Please use this identifier to cite or link to this item:
標題: 以地衣芽孢桿菌表現和純化重組甜味蛋白質之最適化及其功能特性之探討
Optimization of recombinant sweet protein brazzein expression, purification and functional analysis by Bacillus licheniformis
作者: 洪千雅
Hung, Chien-Ya
關鍵字: 重組甜味蛋白質;recombinant sweet protein rbrazzein;地衣芽胞桿菌;分泌生產;Bacillus licheniformis;secretion
出版社: 食品暨應用生物科技學系所
引用: 王志鵬。2001年。一、枯草桿菌Bacillus subtilis DB104電轉型效率之增進。二、設計、合成第一型抗動蛋白基因及其在枯草桿菌、大腸桿菌中之表現。。國立中興大學食品科學系碩士論文 蘇芳仙。2001年。最佳σA啟動子及多重啟動子之構築及其於枯草桿菌中之表現。國立中興大學食品科學系碩士論文 戴君如。2003。Bacillus subtilis 群之分類近況。食品工業。35(7):42-53 姜彬及冯志彪。2006年。甜味剂发展概况。食品科技, 2006(1): 71-74. 王志鵬。2007年。開發枯草桿菌持續型及誘導型表現系統以應用於自體、同源及異源蛋白質之表現暨建立芽孢桿菌益生菌表現系統。國立中興大學食品科學系博士論文。 鄭力豪。2012年。大腸桿菌及乳酸鏈球菌表現重組甜味蛋白質之改進及發酵生產。國立中興大學食品暨應用生物科技學系碩士論文 Akita, M., S. Sasaki, S. Matsuyama and S. Mizushima, 1990. Seca interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in escherichia coli. The Journal of biological chemistry, 265(14): 8164-8169. Assadi-Porter, F.M., D.J. Aceti, H. Cheng and J.L. Markley, 2000. Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Archives of biochemistry and biophysics, 376(2): 252-258. DOI 10.1006/abbi.2000.1725. Assadi-Porter, F.M., E.L. Maillet, J.T. Radek, J. Quijada, J.L. Markley and M. Max, 2010. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the t1r2-t1r3 human sweet receptor. The Journal of Molecular Biology, 398(4): 584-599. DOI 10.1016/j.jmb.2010.03.017. Assadi-Porter, F.M., S. Patry and J.L. Markley, 2008. Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in e. Coli. Protein expression and purification, 58(2): 263-268. DOI 10.1016/j.pep.2007.11.009. Barnett, J.P., R. van der Ploeg, R.T. Eijlander, A. Nenninger, S. Mendel, R. Rozeboom, O.P. Kuipers, J.M. van Dijl and C. Robinson, 2009. The twin-arginine translocation (tat) systems from bacillus subtilis display a conserved mode of complex organization and similar substrate recognition requirements. The FEBS journal, 276(1): 232-243. DOI 10.1111/j.1742-4658.2008.06776.x. Berlec, A., Z. Jevnikar, A.C. Majhenic, I. Rogelj and B. Strukelj, 2006. Expression of the sweet-tasting plant protein brazzein in escherichia coli and lactococcus lactis: A path toward sweet lactic acid bacteria. Applied microbiology and biotechnology, 73(1): 158-165. DOI 10.1007/s00253-006-0438-y. Berlec, A. and B. Strukelj, 2009. Large increase in brazzein expression achieved by changing the plasmid /strain combination of the nice system in lactococcus lactis. Letters in applied microbiology, 48(6): 750-755. DOI 10.1111/j.1472-765X.2009.02608.x. Bischoff, K.M., S. Liu and S.R. Hughes, 2007. Cloning and characterization of a recombinant family 5 endoglucanase from bacillus licheniformis strain b-41361. Process Biochemistry, 42(7): 1150-1154. Available from DOI 10.1016/j.procbio.2007.05.001. Briggs, M.S. and L.M. Gierasch, 1986. Molecular mechanisms of protein secretion: The role of the signal sequence. Advanced Protein Chemistry, 38: 109-180. Caldwell, J.E., F. Abildgaard, Z. Dzakula, D. Ming, G. Hellekant and J.L. Markley, 1998. Solution structure of the thermostable sweet-tasting protein brazzein. Nature structural biology, 5(6): 427-431. Declerck, N., M. Machius, G. Wiegand, R. Huber and C. Gaillardin, 2000. Probing structural determinants specifying high thermostability in bacillus licheniformis α-amylase. Journal of Molecular Biology, 301(4): 1041-1057. Available from DOI 10.1006/jmbi.2000.4025. DeLisa, M.P., P. Samuelson, T. Palmer and G. Georgiou, 2002. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. The Journal of biological chemistry, 277(33): 29825-29831. DOI 10.1074/jbc.M201956200. Deuerling, E., A. Mogk, C. Richter, M. Purucker and W. Schumann, 1997. The ftsh gene of bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Molecular microbiology, 23(5): 921-933. Gupta, R., Q.K. Beg and P. Lorenz, 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Applied microbiology and biotechnology, 59(1): 15-32. DOI 10.1007/s00253-002-0975-y. Harwood, C.R., 1992. Bacillus subtilis and its relatives: Molecular biological and industrial workhorses. Trends in biotechnology, 10(7): 247-256. Hellekant, G. and