Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52100
標題: Physical and Chemical Properties of the Polysaccharides Extracted from the pericarp of Citrus grandis Osbeck
文旦柚果皮多醣理化特性之研究
作者: 周寶嘉
Chou, Pao-Chia
關鍵字: Citrus grandis Osbeck peel;文旦柚果皮;polysaccharide;galacturonic acid;physicochemical properties;多醣;半乳糖醛酸;理化特性
出版社: 食品暨應用生物科技學系所
引用: 柒、參考文獻 1. 方祖達 (1988) 柑橘試驗研究成果專題研討會專集。臺灣省農業試驗所,特刊第27號 (pp. 241-260)。臺灣省農業試驗所。台中,台灣。 2. 王勝鴻 (1988) 果樹庭園栽培。邯鄲出版社。台中,台灣。 3. 江幸芳 (2001) 脫色仙草葉膠溶液及其與小麥澱粉混合系統黏彈性質之研究。食品營養學系,碩士論文 (p. 137)。靜宜大學。台 中,台灣。 4. 行政院農業委員會 (2009)文旦「柚」香「柚」甜,嚐鮮趁此時。 5. 行政院農業委員會統計室 (2007)農業統計年報。行政院農業委員會 (p. 78)。 行政院農業委員會。台北,台灣。 6. 行政院農業委員會統計室 (2008) 農業統計年報。行政院農業委員會 (p. 78)。行政院農業委員會。台北,台灣。 7. 吳奕儒,郭銀港 & 楊耀祥 (1997)提昇果樹產業競爭力研討會專集Ⅱ。 臺灣省臺中區農業改良場,特刊第38號 (pp. 169-186)。臺灣省臺中區農業改良場。台中,台灣。 8. 呂明雄 (1995)台灣農家要覽農作篇(二)。財團法人豐年社。台北,台灣。 9. 呂明雄 & 徐信次 (1994)認識高品質台灣水果。財團法人豐年社。台北,台灣。 10. 李維書 (2003)乾燥對青椒呼吸作用及營養成分影響之探討。食品科學系。碩士論文 (p. 118)。台中市,台灣省。 國立中興大學。台中,台灣。 11. 李德章,郭曜豪 & 陳行慧 (2008)常用中藥文獻摘錄(一):補養篇(2004-2007)。國立中國醫藥研究所。台北,台灣。 12. 沈聰明 (2005)臺灣文旦柚產銷作業管理手冊。行政院農業委員會。台北,台灣。 13. 周聰成 (2005)中醫營養學。新文京開發出版股份有限公司。台北,台灣。 14. 范念慈 (1991)柑橘學。 國立中興大學教務處出版組。台中,台灣。 15. 翁仁祿 (1979)經濟果樹。財團法人豐年社附設出版部。台北,台灣。 16. 康有德 (1992)水果與果樹。黎明文化事業股份有限公司。台北,台灣。 17. 張汶肇 (2009)國產優良品牌文旦柚生產管理技術作業標準。 18. 梁惠媛 (2010)水萃及鹼萃山蘇葉黏質之理化特性。食品暨應用生物科技學系所。 碩士論文 (p. 116)。中興大學。台中,台灣。 19. 梁寶仁 (1975)果樹園藝學柑橘篇。財團法人臺北市徐氏基金會。台北,台灣。 20. 莊月雀 (2004)臺灣產柑橘類果實機能性成分之研究。食品科學系。碩士論文 (p. 88)。國立中興大學。台中,台灣。. 21. 連文琰 & 胡廷松 (1989)中國本草圖錄卷一。臺灣商務印書館股份有限公司。台北,台灣。 22. 陳淑娟 (2004)藥膳總論。國立空中大學。台北,台灣。 23. 陳溪潭 (1997)本省麻豆文旦產業之沿革與展望。台灣農業33(4),39-52。 24. 黃兆勝 (2005)中華養生藥膳大全。三藝文化事業有限公司。台北,台灣。 25. 楊致福 (1951)台灣果樹誌。台灣省農業試驗所嘉義農業試驗分所。嘉義,台灣。 26. 劉金昌 (1988)果品的選購與貯藏。五洲出版社。台北,台灣。 27. 劉業經 (1981)臺灣木本植物誌.。國立中興大學農學院出版委員會。台中,台灣。 28. 蔡瑞珠 (2007)桑葉多醣基礎流變特性之研究。食品暨應用生物科技學系。碩士論文 (p. 101)。中興大學。台中,台灣。 29. 黎明 (1999)藥用水果。浩園文化事業有限公司。台北,台灣。 30. 盧宏民 (1974)本草藥性大辭典。五洲出版社。台北,台灣。 31. 諶克終 (1961)柑橘栽培學。國立編譯館。台北,台灣。 32. 賴滋漢 & 金安兒 (1991)食品加工學製品篇。精華出版社。台中,台灣。 33. AOAC. (2000). Official Methods of Analysis. 17th ed. Washington, DC.:Association of Official Analytical Chemists. 34. Beer, M. U., Wood, P. J., & Weisz, J. (1999). A simple and rapid method for evaluation of Mark-Houwink-Sakurada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusion chromatography: application to guar galactomannan. Carbohydrate Polymers, 39(4), 377-380. 35. Bitter, T., & Muir, H. M. (1962). A modified uronic acid carbazole reaction. Analytical Biochemistry, 4(4), 330-334. 36. Chou, T. D., & Kokini, J. L. (1987). Rheological properties and conformation of tomato paste pectins, citrus and apple Pectins. Journal of Food Science, 52(6), 1658-1664. 37. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. 38. Huggins, M. L. (1942). The viscosity of dilute solutions of long-chain molecules. IV. dependence on concentration. Journal of the American Chemical Society, 64(11), 2716-2718. 39. Joye, D. D., & Luzio, G. A. (2000). Process for selective extraction of pectins from plant material by differential pH. Carbohydrate Polymers, 43(4), 337-342. 40. Kang, S. A., Park, H. J., Kim, M. J., Lee, S. Y., Han, S. W., & Leem, K. H. (2005). Citri Reticulatae Viride Pericarpium extract induced apoptosis in SNU-C4, human colon cancer cells. Journal of Ethnopharmacology, 97(2), 231-235. 41. Ladaniya, M. S. (2008). Citrus Fruit :Biology, Technology and Evaluation USA: Elsevier. 42. Lai, L. S., & Chao, S. J. (2000). A DSC study on the gel-sol transition of a starch and hsian-tsao leaf gum mixed system. Journal of Agricultural and Food Chemistry, 48(8), 3267-3274. 43. Lai, L. S., & Chiang, H. F. (2002). Rheology of decolorized hsian-tsao leaf gum in the dilute domain. Food Hydrocolloids, 16(5), 427-440. 