Please use this identifier to cite or link to this item:
標題: 大腸桿菌及乳酸鏈球菌表現重組甜味蛋白質之改進及其發酵生產
Improvement of recombiant sweet protein brazzein expression and fermentation by Escherichia coli and Lactococcus lactis
作者: 鄭力豪
Cheng, Lee-Hao
關鍵字: 大腸桿菌;Escherichia coli;乳酸鏈球菌;甜味蛋白質;Lactococcus lactis;brazzein
出版社: 食品暨應用生物科技學系所
引用: 王志鵬。2007年。開發枯草桿菌持續型及誘導型表現系統以應用於自體、同源及 異源蛋白質之表現暨建立芽孢桿菌益生菌表現系統。國立中興大學食品暨應用生物科技學系博士論文。 蘇政蕙。2005 年。挑選持續型強力啟動子並表現重組抗凍蛋白類似物於乳酸鏈球菌與乳酸桿菌中。國立中興大學食品科學系碩士論文。 葉鈞凱。2006 年。重組靈芝免疫調節蛋白質於枯草桿菌及乳酸鏈球菌之表現與純化最適化,及其生物活性分析。國立中興大學食品科學系碩士論文。 劉錦浲。2004年。開發乳酸菌食品級表現系統以應用於異源蛋白質之表現。國立中興大學食品科學系碩士論文。 翟爾雅。2010年。利用乳酸鏈球菌表現甜味蛋白質。國立中興大學食品暨應用生 物科技學系碩士論文。 林志侯。乳酸菌載體表現系統之研究現況與趨勢。農業生技產業季刊。 姜彬,馮志彪。2006。甜味剂發展概況。食品科技。 Assadi-Porter, F.M., D.J. Aceti, H. Cheng and J.L. Markley, 2000. Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Archives of biochemistry and biophysics, 376(2): 252-258. DOI 10.1006/abbi.2000.1725. Assadi-Porter, F.M., D.J. Aceti and J.L. Markley, 2000. Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Archives of biochemistry and biophysics, 376(2): 259-265. DOI 10.1006/abbi.2000.1726. Assadi-Porter, F.M., S. Patry and J.L. Markley, 2008. Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in e. Coli. Protein expression and purification, 58(2): 263-268. DOI 10.1016/j.pep.2007.11.009. Berlec, A., Z. Jevnikar, A.C. Majhenic, I. Rogelj and B. Strukelj, 2006. Expression of the sweet-tasting plant protein brazzein in escherichia coli and lactococcus lactis: A path toward sweet lactic acid bacteria. Applied microbiology and biotechnology, 73(1): 158-165. DOI 10.1007/s00253-006-0438-y. Berlec, A. and B. Strukelj, 2009. Large increase in brazzein expression achieved by changing the plasmid /strain combination of the nice system in lactococcus lactis. Letters in applied microbiology, 48(6): 750-755. DOI 10.1111/j.1472-765X.2009.02608.x. Chart, H., H.R. Smith, R.M. La Ragione and M.J. Woodward, 2000. An investigation into the pathogenic properties of escherichia coli strains blr, bl21, dh5alpha and eq1. Journal of applied microbiology, 89(6): 1048-1058. Choi, J.H., K.J. Jeong, S.C. Kim and S.Y. Lee, 2000. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant escherichia coli using the bacillus sp. Endoxylanase signal sequence. Applied microbiology and biotechnology, 53(6): 640-645. de Vos, W.M., M. Kleerebezem and O.P. Kuipers, 1997. Expression systems for industrial gram-positive bacteria with low guanine and cytosine content. Current opinion in biotechnology, 8(5): 547-553. Eichenbaum, Z., M.J. Federle, D. Marra, W.M. de Vos, O.P. Kuipers, M. Kleerebezem and J.R. Scott, 1998. Use of the lactococcal nisa promoter to regulate gene expression in gram-positive bacteria: Comparison of induction level and promoter strength. Applied and environmental microbiology, 64(8): 2763-2769. Faraldo, M.M., M.A. de Pedro and J. Berenguer, 1992. Sequence of the s-layer gene of thermus thermophilus hb8 and functionality of its promoter in escherichia coli. Journal of bacteriology, 174(22): 7458-7462. Fernandez-Herrero, L.A., G. Olabarria and J. Berenguer, 1997. Surface proteins and a novel transcription factor regulate the expression of the s-layer gene in thermus thermophilus hb8. Molecular microbiology, 24(1): 61-72. Froseth, B.R., R.E. Herman and L.L. McKay, 1988. Cloning of nisin resistance determinant and replication origin on 7.6-kilobase ecori fragment of pnp40 from streptococcus lactis subsp. Diacetylactis drc3. Applied