V. Danilova, 2005. Brazzein a small, sweet protein: Discovery and physiological overview. Chemical senses, 30 Suppl 1: i88-89. DOI 10.1093/chemse/bjh127. Izawa, H., M. Ota, M. Kohmura and Y. Ariyoshi, 1996. Synthesis and characterization of the sweet protein brazzein. Biopolymers, 39(1): 95-101. DOI 10.1002/(SICI)1097-0282(199607)39:1<95::AID-BIP10>3.0.CO;2-B. Jacobsen, B.J., N.K. Zidack and B.J. Larson, 2004. The role of bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology, 94(11): 1272-1275. DOI 10.1094/phyto.2004.94.11.1272. Jongbloed, J.D., H. Antelmann, M. Hecker, R. Nijland, S. Bron, U. Airaksinen, F. Pries, W.J. Quax, J.M. van Dijl and P.G. Braun, 2002. Selective contribution of the twin-arginine translocation pathway to protein secretion in bacillus subtilis. The Journal of biological chemistry, 277(46): 44068-44078. DOI 10.1074/jbc.M203191200. Jongbloed, J.D., U. Martin, H. Antelmann, M. Hecker, H. Tjalsma, G. Venema, S. Bron, J.M. van Dijl and J. Muller, 2000. Tatc is a specificity determinant for protein secretion via the twin-arginine translocation pathway. The Journal of biological chemistry, 275(52): 41350-41357. DOI 10.1074/jbc.M004887200. Kant, R., 2005. Sweet proteins--potential replacement for artificial low calorie sweeteners. Nutrition journal, 4: 5. DOI 10.1186/1475-2891-4-5. Kurihara, K. and L.M. Beidler, 1968. Taste-modifying protein from miracle fruit. Science (New York, N.Y.), 161(3847): 1241-1243. Lamphear, B.J., D.K. Barker, C.A. Brooks, D.E. Delaney, J.R. Lane, K. Beifuss, R. Love, K. Thompson, J. Mayor, R. Clough, R. Harkey, M. Poage, C. Drees, M.E. Horn, S.J. Streatfield, Z. Nikolov, S.L. Woodard, E.E. Hood, J.M. Jilka and J.A. Howard, 2005. Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant biotechnology journal, 3(1): 103-114. DOI 10.1111/j.1467-7652.2004.00105.x. Lee, J.-J., J.-N. Kong, H.-D. Do, D.-H. Jo and K.-H. Kong, 2010. Design and efficient soluble expression of a sweet protein, brazzein and minor-form mutant. Bulletin of the Korean Chemical Society, 31(12): 3830-3833. DOI 10.5012/bkcs.2010.31.12.3830. Li, X., L. Staszewski, H. Xu, K. Durick, M. Zoller and E. Adler, 2002. Human receptors for sweet and umami taste. Proceedings of the National Academy of Sciences of the United States of America, 99(7): 4692-4696. DOI 10.1073/pnas.072090199. Ling Lin, F., X. Zi Rong, L. Wei Fen, S. Jiang Bing, L. Ping and H. Chun Xia, 2007. Protein secretion pathways in bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnology Advances, 25(1): 1-12. Available from [Accessed 2007/2//]. DOI 10.1016/j.biotechadv.2006.08.002. Ling Lin, F., X. Zi Rong, L. Wei Fen, S. Jiang Bing, L. Ping and H. Chun Xia, 2007. Protein secretion pathways in bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol Adv, 25(1): 1-12. DOI 10.1016/j.biotechadv.2006.08.002. Louis-Jeune, C., M.A. Andrade-Navarro and C. Perez-Iratxeta, 2012. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins: Structure, Function, and Bioinformatics, 80(2): 374-381. Available from DOI 10.1002/prot.23188. Manocha, B. and A. Margaritis, 2010. A novel method for the selective recovery and purification of gamma-polyglutamic acid from bacillus licheniformis fermentation broth. Biotechnology progress, 26(3): 734-742. DOI 10.1002/btpr.370. Masuda, T. and N. Kitabatake, 2006. Developments in biotechnological production of sweet proteins. Journal of bioscience and bioengineering, 102(5): 375-389. DOI 10.1263/jbb.102.375. Ming, D. and G. Hellekant, 1994. Brazzein, a new high-potency thermostable sweet protein from pentadiplandra brazzeana b. FEBS Letters, 355(1): 106-108. Available from DOI 10.1016/0014-5793(94)01184-2. Nelson, G., M.A. Hoon, J. Chandrashekar, Y. Zhang, N.J. Ryba and C.S. Zuker, 2001. Mammalian sweet taste receptors. Cell, 106(3): 381-390. Palmer, T. and B.C. Berks, 2012. The twin-arginine translocation (tat) protein export pathway. Nat Rev Micro, 10(7): 483-496. Available from Palmer, T. and B.C. Berks, 2012. The twin-arginine translocation (tat) protein export pathway. Nature reviews. Microbiology, 10(7): 483-496. Available from DOI 10.1038/nrmicro2814. Poirier, N., N. Roudnitzky, A. Brockhoff, C. Belloir, M. Maison, T. Thomas-Danguin, W. Meyerhof and L. Briand, 2012. Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast pichia pastoris. Journal of Agricultural and Food Chemistry. Available from [Accessed 2012/09/17]. DOI 10.1021/jf301600m. Poirier, N., N. Roudnitzky, A. Brockhoff, C. Belloir, M. Maison, T. Thomas-Danguin, W. Meyerhof and L. Briand, 2012. Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast pichia pastoris. Journal of Agricultural and Food Chemistry, 60(39): 9807-9814. Available from DOI 10.1021/jf301600m. Rodriguez, J.M., M.I. Martinez, N. Horn and H.M. Dodd, 2003. Heterologous production of bacteriocins by lactic acid bacteria. International journal of food microbiology, 80(2): 101-116. Sargent, F., N.R. Stanley, B.C. Berks and T. Palmer, 1999. Sec-independent protein translocation in escherichia coli. A distinct and pivotal role for the tatb protein. The Journal of biological chemistry, 274(51): 36073-36082. Schallmey, M., A. Singh and O.P. Ward, 2004. Developments in the use of bacillus species for industrial production. Canadian journal of microbiology, 50(1): 1-17. DOI 10.1139/w03-076. Scott, W.J., 1957. Water relations of food spoilage microorganisms. In: Advances in food research, E. M. Mrak and G. F. Stewart, (Eds.). Academic Press: pp: 83-127. Simon, S.A., I.E. de Araujo, R. Gutierrez and M.A.L. Nicolelis, 2006. The neural mechanisms of gustation: A distributed processing code. Nat Rev Neurosci, 7(11): 890-901. Available from Stanley, N.R., T. Palmer and B.C. Berks, 2000. The twin arginine consensus motif of tat signal peptides is involved in sec-independent protein targeting in escherichia coli. The Journal of biological chemistry, 275(16): 11591-11596. Suzuki, M., E. Kurimoto, S. Nirasawa, Y. Masuda, K. Hori, Y. Kurihara, N. Shimba, M. Kawai, E. Suzuki and K. Kato, 2004. Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities. FEBS Lett, 573(1-3): 135-138. DOI 10.1016/j.febslet.2004.07.073. Tjalsma, H., A. Bolhuis, J.D. Jongbloed, S. Bron and J.M. van Dijl, 2000. Signal peptide-dependent protein transport in bacillus subtilis: A genome-based survey of the secretome. Microbiology and molecular biology reviews : MMBR, 64(3): 515-547. von Heijne, G., 1985. Signal sequences. The limits of variation. J Mol Biol, 184(1): 99-105. DOI 0022-2836(85)90046-4 [pii]. Waites, W.M., D. Kay, I.W. Dawes, D.A. Wood, S.C. Warren and J. Mandelstam, 1970. Sporulation in bacillus subtilis. Correlation of biochemical events with morphological changes in asporogenous mutants. The Biochemical journal, 118(4): 667-676. Wang, J.P., C.M. Yeh and Y.C. Tsai, 2006. Improved subtilisin yab production in bacillus subtilis using engineered synthetic expression control sequences. J Agric Food Chem, 54(25): 9405-9410. DOI 10.1021/jf061982f. Wu, L.F., B. Ize, A. Chanal, Y. Quentin and G. Fichant, 2000. Bacterial twin-arginine signal peptide-dependent protein translocation pathway: Evolution and mechanism. Journal of molecular microbiology and biotechnology, 2(2): 179-189. Xu, H., L. Staszewski, H. Tang, E. Adler, M. Zoller and X. Li, 2004. Different functional roles of t1r subunits in the heteromeric taste receptors. Proceedings of the National Academy of Sciences of the United States of America, 101(39): 14258-14263. Available from DOI 10.1073/pnas.0404384101. Yasuo, T., Y. Kusuhara, K. Yasumatsu and Y. Ninomiya, 2008. Multiple receptor systems for glutamate detection in the taste organ. Biological & pharmaceutical bulletin, 31(10): 1833-1837. Yin, T., H.Y. Lu, S.L. Zhang, J.M. Liu and D.M. Chen, 2009. [fruit-specific expression of sweet protein brazzein in transgenic tomato plants]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji, 31(6): 663-667. Zhu, F.M., S.Y. Ji, W.W. Zhang, W. Li, B.Y. Cao and M.M. Yang, 2008. Development and application of a novel signal peptide probe vector with pga as reporter in bacillus subtilis wb700: Twenty-four tat pathway signal peptides from bacillus subtilis were monitored. Molecular biotechnology, 39(3): 225-230. Available from DOI 10.1007/s12033-008-9030-2.
