Please use this identifier to cite or link to this item:
標題: 台中都會區大氣懸浮微粒特性及農廢燃燒與沙塵暴的案例分析
Characteristics of Ambient Particulate in Taichung Urban City and Case Analyses of Agricultural Waste Burning and Asian Dust Storm
作者: 蘇怡如
Su, Yi-Ru
關鍵字: agricultural waste burning;農廢燃燒;Asian dust storm;size distribution;沙塵暴;粒徑分佈
出版社: 環境工程學系所
引用: 參考文獻 Allen, A. G., A. A. Cardoso, and G. O. Rocha, “Influence of Sugar Cane Burning on Aerosol Soluble Ion Composition in Southeastern Brazil,” Atmospheric Environment, Vol. 38, pp. 5025-5038 (2004). Chan, Y. C., R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen, and G. M. Bailey, “Source Apportionment of PM2.5 and PM10 Aerosols in Brisbane (Australia) by Receptor Modeling,” Atmospheric Environment, Vol. 33, pp. 3251-3268 (1999). Chen, S. J, L. T. Hsieh, M. J. Kao, W. Y. Lin, K. L. Huang, and C. C. Lin, “Characteristics of particles sampling in southern Taiwan during the Asian dust storm periods in 2000 and 2001,” Atmospheric Environment, Vol. 38, pp. 5925-5934 (2004). Cheng, M. T., Y. C. Lin, C. P. Chio, C. F. Wang, and C. Y. Kuo, “Charcateristics of aerosols collected in central Taiwan during an Asian dust event in spring 2000,” Atmospheric Environment, Vol. 61, pp. 1439-1450 (2005). Chio, C. P., M. T. Cheng, and C. F. Wang, “Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan,” Atmospheric Environment, Vol. 38, pp. 6893-6905 (2004). Chou, C. C. K, S. H. Huang, T. K. Chen, C. Y. Lin, and L. C. Wang, “Size-Segregated Characterization of Atmospheric Aerosols in Taipei During Asian Outflow Episodes,” Atmospheric Research, Vol. 75, pp. 89-109 (2005). Chow, J. C. “Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles,” Journal of the Air & Waste Management Association, Vol.48, pp. 320-382 (1995). Christensen, K. A. and H. Livbjerg, “A Field Study of Submicron Particles from the Combustion of Straw,” Aerosol Science and Technology, Vol. 25, pp. 185-199 (1996). Chung, Y. S, “On the Observations of Yellow Sand (Dust Storms) in Korea,” Atmospheric Environment, Vol. 26A, pp. 2743-2749 (1992). Chung, Y. S. and M. B. Yoon, “On the Occurrence of Yellow Sand and Atmospheric Loadings,” Atmospheric Environment, Vol. 30, pp. 2387-2397 (1996). Crutzen, P. J. and M. O. Andreae, “Biomass Burning in the Tropics:Impact on Atmospheric Chemistry and Biogeochemical Cycles,” Science, Vol. 250, pp. 1669-1678 (1990). Crutzen, P. J., A. C. Delany, J. Greenberg, P. Haagenson, L. Heidt, R. Lueb, W. Pollock, W. Seiler, A. Wartburg, and P. Zimmerman, “Tropospheric Chemical Composition Measurements in Brazil During the Dry Season,” Atmospheric Chemistry, Vol. 2, pp. 233-256 (1985). Duce, R. A., C. K. Unni, and B. J. Ray, “Long-Range Atmospheric Transport of Soil Dust From Asian to the Tropical North Pacific : Temporal Variability,” Science, Vol. 209, pp. 1522-1523 (1980). Ezcurra, A., I. O. Zárate, P. V. Dhin, and J. P. Lacaux, “Cereal Waste Burning Pollution Observed in the Town of Vitoria (North Spain),” Atmospheric Environment, Vol. 35, pp. 1377-1386 (2001). Fan, X. B., K. Okada, N. Niimura, K. Kai, K. Arao, G. Y. Shi, Y. Qin, and Y. Mitsuta, “Mineral Particles Collected in China and Japan during the Same Asian Dust-Storm