Please use this identifier to cite or link to this item:
標題: 常溫下過硫酸鹽氧化三氯乙烯之研究
Investigation on persulfate oxidation of trichloroethylene (TCE) at ambient temperatures.
作者: 王子欣
Wang, Zih-Sin
關鍵字: in-situ chemical oxidation (ISCO);現址化學氧化法;sulfate radical;thermally activated;radical scavengers;硫酸根自由基;熱活化;自由基攫取者
出版社: 環境工程學系所
引用: 經濟部工業局,2005. 印刷電路板業土壤及地下水污染預防與整治技術手冊。 工研院能資所,1990,有害物質滲漏地下水層污染調查研究。 盧明俊,1998,利用針鐵礦催化過氧化氫分解氯酚類化合物,行政院國科會補助專題研究計畫成果報告書,NSC87-2211-E-041-007。 葉桂君,1999,Fenton 法現地氧化地下水層中DNAPL 之探討(I),行政院國科會補助專題研究計畫成果報告書,NSC88-2211-E-002-008。 高志明,2005,發展去瓶頸技術以解決高錳酸鉀現地整治地下水污染之孔隙堵塞問題,行政院國科會補助專題研究計畫成果報告書,NSC93-2622-E-110-008-CC3 李孫榮,2005,受五氯酚污染土壤經臭氧處理後其副產物傳輸與宿命之研究(1/2),行政院國科會補助專題研究計畫成果報告書,NSC 93-2211-E-041-013 官知嫺,1998,苯環類分解菌共代謝三氯乙烯,碩士論文,中興大學環境工程學系,台中。 林佩雲,2005,水中常見之陰離子對過硫酸鹽熱催化氧化三氯乙烯的影響,碩士論文,成功大學環境工程學系,台南。 環保署環境資料庫,1996,三氯乙烯毒理資料, 環保署環境資料庫物質安全資料表(MSDS),1996,危害物質危害數據資料, Alken G.R. 1992. Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method. Environ. Sci. Technol. 26: 2435-2439 Anipsitakis, G.P., Dionysiou, D.D. 2003. Degradation of organic contamination in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 37: 4790-4797 Arndt, D. 1981. Manganese compounds as oxidizing agent in organic chemistry. Open Court Pub. Co., LaSalle, IL. Baciocchi, R., Boni, M.R., Aprile, L.D. 2004. Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils. Journal of Hazardous Materials. 106 (3): 97-102 Behrman, E.J., Dean, D.H. 1999. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate(persulfate1)in polyacrylamide gel electrophoresis. Journal of Chromatography B. 723: 325–326 Bellamy, W.D., Hickman, G.T., Mueller, P.A., Ziemba, N. 1991. Treatment of VOC-contaminated groundwater by hydrogen peroxide and ozone oxidation, Research Journal WPFC. 63(2): 120-128 Beltran, F.J., Gonzalez, M., Acedo, B., Paramillo, J. 1996. Contribution of free radical oxidation toeliminate volatile organochlorine compounds in water by ultraviolet radiation and hydrogen peroxide. Chemosphere. 32 (10): 1949-1961 Brown, R.A., Skladany, G., Robinson D., Fiacco J., MTigue J.W. 2001. Comparing permanganate and persulfate treatment effectiveness for various organic contaminants. Proceeding of the First International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, Niagara Falls, Ontario, Canada, June: 25-29 Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. 1998. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(OH‧/O-‧)in aqueous solution. J. Phys. Chem. Ref. Data. 17: 513-531 Buxton, G.V.; Bydder, M.; salmon, G.A. 1999. The reactivity of chlorine atoms in aqueous solution PartII. The equilibrium SO4.-+Cl- <=> Cl.+SO42-. Phys. Chem. Chem. Phys. 1: 269-273 Chawla, O.P., Fessenden R.W. 1975. Electron spin resonance and pulse radiolysis studies of some reactions of SO4-‧. J. Phys. Chem. 75: 2639-2700 Chen, G., Hoag, G.E., Chedda, P., Woody, B.A., Dobbs, G.M. 2001. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. Journal of Hazardous Materials B. 87: 171-186 Coons,D.E., Balba, M.T., Lin, C., Scrocchi, S., Weston, A. 2000. Remediation of chlorinated compounds by chemical oxidation. Chemical oxidation and reactive barriers: Remediation of chlorinated and recalcitrant compounds, Wickramanayake, G.B., Gavaskar, A.R., Chen, A.S.C., Eds., Battelle press: 161-168 Dogliotti, L., Hayon, E. 1967. Flash phtolysis of persulfate Ions in aqueous solutions. Study of the sulfate and ozonide radical anions. J. Phy. Chem. 71: 2511-2516 Domenico, P.A., Schwartz, F.W. 1990. Chemical Kinetics and Reaction Hydrogeology, John Wiley & Sons, N.Y.: 824pp Forkert, P. G., Sylvestre, P. L., Poland, J. S. 1985. Lung injury induced by trichloroethylene. Toxicology. 