44. Lapasin, R., & Pricl, S. (1995). Rheology of polysaccharides systems. In:Rheology of Industrial Polysaccharides:Theory and Applications. U.K.: Blackie Academic & Professional Glasgow. 45. Liu, Y., Shi, J., & Langrish, T. A. G. (2006). Water-based extraction of pectin from flavedo and albedo of orange peels. Chemical Engineering Journal, 120(3), 203-209. 46. Ma, E., Cervera, Q., & Mejía Sánchez, G. M. (1993). Integrated utilization of orange peel. Bioresource Technology, 44(1), 61-63. 47. Manthey, J. A., & Grohmann, K. (1996). Concentrations of hesperidin and other orange peel flavonoids in citrus processing byproducts. Journal of Agricultural and Food Chemistry, 44(3), 811-814. 48. May, C. D. (1990). Industrial pectins: Sources, production and applications. Carbohydrate Polymers, 12(1), 79-99. 49. Mesbahi, G., Jamalian, J., & Farahnaky, A. (2005). A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocolloids, 19(4), 731-738. 50. Montgomery, R. (2004). Development of biobased products. Bioresource Technology, 91(1), 1-29. 51. Mukhiddinov, Z. K., Khalikov, D. K., Abdusamiev, F. T., & Avloev, C. C. (2000). Isolation and structural characterization of a pectin homo and ramnogalacturonan. Talanta, 53(1), 171-176. 52. Pinheiro, E. R., Silva, I., Gonzaga, L. V., Amante, E. R., Teofilo, R. F., Ferreira, M. M. C., & Amboni, R. (2008). Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresource Technology, 99(13), 5561-5566. 53. Rascón-Chu, A., Martínez-López, A. L., Carvajal-Millán, E., Ponce de León-Renova, N. E., Márquez-Escalante, J. A., & Romo-Chacón, A. (2009). Pectin from low quality ''Golden Delicious'' apples: Composition and gelling capability. Food Chemistry, 116(1), 101-103. 54. Rivas, B., Toizrado, A., Torre, P., Converti, A., & Dominguez, J. M. (2008). Submerged citric acid fermentation on orange peel autohydrolysate. Journal of Agricultural and Food Chemistry, 56(7), 2380-2387. 55. Thibault, J.F., & Ralet, M.C. (2003). Physico-chemical properties of pectins in the cell walls and after extraction. In F. Voragen, H. Schols, & R. Visser (Eds.), Advances in pectin and pectinase research (pp. 91–105). The Netherlands: Kluwer Academic Publishers. 56. Wang, D. D., Wang, J., Huang, X. H., Tu, Y., & Ni, K. Y. (2007). Identification of polymethoxylated flavones from green tangerine peel (Pericarpium1 Citri Reticulatae Viride) by chromatographic and spectroscopic techniques. Journal of Pharmaceutical and Biomedical Analysis, 44(1), 63-69. 57. Wang, W., Xu, X. Q., Bin, Q., Ling, J. M., & Chen, G. N. (2006). A new method for fabrication of an integrated indium tin oxide electrode on electrophoresis microchips with amperometric detection and its application for determination of synephrine and hesperidin in pericarpium citri reticulatae. Electrophoresis, 27(21), 4174-4181. 58. Wang, Y. C., Chuang, Y. C., & Hsu, H. W. (2008). The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chemistry, 106(1), 277-284. 59. Wang, Y. C., Chuang, Y. C., & Ku, Y. H. (2007). Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chemistry, 102(4), 1163-1171. 60. Willats, W. G. T., Knox, P., & Mikkelsen, J. D. (2006). Pectin: new insights into an old polymer are starting to gel. Trends in Food Science & Technology, 17(3), 97-104. 61. Winning, H., Viereck, N., Norgaard, L., Larsen, J., & Engelsen, S. B. (2007). Quantification of the degree of blockiness in pectins using H-1 NMR spectroscopy and chemometrics. Food Hydrocolloids, 21(2), 256-266. 