Event,” Atmospheric Environment, Vol. 30, pp. 347-351 (1996). Fang, G. C., C. N. Chang, Y. S. Wu, S. C. Lu, P. P. C. Fu, S. C. Chang, C. D. Cheng, and W. H. Yuen, “Concentration of Atmospheric Particulates During a Dust Storm Period in Central Taiwan, Taichung,” the Science of the Total Environment, Vol. 287, pp. 141-145 (2002). Harrison, R. M. and C. A. Pio, “Size-Differentiated Composition of Inorganic Atmospheric Aerosols of both Marine and Polluted Continental Origin,” Atmospheric Environment, Vol. 17, pp. 1733-1738 (1983). Hering, S., A. Eldering, and J. H. Seinfeld, “Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California,” Atmospheric Environment, Vol. 31, pp. 1-11 (1997). Hering, S. V. and S. K. Friedlander, “Origins of Aerosol Sulfur Size Distributions in the Los Angeles Basin,” Atmospheric Environment, Vol. 16, pp. 2647-2656 (1982). Hinds, W. C., “Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles,” 2nd Edition, John Willey & Sons, Inc., New York, pp. 3-4 (1999). John W., S. M. Wall, J. L. Ondo, and W. Winklmayr, “Modes in the Size Distribution of Atmospheric Inorganic Aerosol,” Atmospheric Environment, Vol. 24A, pp. 2349-2359 (1990). Kim, B. G. and S. U. Park, “Transport and Evolution of a Winter-Time Yellow sand Observed in Korea,” Atmospheric Environment, Vol. 35, pp. 3191-3201 (2001). Lee H. K., C. M. Kang, B. W. Kang, and H. K. Kim, “Seasonal variations of acidic air pollutants in Seoul, South Korea,” Atmospheric Environment, Vol. 33, pp. 3143-3152 (1999). Lin, J. J. and L. C. Lee, “Characterization of the Concentration and Distribution of Urban Submicron (PM1) Aerosol Particles,” Atmospheric Environment, Vol. 38, pp. 469-475 (2004). Lin, T. H., “Long-Range Transport of Yellow Sand to Taiwan in Spring 2000:Observed Evidence and Simulation,” Atmospheric Environment, Vol. 35, pp. 5873-5882. (2001). Meng, Z. and J. H. Seinfeld, “On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols,” Aerosol Science and Technology, Vol. 20, pp. 253-265 (1994). Mori, I., M. Nishikawa, T. Tanimura, and H. Quan, “Change in Size Distribution and Chemical Composition of Kosa (Asian Dust) Aerosol During Long-Range Transport,” Atmospheric Environment, Vol. 37, pp. 4253-4263 (2003). Novelli, P. C., K. A. Masarie, and P. M. Lang, “Distributions and Recent Changes of Carbon Monoxide in the Lower Troposphere,” Geophysical Research, Vol. 103, pp. 19015-19033 (1998). Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24, pp. 815-822 (1990). Ortiz, Z. I., A. Ezcurra, J. P. Lacaux, P. Van Dihn, “Emission Factor Estimates of Cereal Waste Burning in Spain,” Atmospheric Environment, Vol. 34, pp. 3183-3193 (2000). Parmar, R. S., G. S. Satsangi, M. Kumari, A. Lakhani, S. S. Srivastava, and S. Prakash, “Study of Size Distribution of Atmospheric Aerosol at Agra”, Atmospheric Environment, Vol. 35, pp. 693-702 (2001). Parrington, J. R., W. H. Zoller, and N. K. Aras, “Asian Dust : Seasonal Transport to the Hawaiian Islands,” Science, Vol. 220, pp. 195-196 (1983). Prasad, V. K., P. K. Gupta, C. Sharna, A. K. Sarkar, A. Kant, K. V. S. Badarinath, T. Rajagopal, and A. P. Mitra, “NOx Emission from Biomass Burning of Shifting Cultivation Areas from