and environmental microbiology, 54(8): 2136-2139. Goeddel, D.V., H.L. Heyneker, T. Hozumi, R. Arentzen, K. Itakura, D.G. Yansura, M.J. Ross, G. Miozzari, R. Crea and P.H. Seeburg, 1979. Direct expression in escherichia coli of a DNA sequence coding for human growth hormone. Nature, 281(5732): 544-548. Hellekant, G. and V. Danilova, 2005. Brazzein a small, sweet protein: Discovery and physiological overview. Chemical senses, 30 Suppl 1: i88-89. DOI 10.1093/chemse/bjh127. Izawa, H., M. Ota, M. Kohmura and Y. Ariyoshi, 1996. Synthesis and characterization of the sweet protein brazzein. Biopolymers, 39(1): 95-101. DOI 10.1002/(SICI)1097-0282(199607)39:1<95::AID-BIP10>3.0.CO;2-B. Johnson, R.K., L.J. Appel, M. Brands, B.V. Howard, M. Lefevre, R.H. Lustig, F. Sacks, L.M. Steffen and J. Wylie-Rosett, 2009. Dietary sugars intake and cardiovascular health: A scientific statement from the american heart association. Circulation, 120(11): 1011-1020. DOI 10.1161/circulationaha.109.192627. Kunji, E.R., D.J. Slotboom and B. Poolman, 2003. Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et biophysica acta, 1610(1): 97-108. Lamphear, B.J., D.K. Barker, C.A. Brooks, D.E. Delaney, J.R. Lane, K. Beifuss, R. Love, K. Thompson, J. Mayor, R. Clough, R. Harkey, M. Poage, C. Drees, M.E. Horn, S.J. Streatfield, Z. Nikolov, S.L. Woodard, E.E. Hood, J.M. Jilka and J.A. Howard, 2005. Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant biotechnology journal, 3(1): 103-114. DOI 10.1111/j.1467-7652.2004.00105.x. Le Loir, Y., V. Azevedo, S.C. Oliveira, D.A. Freitas, A. Miyoshi, L.G. Bermudez-Humaran, S. Nouaille, L.A. Ribeiro, S. Leclercq, J.E. Gabriel, V.D. Guimaraes, M.N. Oliveira, C. Charlier, M. Gautier and P. Langella, 2005. Protein secretion in lactococcus lactis : An efficient way to increase the overall heterologous protein production. Microbial cell factories, 4(1): 2. DOI 10.1186/1475-2859-4-2. Li, C., L. Han, Z. Zheng and W. Zhao, 2011. [optimization of plant des-pglu1-brazzein gene according to yeasty biased codons and its expression in pichia pastoris]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 27(8): 1158-1163. Madsen, S.M., J. Arnau, A. Vrang, M. Givskov and H. Israelsen, 1999. Molecular characterization of the ph-inducible and growth phase-dependent promoter p170 of lactococcus lactis. Molecular microbiology, 32(1): 75-87. Madsen, S.M., T. Hindre, J.P. Le Pennec, H. Israelsen and A. Dufour, 2005. Two acid-inducible promoters from lactococcus lactis require the cis-acting acid-box and the transcription regulator rcfb. Molecular microbiology, 56(3): 735-746. Available from DOI 10.1111/j.1365-2958.2005.04572.x. Mierau, I. and M. Kleerebezem, 2005. 10 years of the nisin-controlled gene expression system (nice) in lactococcus lactis. Applied microbiology and biotechnology, 68(6): 705-717. DOI 10.1007/s00253-005-0107-6. Mierau, I., P. Leij, I. van Swam, B. Blommestein, E. Floris, J. Mond and E.J. Smid, 2005. Industrial-scale production and purification of a heterologous protein in lactococcus lactis using the nisin-controlled gene expression system nice: The case of lysostaphin. Microbial cell factories, 4: 15. Available from DOI 10.1186/1475-2859-4-15. Mierau, I., K. Olieman, J. Mond and E.J. Smid, 2005. Optimization of the lactococcus lactis nisin-controlled gene expression system nice for industrial applications. Microbial cell factories, 4: 16. DOI 10.1186/1475-2859-4-16. Ming, D. and G. Hellekant, 1994. Brazzein, a new high-potency thermostable sweet protein from pentadiplandra brazzeana b. FEBS letters, 355(1): 106-108. Morello, E., L.G. Bermudez-Humaran, D. Llull, V. Sole, N. Miraglio, P. Langella and I. Poquet, 2008. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. Journal of molecular microbiology and biotechnology, 14(1-3): 48-58. Available from DOI 10.1159/000106082. Narita, J., S. Ishida, K. Okano, S. Kimura, H. Fukuda and A. Kondo, 2006. Improvement of protein production in lactic acid bacteria using 5''-untranslated leader sequence of slpa from lactobacillus acidophilus. Improvement in protein production using utls. Applied microbiology and biotechnology, 73(2): 366-373. DOI 10.1007/s00253-006-0477-4. Petsch, D. and F.B. Anspach, 2000. Endotoxin removal from protein solutions. Journal of biotechnology, 76(2-3): 97-119. Posno, M., R.J. Leer, N. van Luijk, M.J. van Giezen, P.T. Heuvelmans, B.C. Lokman and P.H. Pouwels, 1991. Incompatibility of lactobacillus vectors with replicons derived from small cryptic lactobacillus plasmids and segregational instability of the introduced vectors. Applied and environmental microbiology, 57(6): 1822-1828. Sainz, E., J.N. Korley, J.F. Battey and S.L. Sullivan, 2001. Identification of a novel member of the t1r family of putative taste receptors. Journal of neurochemistry, 77(3): 896-903. Salminen, S., A. von Wright, L. Morelli, P. Marteau, D. Brassart, W.M. de Vos, R. Fonden, M. Saxelin, K. Collins, G. Mogensen, S.E. Birkeland and T. Mattila-Sandholm, 1998. Demonstration of safety of probiotics -- a review. International journal of food microbiology, 44(1-2): 93-106. Sasaki, Y., Y. Ito and T. Sasaki, 2004. Thya as a selection marker in construction of food-grade host-vector and integration systems for streptococcus thermophilus. Applied and environmental microbiology, 70(3): 1858-1864. Shareck, J., Y. Choi, B. Lee and C.B. Miguez, 2004. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria:Their characteristics and potential applications in biotechnology. Critical Reviews in Biotechnology, 24(4): 155-208. DOI 10.1080/07388550490904288. Sorensen, H.P. and K.K. Mortensen, 2005. Advanced genetic strategies for recombinant protein expression in escherichia coli. Journal of biotechnology, 115(2): 113-128. Available from DOI 10.1016/j.jbiotec.2004.08.004. Studier, F.W., 1991. Use of bacteriophage t7 lysozyme to improve an inducible t7 expression system. Journal of molecular biology, 219(1): 37-44. Studier, F.W. and B.A. Moffatt, 1986. Use of bacteriophage t7 rna polymerase to direct selective high-level expression of cloned genes. Journal of molecular biology, 189(1): 113-130. Takala, T.M. and P.E. Saris, 2002. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisi. Applied microbiology and biotechnology, 59(4-5): 467-471. DOI 10.1007/s00253-002-1034-4. Temussi, P.A., 2011. Determinants of sweetness in proteins: A topological approach. Journal of molecular recognition : JMR, 24(6): 1033-1042. DOI 10.1002/jmr.1152. Terpe, K., 2006. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology, 72(2): 211-222. DOI 10.1007/s00253-006-0465-8. van Klompenburg, W., M. Paetzel, J.M. de Jong, R.E. Dalbey, R.A. Demel, G. von Heijne and B. de Kruijff, 1998. Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS letters, 431(1): 75-79. Villaverde, A. and M.M. Carrio, 2003. Protein aggregation in recombinant bacteria: Biological role of inclusion bodies. Biotechnology letters, 25(17): 1385-1395. Walters, D.E., T. Cragin, Z. Jin, J.N. Rumbley and G. Hellekant, 2009. Design and evaluation of new analogs of the sweet protein brazzein. Chemical senses, 34(8): 679-683. DOI 10.1093/chemse/bjp048. Wong, G.T., K.S. Gannon and R.F. Margolskee, 1996. Transduction of bitter and sweet taste by gustducin. Nature, 381(6585): 796-800. DOI 10.1038/381796a0. Xu, H., L. Staszewski, H. Tang, E. Adler, M. Zoller and X. Li, 2004. Different functional roles of t1r subunits in the heteromeric taste receptors. Proceedings of the National Academy of Sciences of the United States of America, 101(39): 14258-14263. Available from DOI 10.1073/pnas.0404384101. Yin, T., H.Y. Lu, S.L. Zhang, J.M. Liu and D.M. Chen, 2009. [fruit-specific expression of sweet protein brazzein in transgenic tomato plants]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji, 31(6): 663-667. Assadi-Porter, F. M., Maillet, E. L., Radek, J. T., Quijada, J., Markley, J. L., & Max, M. (2010). Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J Mol Biol, 398(4), 584-599. doi: 10.1016/j.jmb.2010.03.017 Hellekant, G., & Danilova, V. (2005). Brazzein a small, sweet protein: discovery and physiological overview. Chem Senses, 30 Suppl 1, i88-89. doi: 10.1093/chemse/bjh127 Kant, R. (2005). Sweet proteins--potential replacement for artificial low calorie sweeteners. Nutr J, 4, 5. doi: 10.1186/1475-2891-4-5 Madsen, S. M., Hindre, T., Le Pennec, J. P., Israelsen, H., & Dufour, A. (2005). Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB. Mol Microbiol, 56(3), 735-746. doi: 10.1111/j.1365-2958.2005.04572.x Mierau, I., Olieman, K., Mond, J., & Smid, E. J. (2005). Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact, 4, 16. doi: 10.1186/1475-2859-4-16 Morello, E., Bermudez-Humaran, L. G., Llull, D., Sole, V., Miraglio, N., Langella, P., & Poquet, I. (2008). Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol, 14(1-3), 48-58. doi: 10.1159/000106082 Shareck, J., Choi, Y., Lee, B., & Miguez, C. B. (2004). Cloning Vectors Based on Cryptic Plasmids Isolated from Lactic Acid Bacteria:Their Characteristics and Potential Applications in Biotechnology. Critical Reviews in Biotechnology, 24(4), 155-208. doi: 10.1080/07388550490904288 Simon, S. A., de Araujo, I. E., Gutierrez, R., & Nicolelis, M. A. (2006). The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci, 7(11), 890-901. doi: 10.1038/nrn2006 Sorensen, H. P., & Mortensen, K. K. (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. [Research Support, Non-U.S. Gov''t Review]. J Biotechnol, 115(2), 113-128. doi: 10.1016/j.jbiotec.2004.08.004 Zhou, X. X., Li, W. F., Ma, G. X., & Pan, Y. J. (2006). The nisin-controlled gene expression system: construction, application and improvements. [Research Support, Non-U.S. Gov''t Review]. Biotechnol Adv, 24(3), 285-295. doi: 10.1016/j.biotechadv.2005.11.001
甜味是現今人們飲食當中不可缺少的一環,早期的甜味劑主要來自於自然界中的單糖及寡糖,但由於過量的攝取糖類會導致齵齒、糖尿病、高血壓等疾病。因此為了追求低卡路里、安全無虞、甜度高的甜味劑,分別從各種植物中分離出天然甜味劑,其中又以brazzein分子量低、pH值穩定、耐熱性佳、甜度高且風味與蔗糖相近,可望成為取代人工代糖的純天然甜味劑。大腸桿菌(Escherichia coli) 是遺傳工程及商業上最常使用於表現異源蛋白質之革蘭氏陰性菌,而乳酸鏈球菌(Lactococcus lactis)自古至今應用於發酵食品、食品保存、乳製品已有數千年的歷史,且為美國食品藥物管理局(US Food and Drug Administration, FDA)認定安全級(generally recognized as safe, GRAS)菌株,在遺傳工程中則作為蛋白質表現宿主,其食品級且不產生內毒素、具有較佳的蛋白質分泌能力、胞外蛋白酶活性低等特性,被認為是具有潛力的微生物蛋白質生產工廠。