35: 143-160. Fountain, J.C. 1998. Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation. Ground-Water Remediation Technologies Analysis Center. FMC, 2001,Persulfate Tech cal Information Gate, D.D., Siegrist, R.L. 1995. In situ chemical oxidation of Trichloroethylene using hydrogen peroxide. Journal of Environmental Engineering September: 639-644 Gates-Anderson, D.D., Siegrist, R.L., Cline, S.R., 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. Journal of Environmental Engineering April: 337-347 Goulden, P.D.; Anthony, D.H.J. 1978. Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry. 50 (7): 953-958 Grathwohl, P., Teutsch, G. 1997. In-Situ remediation of persistant organic contaminants in groundwater. International Conference On Groundwater Quality Protection: 85-99. Hayon, E., Treinin, A., Wilf,J. 1972. Electronic Spectra, Photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2-, SO3-, SO4-, and SO5- radicals. Journal of the American Chemical Society. 91 (1): 47-57 Hoig, J., Bador, H. 1983. Rate constants of reaction of ozone with organic and inorganic compounds in water. Water Research. 17: 173 House, D.A. 1962. Kinetics And Mechanism of Oxidations by Peroxydisulfate. Chem. Rev. 62: 185-203 Huang, C.K., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M. 2001. Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. Journal of Hazardous Materials B. 87: 155-169 Huang, C.R., Shu, H.Y. 1995. The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UV/O3 and UV/H2O2 processes. Journal of Hazardous Material. 41 (1): 47-64 Huie, R.E., Clifton, C.L. 1989. Rate constants for hydrogen abstraction reactions of the sulfate radical SO4-‧. Alkanes and ethers. J. Chem. Kinet.: 21-611 Huie, R.E., Ckifton, C.L. 1990. Temerature dependence of the rate constants for reactions of the sulfate radical, SO4-‧, with anion. J. Phys. Chem. 94: 8561-8567 Huie, R.E., Clifton, C.L., Neta, P. 1991. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Radiat. Phys. Chem. 38: 477-481 Huyser, E. S. 1970. Free-Radical Chain Reactions. Wiley-Interscience, New York, NY Huyser, E. S. 1971. Free-Radical Chain Reactions. Angewandte Chemie International Edition in English. 10 (3): 207-208 Kislenko, V.N., Berlin, A.A., Litovchenko, N.V. 1995. Kinetics of glucose oxidation with persulfate ions, catalyzed by iron salts. Russian Journal of general chemistry. 65, NO. 7, Part2. Kislenko, V.N., Berlin, A.A., Litovchenko, N.V. 1997. Kinetics of oxidation glucose by persulfate ions in presence of Mn(II) ions. Kinetics and Catalysis. 38 (3): 391-396 Kiwi, J., Lopez, A., Nadtochenko, V. 2000.Mechanism and kinetics of the OH- radical intervention during fenton oxidation in the presence ofa significant amount of radical scavenger(Cl-).Environ. Sci. Technol. 34: 2162-2168 Kolthoff, I.M. and Stenger, V.A. 1947. Volumetric Analysis. 2ed rev. ed., vol. 2, Titration Methods: Acid-Base, Precipitation, and Complex Reactions, Interscience Publishers, New York. Kueper, B.H., Wealthall, G.P., Smith, J.W.N., Lehame, S., Lerner, D.N. 2003. An illustrated handbook of DNAPL transport and fate in the subsurface. Environment Agency R&D Publication 133 LaChance, J.C., Hewitt, A., Reitsma, S., Lachance, J., Barker, R. 1998. In situ oxidation of TCE using potassium permanganate Part 2: Pilot study. Physical, Chemical, and Thermal technologies, Remediation of chlorinated and recalcitrant compounds, Battelle Press, Ohio, USA. Latimer, W.M. 1952. Oxidation Potentials, Prentice-Hall, Inc.,Englewood Cliffs, NJ. Lenka, S., Dash, S.B. 1983. Polymerization of acrylonitrile initiated by potassium persulfate-cobalt(II) and potassium persulfate-manganese(II) redox system. Journal of Macromolecular Science-Chemistry A. 20 (3): 397-407 Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L. 2004. Persulfate oxidation for in situ remediation of TCE. I.Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere. 55: 1213-1223 Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L. 2004. Persulfate oxidation for in situ remediation of TCE. II.Activated by chelated ferrous ion. Chemosphere. 55: 1225-1233 Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L. 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1- trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination. 12 (2): 207-228 Lipctnska-Kochany, E., Sprah, G.; Harms, S. 1995, Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the fenton reaction. Chemosphere. 30 (1): 9-20 Marvin, B.K., Nelson, C.H., Clayton, W., Sullivan, K.M., Skladany, G. 1998. In situ chemical oxidation of pentachlorophenol and polycyclic aromatic hydrocarbons: from laboratory test to field demonstration. Proceeding of 1st International Conference Remediation of Chlorinated and Recalcitrant Compounds, May 1998, Monterey, CA. Battelle: 383-388 Masten, S.J., Hoigne, J. 1992. Comparison of ozone and hydroxyl radical-induced oxidation of chlorinated hydrocarbon in water, Ozone: Science and Engineering. 14 (3): 197-213 Metcalf & Eddy, Inc. 1991. Wastewater engineering: Treatment, Disposal, Reuse. 3rd Ed. Revised by Tchobanoglous, G. and Burton, F., McGraw-Hill, Inc. NY Minisci. F., Citterio. A., 1983. Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry. Acc. Chem. Res. 16: 27-32 Norman, R.O.C., Storey, P.M., West, P.R. 1970. Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds. J. Chem. Soc. B: 1087-1095 Nyer, E.K., Vance, D. 1999. Hydrogen peroxide treatment: The good, the bad, the ugly. Ground Water Motoring & Remediation, Summer: 54-57 Pennington, D.E., Haim A. 1968. Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction. Journal of the American Chemical Society. 90 (14): 3700-3704 Peyton, G. P. 1993. The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar. Chem. 41: 91-103 Pignatello, J.J., Liu, D., Huston, P. 1999. Evidence for an additional oxidation in the photoassisted Fenton reaction. Environ. Sci. Technol. 33 (11): 1832-1839 Riley, R. G., Zachara, J. M., Wobber, F. J. 1992. Chemical contaminants in DOE lands and selection of contaminant mixtures for subsurface science research, U. S. Department of Energy, Office of Energy Research, DOE/ER-0547T Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S. 2001. Principle and Practices of in situ chemical Oxidation Using Permanganate. Battelle Press. Skarz&euml;wski, J. 1984. Cerium catalyzed persulfate oxidation of polycyclic aromatic hydrocarbons to quinines. Tetrahedron. 40 (23): 4997-5000 Tang, W.Z., Huang, C.P. 1996. Effectof chlorine content of chlorinated phenols on their oxidation kinitics. Chemosphere. 33 (8): 1621-1635 Traux, C.T. 1993. Investigation of the in-situ KMnO4 Oxidation of residual DNAPLs located below the groundwater table. Master Thesis, University of Waterloo, Canada USEPA, 1994. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. EPA 510-B-94-003. USEPA, 1995. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. EPA 510-B-95-007. USEPA(U.S. Environmental Protection Agency). 1998. National primary drinking water requlations, technical fact sheets on trichloroethylene and tetrachloroethylene. USEPA, 2004. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. EPA 510-R-04-002. Weeks, K.R.; Bruell, C.J.; Mohanty, N.R. 2000. Use of fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries. Soil and Sediment Contamination. 