62. Xia, J., Kotani, A., Hakamata, H., & Kusu, F. (2006). Determination of hesperidin in Pericarpium Citri Reticulatae by semi-micro HPLC with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 41(4), 1401-1405. 63. Xu, X., Liu, W., & Zhang, L. (2006). Rheological behavior of Aeromonas gum in aqueous solutions. Food Hydrocolloids, 20(5), 723-729. 64. Yamazaki, E., Kurita, O., & Matsumura, Y. (2009). High viscosity of hydrocolloid from leaves of Corchorus olitorius L. Food Hydrocolloids, 23(3), 655-660. 65. Yasuno, S., Murata, T., Kokubo, K., Yamaguchi, T., & Kamei, M. (1997). Two-mode Analysis by High-performance Liquid Chromatography of ρ-Aminobenzoic Ethyl Ester-derivatized Monosaccharides. Biosci. Biotech. Biochem., 61(11) 1944-1946. 66. Yi, L. Z., Yuan, D. L., Liang, Y. Z., Xie, P. S., & Zhao, Y. (2007). Quality control and discrimination of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride based on high-performance liquid chromatographic fingerprints and multivariate statistical analysis. Analytica Chimica Acta, 588(2), 207-215.
摘要: 
Citrus grandis Osbeck belongs to Rutaceae of the Subfamily Aurantioideae of the Archicitrus Tanaka of the Cephalocitrus Tanaka. Many studies have pointed out that the essential oil extracted from the Citrus grandis Osbeck peel provides antioxidant and antibacterial effects. However, researches on the physicochemical properties of Citrus grandis Osbeck peel polysaccharide are quite limited. The objective of this study was to explore the extraction solvents (deionized water, 0.14M NaHCO3, 6 % citric acid) on the physical and chemical properties of Citrus grandis Osbeck polysaccharide. The results showed that the yield of the acid-extracted hydrocolloid was the highest, but the crude protein and ash content as well as the relative content of sodium ions of the alkaline-extracted hydrocolloid was the highest. Monosaccharide composition analysis by HPLC-UV method revealed the ionic nature of Citrus grandis Osbeck polysaccharide. The galacturonic acid (GalA) content was the highest for the water-extracted hydrocolloids, and the GalA content in the polysaccharide extracted from the mesocarp and exocarp was 238.24 mg / g and 223.10 mg / g, respectively. On the other hand, neutral sugar content was the highest for the alkaline-extracted hydrocolloids (68.33% and 67.26% for the polysaccharide extracted from the exocarp and mesocarp, respectively), mainly galactose, arabinose, xylose and rhamnose. Intrinsic viscosity determination by four methods revealed that Chou & Kokini and Solomon-Gotesman methods showed better linear relationship. In contrast, Huggins and Fuoss & Strauss methods seemed not to be applicable to the sample. Analysis of the molecular size by gel permeation chromatography (GPC) showed that the weight average molecular size of Citrus grandis Osbeck polysaccharide was in the range of 1.31 105~4.89 105, regardless of the extraction methods.

文旦柚(Citrus grandis Osbeck)屬於芸香科(Rutaceae)之柑橘亞科(Subfamily Aurantioideae)之初生柑橘亞屬(Archicitrus Tanaka)之第4區柚區(Cephalocitrus Tanaka)。許多研究指出,由柚子皮所提煉出的精油,具有抗氧化及抗菌作用,但對於柚子皮的多醣特性研究甚少,故本研究擬探討以不同溶劑(deionized water、0.14M NaHCO3、6% citric acid)萃取方式對文旦柚多醣的理化特性之影響。結果發現,以檸檬酸萃取的產率最高,但粗蛋白及灰分部份則以碳酸氫鈉萃取的含量最高,相對的金屬離子鈉元素的含量也是最高。以HPLC-UV方法測定文旦柚多醣的單糖組成發現,離子多醣之半乳糖醛酸以水萃方式的含量最高,文旦柚中果皮及外果皮含量分別是238.24 mg/g及223.10 mg/g;中性糖則以鹼萃方式含量最高,文旦柚外果皮及中果皮含量分別是68.33%及67.26%,其中以半乳糖、阿拉伯糖、木糖及鼠李糖含量最高。四種分析固有黏度的方式中,以Chou & Kokini及Solomon-Gotesman方式有較好的線性關係,而Huggins及Fuoss & Strauss方式不適用本研究的樣品。以膠體過濾層析分析文旦柚多醣的分子量,不論是何種萃取方式,文旦柚外果皮及中果皮多醣的重量平均分子量大約介於1.31 × 105~4.89 × 105。
URI: http://hdl.handle.net/11455/52100
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.