本研究以大腸桿菌及食品級乳酸鏈球菌表現重組甜味蛋白質,首先構築大腸桿菌表現之質體為以異丙基-β-D-硫代半乳糖苷誘導之pET-brazzein質體,乳酸鏈球菌構築則nisin誘導之MNICE及酸誘導型pHI及MpHI表現質體。使用大腸桿菌轉型株於低溫發酵誘導表現,取一公升發酵液之菌體部分純化重組甜味蛋白質,經由濃縮透析可得到15.4 mg之產量,並可以品嚐出甜味,其相對甜度以濃度80~100ug/ml之重組甜味蛋白質最為接近8%蔗糖水溶液。而乳酸鏈球菌表現系統中則由於使用NICE系統成本較為昂貴,較不適合做大量發酵生產,因此另外以nsr基因構築食品級表現系統,食品級表現系統之nisin耐受性試驗結果顯示可以nisin濃度1~3μg/ml作為食品級表現系統之抗生素濃度,然而食品級表現系統表現不佳,故以酸誘導系統大量發酵表現及純化重組甜味蛋白質,結果顯示融合可穩定mRNA之UTL的MpHI系統確實可提升重組甜味蛋白質之表現量,且蛋白質鑑定確認上清液中確實含有重組甜味蛋白質。而純化方面以陽離子層析純化管柱純化所得之重組甜味蛋白質則因訊號過於雜亂而無法確認,實際品嚐也沒有甜味,推測可能因取24小時之上清液而此時菌體lysis,造成純化不完全所致。本實驗亦以批式大量發酵及連續式發酵配合pH值調控的方式以達到提升菌體及重組甜味蛋白質之效果。結果顯示無論是以氨水調整pH值或是加入新鮮培養基,菌體生長情形與重組甜味蛋白質表現量相較於小量發酵皆無顯著性差異。而蛋白質表現量則以有額外置換添加培養基發酵方式之第8小時具有最佳之產量,約為222.5 μg/ml。

Sweetness is an indispensable flavor of the people’s dietary. Traditionally the nature resources of sweeteners are mainly the monosaccharides and oligosaccharides. However, the excessive intake of carbohydrates lead to caries, diabetes and hypertension in recent diets. Therefore safer, low-calorie, high sweetness, natural sweeteners were isolated from a variety of plants to substitute the tradition sweetners. Among them brazzein has the attractive features such as small size (53 amino acid residues), stability over wide ranges of temperature and pH, and the similarity of sweetness to sucrose, which made it a potential artificial sweetener. Escherichia coli is the most commonly used host in genetic engineering and a commercially heterologous proteins expressing host. Lactococcus lactis has been used in fermented foods, food preservation and dairy products for thousands of years; and regarded as GRAS (generally recognized as safe) by FDA (Food and Drug Administration). Therefore, L. lactis has been used as a food grade host in heterologous protein expression, moreover characteristics such as no endotoxin, better protein secretion ability and low activity of extracellular protease led L. lactis a potential host for microbial protein production factory.
In this study, Escherichia coli and Lactococcus lactis are used as host to express the recombinant sweet protein rbrazzein. In the first part, Isopropyl β-D-1-thiogalactopyranoside (IPTG)-indicibe pET-brazzein was constructed to express the recombinant sweet protein rbrazzein by E. coli. And the recombinant sweet protein rbrazzein-expressed plasmid for L. lactis including nisin-inducible and acid-inducible (pHI, MpHI) system were constructed as well. The optimized recombinant sweet protein rbrazzein was purified from fermented E. coli transformants and yielded rbrazzein about 15.4 mg. The purified rbrazzein tasted sweet and the relative sweetness of sweet protein concentration of 80 ~ 100 ug/ml is almost close to 8% sucrose solution. Among L. lactis expression systems the NICE system is not suitable for fermentation due to the expensive cost. The constructed food grade expression system can be selected at nisin concentration of 1 ~ 3μg/ml but unstable in expression. The modified acid-inducible system (MpHI) which fused the UTL infront of promoter showed better expression without any antibiotic. We tried to purified the rbrazzein from the 24 hr culture supernatant of MpHI system by cation exchange chromatography. However the purified protein were not so pure as analyzed by MALDI-TOF, possibly due to the cell lysis at 24 hr culture. Finally the batch type and fed-batch type fermentation of MpHI system were preceded. The highest 222.5 μg/ml rbrazzein was achieved after 8 hr induction of fed-batch culture.
其他識別: U0005-2008201217414700
Appears in Collections:食品暨應用生物科技學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.