Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52137
標題: 不同生命期之飲食介入對於單碳代謝之影響
Effects of dietary intervention during different life stages on one-carbon metabolism
作者: 尤宣敏
Yu, Hsuan-Min
關鍵字: 硫-腺核苷甲硫胺酸;one-carbon metabolism;硫-腺核苷同半胱胺酸;S-adenosylmethionine;S-adenosylhomocysteine
出版社: 食品暨應用生物科技學系所
引用: Aagaard-Tillery, K. M., K. Grove, J. Bishop, X. Ke, Q. Fu, R. McKnight, and R. H. Lane. 2008. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J. Mol. Endocrinol. 41: 91-102. Almeida, L. S., G. S. Salomons, F. Hogenboom, C. Jakobs, and A. N. Schoffelmeer. 2006. Exocytotic release of creatine in rat brain. Synapse 60: 118-123. Arai, F., A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito, G. Y. Koh, and T. Suda. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149-161. Arkan, M. C., A. L. Hevener, F. R. Greten, S. Maeda, Z. W. Li, J. M. Long, A. Wynshaw-Boris, G. Poli, J. Olefsky, and M. Karin. 2005. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11: 191-198. Avila, M. A., C. Berasain, L. Torres, A. Martin-Duce, F. J. Corrales, H. Yang, J. Prieto, S. C. Lu, J. Caballeria, J. Rodes, and J. M. Mato. 2000. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J. Hepatol. 33: 907-914. Barker, D. J. 2007. The origins of the developmental origins theory. J. Intern. Med. 261: 412-417. Bastard, J. P., M. Maachi, C. Lagathu, M. J. Kim, M. Caron, H. Vidal, J. Capeau, and B. Feve. 2006. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 17: 4-12. Benkhalifa, M., D. Montjean, P. Cohen-Bacrie, and Y. Menezo. 2010. Imprinting: RNA expression for homocysteine recycling in the human oocyte. Fertil. Steril. 93: 1585-1590. Bhat, R. and E. Bresnick. 1997. Glycine N-methyltransferase is an example of functional diversity. Role as a polycyclic aromatic hydrocarbon-binding receptor. J. Biol. Chem. 272: 21221-21226. Boney, C. M., A. Verma, R. Tucker, and B. R. Vohr. 2005. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115: e290-e296. Brosnan, J. T. and M. E. Brosnan. 2007. Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu. Rev. Nutr. 27: 241-261. Calvi, L. M., G. B. Adams, K. W. Weibrecht, J. M. Weber, D. P. Olson, M. C. Knight, R. P. Martin, E. Schipani, P. Divieti, F. R. Bringhurst, L. A. Milner, H. M. Kronenberg, and D. T. Scadden. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841-846. Castro, R., I. Rivera, H. J. Blom, C. Jakobs, and d. A. Tavares, I. 2006. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J. Inherit. Metab Dis. 29: 3-20. Castro, R., I. Rivera, E. A. Struys, E. E. Jansen, P. Ravasco, M. E. Camilo, H. J. Blom, C. Jakobs, and d. A. Tavares, I. 2003. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin. Chem. 49: 1292-1296. Chen, S. Y., J. R. Lin, R. Darbha, P. Lin, T. Y. Liu, and Y. M. Chen. 2004. Glycine N-methyltransferase tumor susceptibility gene in the benzo(a)pyrene-detoxification pathway. Cancer Res. 64: 3617-3623. Chen, Y. M., J. Y. Shiu, S. J. Tzeng, L. S. Shih, Y. J. Chen, W. Y. Lui, and P. H. Chen. 1998. Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. Int. J. Cancer 75: 787-793. Chiang, E. P., Y. C. Wang, W. W. Chen, and F. Y. Tang. 2009. Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J. Clin. Endocrinol. Metab 94: 1017-1025. Chiang, E. P., Y. C. Wang, and F. Y. Tang. 2007. Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts. Leukemia 21: 651-658. Cook, R. J. and C. Wagner. 1984. Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proc. Natl. Acad. Sci. U. S. A 81: 3631-3634. Dahlhoff, C., C. Desmarchelier, M. Sailer, R. W. Furst, A. Haag, S. E. Ulbrich, B. Hummel, R. Obeid, J. Geisel, B. L. Bader, and H. Daniel. 2013. Hepatic methionine homeostasis is conserved in C57BL/6N mice on high-fat diet despite major changes in hepatic one-carbon metabolism. PLoS. One. 8: e57387. Dunn, G. A. and T. L. Bale. 2011. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152: 2228-2236. Finkelstein, J. D. and J. J. Martin. 2000. Homocysteine. Int. J. Biochem. Cell Biol. 32: 385-389. Gellekink, H., D. van Oppenraaij-Emmerzaal, R. A. van, E. A. Struys, H. M. den, and H. J. Blom. 2005. Stable-isotope dilution liquid chromatography-electrospray injection tandem mass spectrometry method for fast, selective measurement of S-adenosylmethionine and S-adenosylhomocysteine in plasma. Clin. Chem. 51: 1487-1492. Ghorbani, M., T. H. Claus, and J. Himms-Hagen. 1997. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem. Pharmacol. 54: 121-131. Gluckman, P. D., M. A. Hanson, C. Cooper, and K. L. Thornburg. 2008. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359: 61-73. Gluckman, P. D., M. A. Hanson, and H. G. Spencer. 2005. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 20: 527-533. Godfrey, K. M., A. Sheppard, P. D. Gluckman, K. A. Lillycrop, G. C. Burdge, C. McLean, J. Rodford, J. L. Slater-Jefferies, E. Garratt, S. R. Crozier, B. S. Emerald, C. R. Gale, H. M. Inskip, C. Cooper, and M. A. Hanson. 2011. Epigenetic gene promoter methylation at birth is associated with child''s later adiposity. Diabetes 60: 1528-1534. Gorski, J. N., A. A. Dunn-Meynell, T. G. Hartman, and B. E. Levin. 2006. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am. J. Physiol Regul. Integr. Comp Physiol 291: R768-R778. Guerra, C., R. A. Koza, H. Yamashita, K. Walsh, and L. P. Kozak. 1998. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest 102: 412-420. Herrera, B. M., S. Keildson, and C. M. Lindgren. 2011. Genetics and epigenetics of obesity. Maturitas 69: 41-49. Hoffler, U., K. Hobbie, R. Wilson, R. Bai, A. Rahman, D. Malarkey, G. Travlos, and B. I. Ghanayem. 2009. Diet-induced obesity is associated with hyperleptinemia, hyperinsulinemia, hepatic steatosis, and glomerulopathy in C57Bl/6J mice. Endocrine. 36: 311-325. Howie, G. J., D. M. Sloboda, T. Kamal, and M. H. Vickers. 2009. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J. Physiol 587: 905-915. Ikeda, S., H. Koyama, M. Sugimoto, and S. Kume. 2012. Roles of one-carbon metabolism in preimplantation period--effects on short-term development and long-term programming--. J. Reprod. Dev. 58: 38-43. Ikeda, S., T. Namekawa, M. Sugimoto, and S. Kume. 2010. Expression of methylation pathway enzymes in bovine oocytes and preimplantation embryos. J. Exp. Zool. A Ecol. Genet. Physiol 313: 129-136. Kim, S. K. and Y. C. Kim. 2005. Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. J. Hepatol. 42: 907-913. King, J. C. 2006. Maternal obesity, metabolism, and pregnancy outcomes. Annu. Rev. Nutr. 26: 271-291. Kwong, W. Y., S. J. Adamiak, A. Gwynn, R. Singh, and K. D. Sinclair. 2010. Endogenous folates and single-carbon metabolism in the ovarian follicle, oocyte and pre-implantation embryo. Reproduction. 139: 705-715. Li, Z., L. B. Agellon, T. M. Allen, M. Umeda, L. Jewell, A. Mason, and D. E. Vance. 2006. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3: 321-331. Li, Z. and D. E. Vance. 2008. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49: 1187-1194. Lobstein, T., L. Baur, and R. Uauy. 2004. Obesity in children and young people: a crisis in public health. Obes. Rev. 5 Suppl 1: 4-104. Loehrer, F. M., C. P. Angst, F. P. Brunner, W. E. Haefeli, and B. Fowler. 1998. Evidence for disturbed S-adenosylmethionine : S-adenosylhomocysteine ratio in patients with end-stage renal failure: a cause for disturbed methylation reactions? Nephrol. Dial. Transplant. 13: 656-661. Lu, G. C., D. J. Rouse, M. DuBard, S. Cliver, D. Kimberlin, and J. C. Hauth. 2001. The effect of the increasing prevalence of maternal obesity on perinatal morbidity. Am. J. Obstet. Gynecol. 185: 845-849. Luka, Z., S. Pakhomova, L. V. Loukachevitch, M. Egli, M. E. Newcomer, and C. Wagner. 2007. 5-methyltetrahydrofolate is bound in intersubunit areas of rat liver folate-binding protein glycine N-methyltransferase. J. Biol. Chem. 282: 4069-4075. Main, P. A., M. T. Angley, P. Thomas, C. E. O''Doherty, and M. Fenech. 2010. Folate and methionine metabolism in autism: a systematic review. Am. J. Clin. Nutr. 91: 1598-1620. Mason, J. B. 2003. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J. Nutr. 133 Suppl 3: 941S-947S. Mato, J. M., M. L. Martinez-Chantar, and S. C. Lu. 2008. Methionine metabolism and liver disease. Annu. Rev. Nutr. 28: 273-293. McCabe, D. C. and M. A. Caudill. 2005. DNA methylation, genomic silencing, and links to nutrition and cancer. Nutr. Rev. 63: 183-195. McCurdy, C. E., J. M. Bishop, S. M. Williams, B. E. Grayson, M. S. Smith, J. E. Friedman, and K. L. Grove. 2009. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J. Clin. Invest 119: 323-335. Nedergaard, J., T. Bengtsson, and B. Cannon. 2007. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol Endocrinol. Metab 293: E444-E452. Noga, A. A., L. M. Stead, Y. Zhao, M. E. Brosnan, J. T. Brosnan, and D. E. Vance. 2003. Plasma homocysteine is regulated by phospholipid methylation. J. Biol. Chem. 278: 5952-5955. Noga, A. A. and D. E. Vance. 2003. A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J. Biol. Chem. 278: 21851-21859. Noga, A. A., Y. Zhao, and D. E. Vance. 2002. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J. Biol. Chem. 277: 42358-42365. Ozanne, S. E. and C. N. Hales. 1999. The long-term consequences of intra-uterine protein malnutrition for glucose metabolism. Proc. Nutr. Soc. 58: 615-619. Prentice, A. M. and S. D. Poppitt. 1996. Importance of energy density and macronutrients in the regulation of energy intake. Int. J. Obes. Relat Metab Disord. 20 Suppl 2: S18-S23. Rao, S., A. Kanade, B. M. Margetts, C. S. Yajnik, H. Lubree, S. Rege, B. Desai, A. Jackson, and C. H. Fall. 2003. Maternal activity in relation to birth size in rural India. The Pune Maternal Nutrition Study. Eur. J. Clin. Nutr. 57: 531-542. Rao, S., C. S. Yajnik, A. Kanade, C. H. Fall, B. M. Margetts, A. A. Jackson, R. Shier, S. Joshi, S. Rege, H. Lubree, and B. Desai. 2001. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J. Nutr. 131: 1217-1224. Rubio-Aliaga, I., B. Roos, M. Sailer, G. A. McLoughlin, M. V. Boekschoten, E. M. van, E. M. Bachmair, E. M. van Schothorst, J. Keijer, S. L. Coort, C. Evelo, M. J. Gibney, H. Daniel, M. Muller, R. Kleemann, and L. Brennan. 2011. Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention. Physiol Genomics 43: 408-416. Seidell, J. C. 1998. Dietary fat and obesity: an epidemiologic perspective. Am. J. Clin. Nutr. 67: 546S-550S. Stabler, S. P. and R. H. Allen. 2004. Quantification of serum and urinary S-adenosylmethionine and S-adenosylhomocysteine by stable-isotope-dilution liquid chromatography-mass spectrometry. Clin. Chem. 50: 365-372. Stead, L. M., J. T. Brosnan, M. E. Brosnan, D. E. Vance, and R. L. Jacobs. 2006. Is it time to reevaluate methyl balance in humans? Am. J. Clin. Nutr. 83: 5-10. Stettler, N. 2004. Comment: the global epidemic of childhood obesity: is there a role for the paediatrician? Obes. Rev. 5 Suppl 1: 1-3. Stockler, S., D. Isbrandt, F. Hanefeld, B. Schmidt, and F. K. von. 1996. Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am. J. Hum. Genet. 58: 914-922. Stover, P. J. 2009. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr. 139: 2402-2405. Thompson, D. R., C. L. Clark, B. Wood, and M. B. Zeni. 2008. Maternal obesity and risk of infant death based on Florida birth records for 2004. Public Health Rep. 123: 487-493. Tseng, Y. H., E. Kokkotou, T. J. Schulz, T. L. Huang, J. N. Winnay, C. M. Taniguchi, T. T. Tran, R. Suzuki, D. O. Espinoza, Y. Yamamoto, M. J. Ahrens, A. T. Dudley, A. W. Norris, R. N. Kulkarni, and C. R. Kahn. 2008. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454: 1000-1004. Wagner, C., W. T. Briggs, and R. J. Cook. 1985. Inhibition of glycine N-methyltransferase activity by folate derivatives: implications for regulation of methyl group metabolism. Biochem. Biophys. Res. Commun. 127: 746-752. Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger. 1992. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ''phosphocreatine circuit'' for cellular energy homeostasis. Biochem. J. 281 ( Pt 1): 21-40. White, C. L., M. N. Purpera, and C. D. Morrison. 2009. Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am. J. Physiol Regul. Integr. Comp Physiol 296: R1464-R1472. Wyss, M. and R. Kaddurah-Daouk. 2000. Creatine and creatinine metabolism. Physiol Rev. 80: 1107-1213. Yajnik, C. S., S. S. Deshpande, A. A. Jackson, H. Refsum, S. Rao, D. J. Fisher, D. S. Bhat, S. S. Naik, K. J. Coyaji, C. V. Joglekar, N. Joshi, H. G. Lubree, V. U. Deshpande, S. S. Rege, and C. H. Fall. 2008. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51: 29-38. Yajnik, C. S., C. H. Fall, K. J. Coyaji, S. S. Hirve, S. Rao, D. J. Barker, C. Joglekar, and S. Kellingray. 2003. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int. J. Obes. Relat Metab Disord. 27: 173-180. Yen, C. H., J. H. Hung, Y. F. Ueng, S. P. Liu, S. Y. Chen, H. H. Liu, T. Y. Chou, T. F. Tsai, R. Darbha, L. L. Hsieh, and Y. M. Chen. 2009. Glycine N-methyltransferase affects the metabolism of aflatoxin B1 and blocks its carcinogenic effect. Toxicol. Appl. Pharmacol. 235: 296-304. Yeo, E. J., W. T. Briggs, and C. Wagner. 1999. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. J. Biol. Chem. 274: 37559-37564. Yun, K. U., C. S. Ryu, J. M. Oh, C. H. Kim, K. S. Lee, C. H. Lee, H. S. Lee, B. H. Kim, and S. K. Kim. 2013. Plasma homocysteine level and hepatic sulfur amino acid metabolism in mice fed a high-fat diet. Eur. J. Nutr. 52: 127-134. Zhang, J., F. Zhang, X. Didelot, K. D. Bruce, F. R. Cagampang, M. Vatish, M. Hanson, H. Lehnert, A. Ceriello, and C. D. Byrne. 2009. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC. Genomics 10: 478.