9 (4): 331-345 Westrick, J.J., Mello, J.W., Thomas, R.F. 1984. The ground water supply survey. J. Am. Water Work Assoc. 75: 52-59 Yan, Y.E., Schwartz, F.W. 1999. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of Contaminant Hydrology. 37: 343-365 Yeh, C.K.J., Kao, Y.A., Chen, C.P. 2002. Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen peroxide: the effect of soil organic matter. Chemosphere. 96 (1): 29-51 Yeh, C.K.J., Wu, H.M., Chen, T.C. 2003. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. Journal of Hazardous Materials. 46: 67-73 Yeh, C.K., Novak, J.T. 1995. The effect of hydrogen peroxide on the degradation of methyl and ethyl tertpbutyl ether in soil. Water Environment Research. 67 (5): 828-834 Yu, X.Y., Baker, J.R. 2003. Hydrogen peroxide phtolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. J. Phys. Chem. A 107: 1313-1324 Zuo, Z., Cai, Z., Katsumura, Y., Chtose, N., Muroya, Y. 1999. Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants. Radiat. Phys. Chem. 55: 15-23
本研究探討土壤及地下水現址化學氧化整治方式(ISCO)之氧化劑過硫酸鹽(persulfate, S2O82-)於常溫下的應用,S2O82-(E° = 2.01 V)經熱或化學方式活化可產生硫酸根自由基強氧化劑(SO4-‧, E° ~ 2.6 V),SO4-‧可氧化許多有機污染物質,例如三氯乙烯(trichloroethylene, TCE),然而若經激發活化之氧化程序雖可達到快速之反應,但通常亦同時造成快速之S2O82-降解及較高氧化劑使用量,因此實驗設計以探討於10、20及30 °C下,S2O82-氧化分解水溶液中TCE之效能,並進一步探究S2O82-應用於ISCO時之限制因子如溶液中pH值、離子強度及自由基攫取者如氯離子(Cl-)、碳酸氫/碳酸根(HCO3-/CO32-)等離子對反應之影響。
pH影響之結果顯示,在實驗設計pH範圍中(pH = 4, 7, 9),於系統溫度10、20及30 °C時,TCE之最大降解速率發生於pH 7,增加或降低溶液中pH值皆使反應速率降低,且於低pH條件下反應速率之降低程度較提高pH時顯著。在不同pH條件下鑑別主要作用自由基實驗中發現,酸性條件下,水溶液中主要作用之自由基為SO4-‧,鹼性條件下則為氫氧根自由基(‧OH)。
此外,於20 °C下,自由基攫取者之實驗結果顯示,在pH 7環境下,溶液中HCO3-/CO32-之濃度範圍於0 ~ 9.20 mM之間,碳酸根離子並不會對TCE降解速率造成影響。當溶液中Cl-濃度小於0.20 M時並不會對氧化反應速率造成影響。以地下水及純水為實驗水體之比較實驗中證實,於地下水中TCE之降解速率高於以純水為實驗水體時之降解速率,推論此一現象乃因反應過程pH值之變化所造成。

In-situ chemical oxidation (ISCO) is a technology used for groundwater remediation. Persulfate (S2O82-, E° = 2.01 V) is an oxidant for application of ISCO. S2O82- can be thermally or chemically activated to produce a powerful oxidant sulfate free radical (SO4-‧, E° ~ 2.6 V) which can potentially destroy many organic contaminants such as trichloroethylene (TCE). However, althought activation process can increase oxidation rate but it also caused more oxidant consumption. This laboratory study investigated the efficiency on the persulfate oxidation of TCE at near ambient temperature (10, 20 and 30 °C) and the influence of pH and radical scavengers such as chloride ion (Cl-) and alkanility species (i.e., HCO3-/CO32-) on the oxidation..
Under the range of temperatures tested, the maximum rate of TCE degradation occurred at near neutral pH (i.e., pH 7). Increases and decreases in pH resulted in decreases in TCE degradation rates. Radical scavenging tests used to identify predominant radical species suggested that SO4-‧ predominates under acidic conditions and the hydroxyl radical (‧OH) predominates under basic conditions.
It was found that TCE degradation by persulfate was not affected by the presence of HCO3-/CO32- for concentrations within the range of 0 ~ 9.2 mM at 20°C and pH 7. The presence of Cl- concentration below 0.2 M revealed no effect on TCE degradation rate. However, at Cl- levels greater then 0.2 M, TCE degradation rate was seen to reduce with increases in Cl- concentration. In a side by side comparison of groundwater vs. unbuffered RO water tests, it was seen that when the pH is buffered due to the presence of groundwater constituents the observed TCE degradation rate is higher than that in RO water where pH dropped from neutral to acidic.
其他識別: U0005-2906200616570100
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.