Tropical Deciduous Forests of India-Estimates from Ground-Based Measurements,” Atmospheric Environment, Vol. 34, pp. 3721-3280 (2000). Radojevic, M. and H. Hassan, “Air Quality in Brunei Darussalam During the 1998 Haze Episode,” Atmospheric Environment, Vol. 33, pp. 3651-3658 (1999). Tsai, Y. I. and M. T. Cheng, “Charatcterization of chemical species in atmospheric aerosols in a metropolitan basin,” Chemosphere, Vol. 54, pp. 1171-1181 (2004). Wang, C. C., C. T. Lee, S. C. Liu, and J. P. Chen, “Aerosol characterization at Taiwan''s northern tip during Ace-Asia,” TAO, Vol. 15, No.5, pp. 839-855 (2004). Yamasoe M. A., Paulo Artaxo, A. H. Miguel, and A. G. Allen, “Chemical Composition of Aerosol Particles from Direct Emissions of Vegetation Fires in the Amazon Basin:Water-Soluble Species and Trace Elements,” Atmospheric Environment, Vol. 34, pp. 1641-1653 (2000). Yang, H. H., C. H. Tsai, M. R. Chao, Y. L. Su, and S. M. Chien, “Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period,” Atmospheric Environment, Vol.40, pp. 1266-1274(2006). Yang, K. L., “Spatial and Seasonal Variation of PM10 Mass Concentrations in Taiwan,” Atmospheric Environment, Vol. 36, pp. 3403-3411 (2002). Yao, X., A. P. S. Lau, M. Fang, C. K. Chen, and M. Hu, “Size Distributions and Formation of Ionic Species in Atmospheric Particulate Pollutants in Beijing, China: 1-Inorganic Ions,” Atmospheric Environment, Vol. 37, pp. 2991-3000 (2003). Yuan, C. S., C. C. San, M. C. Chen, M. H. Huang, S. W. Chang, Y. C. Lin, and C. G.. Lee, “Mass Concentration and Size-Resolved Chemical Composition of Atmospheric Aerosols Sampled at the Pescadores Islands During Asian Dust Storm Periods in the Years of 2001 and 2002,” TAO, Vol. 15, pp. 857-879 (2004). Zhou, M., K. Okada, F. Qian, P. -M. Wu, L. Su, B. E. Casareto, and T. Shimohara, “Characteristics of Dust-Storm Particles and Their Long-Range Transport from China to Japan – Case Studies in April 1993,” Atmospheric Research, Vol. 40, pp. 19-31 (1996). Zhuang, H., C. K. Chan, M. Fang, and A. S. Wexler, “Size Distributions of Particulate Sulfate, Nitrate, and Ammonium at a Coastal Site in Hong Kong,” Atmospheric Environment, Vol. 33, pp. 843-853 (1999). 王景良,「中部空品區污染源逸散粉塵的組成分析」,碩士論文,國立中興大學環境工程學系,台中(2000). 王證權,「亞洲氣膠特性實驗 - 台灣北海岸春季氣膠化學特性」,碩士論文,國立中央大學環境工程研究所,中壢 (2001). 朱宏勳,李崇德,劉紹臣,沈士翔,「長程傳輸對北台灣大氣氣膠特性的影響」,第十一屆中華民國國際氣膠科技研討會論文專輯,台南 (2004). 李崇德,張順欽,吳國榮,陳熙灝,「空氣品質變化趨勢與細懸浮微粒(PM2.5)監測現況分析」,第十五屆空氣污染控制技術研討會論文專輯,中壢 (1998). 李蔚德,「大陸沙塵事件和農廢燃燒事件之大氣懸浮微粒的粒徑分佈及特性分析」,碩士論文,國立中興大學環境工程學系,台中 (2004). 余嘉裕,卓盈旻,張振瑋,林瑋翔,「環保署EPA-92-L105-02-207」,沙塵暴資料庫,。 林立凱,「台中都會區PM10高污染事件大氣懸浮微粒之物化特性」,碩士論文,國立中興大學環境工程學系,台中 (2005). 張順欽,李崇德,「大陸沙塵暴對台灣空氣品質影響特徵之研究」,第十八屆空氣污染控制技術研討會論文專輯,高雄 (2001). 張博彥,「台中都會區大氣懸浮微粒粒徑分佈與氯損失之研究」,碩士論文,國立中興大學環境工程學系,台中 (2005). 許文昌,李崇德,「台北都會區氣懸微粒污染來源的推估」,中央大學環境工程學刊,第二期,第7篇 (1996). 程大維,吳義林,「硫酸鹽與硝酸鹽微粒之成長速率」,第十二屆空氣污染控制技術研討會論文專輯,台南,第393-399頁 (1995). 黃玉立,張宗良,「台灣地區懸浮微粒污染特性的變化與趨勢」,第二十屆空氣污染控制技術研討會論文專輯,台中(2003). 詹俊南,「台灣地區PM10污染特性分析」,碩士論文,國立台灣大學環境工程研究所,台北 (1995). 鄭曼婷,丁偉諭,李蔚德,蘇怡如,「農廢燃燒期間空氣污染物的化學組成和粒徑分佈」,第二十屆年空氣污染控制技術研討會論文專輯,pp. 3-73,(2003). 鄭曼婷,丁偉諭,李蔚德,林煜棋,蘇怡如,「利用環型擴散採樣器量測農廢燃燒期間酸性氣體污染物及PM2.5的化學組成」,海峽兩岸研討會,(2004). 盧信忠,謝仁傑,沈銘祥,「台中地區高PM10濃度值之分佈特性」,第十九屆空氣污染控制技術研討會論文專輯,台北(2002).