摘要: 
背景 許多疾病可能造成體內單碳代謝失衡。肥胖是21世紀一個重要的全球衛生問題,近年來世界各地兒童肥胖盛行率有顯著增加。過去研究顯示孕婦肥胖或在懷孕和哺乳期間攝取高脂肪的飲食會增加子代肥胖及相關代謝疾病的風險。本研究探討母鼠懷孕和哺乳期間的營養狀況及產後的飲食對於其子代體內單碳代謝之影響。實驗設計 C57BL / 6實驗小鼠分為下列幾組:(1) 正常飲食組: 母代及子代均給予正常飲食; (2) 斷奶後高脂飲食組:母代整個生命期均給予正常飲食而其子代於斷奶後給予高脂飲食; (3) 哺乳期高脂飲食組:母代哺乳期間給予高脂飲食而其子代於斷奶後亦給予高脂飲食; (4) 哺乳期高脂飲食切換組:母代哺乳期給予高脂飲食而子代於斷奶後給予正常飲食; (5) 交配期高脂飲食組:母代交配及懷孕哺乳期間給予高脂飲食而子代於斷奶後給予高脂飲食; (6)交配期高脂飲食切換組:母代交配及懷孕哺乳期間給予高脂飲食而子代於斷奶後給予正常飲食。於子代斷奶介入四週後以穩定同位素追蹤單碳路徑動態平衡變化。實驗當中記錄子代體重及食物攝取量。子代於實驗結束後犧牲,測量體內脂肪含量以及其單碳代謝路徑中相關代謝產物、酵素活性、基因表現變化。
結果及結論 母代高脂飲食攝取會增加子代體重和白色脂肪含量。母代於不同時期攝取高脂肪飲食後,依其不同生命期間高脂飲食的介入及暴露程度,對於小鼠肥胖及體脂變化有不同程度之影響,同時亦顯著影響其子代單碳代謝相關酵素活性、代謝產物、基因表現及單碳代謝之動態平衡。

Background. The prevalence of childhood obesity has increased dramatically around the world in recent years, and obesity is considered a major global health issue in the 21th century. Maternal nutritional status and postnatal diet may influence the lifelong health of offspring. Maternal obesity and consumption of a high-fat diet during pregnancy and lactation have been found to increase the risk for development of obesity and related metabolic disorders in the offspring. One carbon metabolism is involved in multiple biological processes, and perturbation in the one carbon metabolic pathways has been associated with numerous pathological conditions. The objective of the current study was to investigate how maternal high fat exposure may alter 1-carbon metabolism in the offspring. Design and Methods. C57BL/6 mice were assigned into 6 groups: (1) control group: parental mice received the control diet throughout their life including pregnancy and lactation; offspring mice also received the control diet postweaning; (2) weaning high fat group: parental mice received the control diet throughout their life including pregnancy and lactation; offspring mice received the high fat diet postweaning; (3) lactation high fat group: maternal mice received the control diet during pregnancy and then switched to the high fat diet during lactation; offspring mice received the high fat diet postweaning; (4) lactation high fat switch-back group: maternal mice received the control diet during pregnancy and switched to the high fat diet during lactation; offspring mice received the control diet post weaning; (5) mating high fat group: maternal mice received the high fat diet during pregnancy and lactation; offspring mice received the high fat diet postweaning; (6) mating high fat switch-back group: maternal mice received the high fat diet during pregnancy and lactation; offspring mice received the control diet postweaning. The body weight and food intake were monitored throughout the study period. The animals were sacrificed 4 weeks postweaning. Major metabolites and the activity and expression of key enzymes in 1-carbon metabolism were determined. Metabolic fluxes in1-carbon metabolism was determined using stable isotopic tracers and GC/MS. Maternal high fat consumption at different life stages significantly altered body weight and body fat distribution in their offspring mice. It also significantly altered hepatic adenosylmethionine formation and utilization in the liver. Further studies are needed to determine the underlying mechanism(s) by which maternal high-fat consumption may result in alterations in 1-carbon metabolism in the offspring.
URI: http://hdl.handle.net/11455/52137
其他識別: U0005-3008201307533100
Appears in Collections:食品暨應用生物科技學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.