼微脂體的粒徑大小與包覆率,而添加5% PEG可顯著地使包覆率提高3.3- 6.4倍。在方法上,以薄膜水合法搭配濾膜擠壓法可以得到最高的包覆率(14%)的鹽酸小檗鹼微脂體。微脂體包覆鹽酸小檗鹼可以顯著的提高對HepG2細胞的毒殺能力,MTT試驗結果指出鹽酸小檗鹼微脂體對HepG2細胞的生長抑制效果為鹽酸小檗鹼溶液的1.2-2.3倍。由Annexin V/ PI雙染的結果可以發現鹽酸小檗鹼微脂體可以顯著的誘導HepG2細胞產生凋亡,且隨處理時間(24- 72小時)與濃度(0- 20 µg/mL)的增加,凋亡細胞的比例也隨之提高,相對的,鹽酸小檗鹼溶液在同樣的處理條件下,亦有凋亡細胞的出現,但是數量較少。在凋亡路徑之探討方面,鹽酸小檗鹼溶液或鹽酸小檗鹼微脂體能藉由降低粒線體的膜電位,接著依序活化caspase-9及-3,caspase-3的活化使其受質PARP斷裂並失去活性,導致HepG2細胞發生凋亡。此外,外在路徑中的caspase-8並無活化的情形。另外以西方墨點法分析結果顯示pro-caspase-3表現量,兩處理組的pro-caspase-3表現量均出現濃度依賴性,而caspase-3的受質PARP之表現情形在鹽酸小檗鹼濃度5 µg/mL以上,亦有斷裂的情形出現,故鹽酸小檗鹼溶液與其微脂體應是以caspases/mitochondria依賴性的凋亡路徑促使HepG2細胞產生細胞凋亡。而與鹽酸小檗鹼溶液相比,鹽酸小檗鹼微脂體能讓粒線體膜電位下降幅度加大,且caspase-9和caspase-3的活性也都高於鹽酸小檗鹼溶液組。由細胞的攝食情形與微脂體釋出鹽酸小檗鹼的情形證實鹽酸小檗鹼微脂體無法提高HepG2細胞對鹽酸小檗鹼的攝食量,但是藉由微脂體對藥物的保護效果及逐步釋出藥物的特色能延長鹽酸小檗鹼作用於HepG2細胞。歸納以上實驗結果,說明鹽酸小檗鹼微脂體不改變原本鹽酸小檗鹼所誘導的凋亡路徑,可能是利用延長作用時間來增加對HepG2細胞的毒殺效果。 Nano-traditional Chinese medicine (nano-TCM) is a new packaging format hybridizing traditional Chinese medicine's effective substmces/ component (either as a crude drug alone or mixed with other pharmaceutic compounds) with the nanotechnology to produce particle size smaller than 100 nm. Nano-TCM could enhance bioavailability, control drug releasing rate, and extend medicine response time for improving therapeutic purposes. Berberine is the major therapeutic compound from Coptidis Rhizoma Franch. (huanglian). Berberine has been shown to exhibit antimicrobial, antiviral, and anti-inflammatory activities, as well as to inhibit the growth of tumor and to induce apopotosis of cancer cells. The aim of this study is to increase berberine cytotoxicity to cancer cells by encapsulating it within liposome. At first, we evaluated the effects of lipid composition and the preparation methods of berberine liposome on berberine encapsulation efficiency (E.E.) and liposomal particle size; this established the optimal berberine liposome. The results indicated that particle size and E.E. of berberine liposome containing DSPC or HSPC is uninfluenced. However, adding 5 mol% PEG could improve 3.3- 6.4 times of the E.E. of berberine when compared to liposomes without PEG. Among preparation motheds, the thin-film hydration/extrusion motheds provided the highest E.E. of berberine (14%). The cytotoxicity of berberine encapsulated liposome to HepG2 cells showed an increase. MTT test results pointed out that berberine liposome had 1.2-2.3 times of the capability to suppresse the growth of HepG2 cells than that of berberine solution alone. After the addition of berberine liposomes into HepG2 cells, the apoptotic cell percentage, using Annexin V/ PI double staining, significantly increased. The results were regulated in a time-dependent (24-72 hr) and dose-dependent (0- 20 µg/mL) manner. At the same time, berberine solution, without liposome encapsulation, could not induce apoptosis of HepG2 cells. When studying the apoptotic pathway of HepG2 cells induce by berberine solution alone or encapsulated by liposome, the mitochondrial membrane potential decreased, while caspase-3 and caspase-9 activities increased and caspase-8 was unactive. In addition, the expressions of pro-caspase-3 showed a decrease following treatment concentration and the caspase-3 substrate, PARP, was cleaved in HepG2 cells treated with more than 5 µg/mL berberine solution or its liposome. Thus, berberine solution and berberine liposome might induce apoptosis in HepG2 cells through the caspase/mitochondria dependent pathway. But comparing both treatments, there were lower mitochondrial membrane potential, more active of caspase-9 and caspase-3, fewer pro-caspase-3 expressed and more PARP cleaved in HepG2 cells treated with berberine liposome. Otherwise, the results of berberine uptake by HepG2 cells and berberine release from liposome showed that berberine liposome would not enhance berberine uptake of HepG2 cells. Liposome might protect drug and gradually release drug following time, thus prolong treatment time. The results of our study suggest that berberine liposome could extend treatment time to improve the cytotoxicity and apoptosis of HepG2 cells, without altering the apoptotic pathway. |
URI: | http://hdl.handle.net/11455/52095 |
Appears in Collections: | 食品暨應用生物科技學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.