2005年採樣期間,PM10及PM2.5年平均濃度分別為71.7 μg/m3及46.3 μg/m3,PM2.5/PM10之年平均值為0.65。2002年至2005年期間,PM10高污染原因主要為沙塵暴、農廢燃燒以及擴散不良。
2002至2005年期間沙塵暴事件日之PM10及PM2.5平均濃度分別為98.4 μg/m3及48.2 μg/m3,PM2.5/PM10平均比值為0.47,其粗粒中海鹽Na+、Mg2+、Cl-及塵土Ca2+分別較非事件日增加2.6、2.4、3.4及2.6倍,而其他主要增加物種在每波沙塵暴都不同。至於農廢燃燒事件日PM10及PM2.5平均濃度則分別為153.4 μg/m3及125.5 μg/m3,其PM2.5/PM10平均比值明顯增加至0.81,主要增加的物種有Cl-、K+、SO42-、OC及EC,分別較非事件日增加10.9、5.7、5.2、3.9及3.5倍。空氣品質方面,農廢燃燒期間NOx、CO、SO2及O3明顯增加,溫度與相對濕度並無明顯差異,而風速在農廢燃燒期間只有非農廢燃燒期間的0.6倍,因此低風速是PM10高污染的原因之ㄧ。

In this study, the dichotomous samplers were used 7 days per month in 2005 to collect daytime and nighttime PM2.5 and PM2.5-10 aerosols. The samples were further analyzed to obtain the concentrations of water-soluble ions. Totally 142 samples were collected. In addition, MOUDI was used to collect the size-segregated aerosols every 24 hours. Seventy-two samples were collected. Particularly only the size-segregated aerosol samples collected during agricultural waste burning and Asian dust storm periods in November were analyzed to obtain the size distributions of ionic species. These results and those measured during the year from 2002 to 2004 were studied, in order to understand the characteristics of urban ambient particulate in Taichung. The characteristics of the aerosol particles measured during the agricultural waste burning and follwed by Asian dust storm were investigated as well.
The annual mean concentrations of PM10 and PM2.5 were 71.7 μg/m3 and 46.3 μg/m3, respectively. The annual mean ratio of PM2.5/PM10 was 0.65. During the year from 2002 to 2005, Asian dust storm, agricultural waste burning and poor dispersion were the major causes of the PM10 episodes.
The mean concentrations of PM10 and PM2.5 of Asian dust storm were 98.4 μg/m3 and 48.2 μg/m3 at Taichung urban city during 2002 to 2005, and the mean ratio of PM2.5/PM10 was 0.47. The concentrations of sea-salt species Na+, Mg2+, Cl- and the crustal component Ca2+ were 2.6, 2.4, 3.4, 2.6 times higher than those measured during the non-Asian dust storm period. Other additional species varied for each dust storm event. And the mean concentrations of PM10 and PM2.5 of agricultural waste burning were 153.4 μg/m3 and 125.5 μg/m3, respectively. The mean ratio of PM2.5/PM10 was significantly increased to 0.81. The major components Cl-, K+, SO42-, OC, and EC were 10.9, 5.7, 5.2, 3.9, and 3.5 times higher than those obtained during the non-burning days. During the agricultural burning, NOx, CO, SO2, and O3 increased, but temperature and relative humidity were almost the same as those during the non-burning days. However the mean wind speed during the burning period was 0.6 times lower than the non-burning days. The low wind speed was one of the major factors causing the PM10 episodes.
其他識別: U0005-2806200614311500
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.