枯草桿菌(Bacillos subtilis)與地衣芽孢桿菌(Bacillus licheniformis)皆為革蘭氏陽性 (gram-positive)之產孢桿菌,並且為經美國食品暨藥物管理局 (Food and Drug Administration, FDA)認可為GRAS (generally recognized as safe)級之宿主,具有分泌蛋白質之能力,於遺傳工程上能夠做為異源性蛋白質表現之宿主。
本研究以枯草桿菌和地衣芽胞桿菌作為表現重組甜味蛋白質之宿主,藉由構築不同的訊息胜肽質體,觀察枯草桿菌和地衣芽胞桿菌於不同蛋白質分泌途徑中表現重組甜味蛋白質的情形,從結果發現枯草桿菌皆無法表現重組甜味蛋白質到胞外,只有於胞內有偵測到帶有訊息胜肽的重組甜味蛋白質。而地衣芽胞桿菌雙質體誘導系統能夠成功於胞外表現重組甜味蛋白質。由兩公升地衣芽胞桿菌36小時發酵液純化重組甜味蛋白質,經由濃縮透析可以得到約10 mg之產量,而且純度可達85%。將純化重組甜味蛋白質進行蛋白質身分鑑定,確定為brazzein,而且結構中有正確形成雙硫鍵。經感官品評分析其甜度為同質量濃度蔗糖的266倍,每分子的甜度為蔗糖的4957倍,而且於pH 5~9之間具有良好的熱穩定性。由此可證實地衣芽胞桿菌蛋白質表現系統能夠生產具活性之重組甜味蛋白質,有應用於食品工業上之潛力。

The sweetener plays an important role in our daily diet. However, the excessive intake of carbohydrates lead to health risk. In recent years, the search for low-calorie sweeteners to substitute sugar is highly demand. The sweet-tasting protein has potential as low-calorie sweeteners that can be used to replace sugars in food, beverage, and medicines. Among them, brazzein is an attractive candicate sweetener because of its small size(53 amino acid residues), high sweetness, sugar-like taste, and good stability at high temperature and wide pH ranges.
Bacillus subtilis and Bacillus licheniformis are gram positive and endospore-forming bacteria. They have been regarded as GRAS (generally recognized as safe) by FDA (Food and Drug Administration). They have the ability to secrete protein and can be used as good hosts for heterologous protein expression.
In this study, B. subtilis and B. licheniformis are used as hosts to express the recombinant sweet protein rbrazzein. Plasmids with different signal peptides were constructed to observe the secretion of rbrazzein by different protein secretion pahway. The results indicated that rbrazzein couldn''t be secreted by B. subtilis. However, the rbrazzein is successfully expressed by B. licheniformis dual plasmid system. The optimized rbrazzein purification achieved approximately 10 mg purified rbrazzein from 36-hour fermented B. licheniformis culture.The rbrazzein was examined to confirm the disulfide bond existence. The purified rbrazzein was 266 times sweeter than sucrose on a weight basis, and about 4957 times sweeter than sucrose on a molar basis. It is also with good heat stability between pH 5 to pH 9. These results demonstrated that B. licheniformis expression system is useful to produce active recombinant sweet protein brazzein and can be useful as potent sweetener producing system and applied in food industry
其他識別: U0005-2607201312470600
Appears in Collections:食品暨應用生物科技學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.