Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5239
標題: 應用礫石/碎石浸水式生物濾床削減河川含氮量之研究
Nitrogen Removal of Polluted Riverwater in Submerged Biofilter of Gravel/Chippings
作者: 陳鐘榮
Chen, Chung-Jung
關鍵字: Entrophication;優養化;Submerged Biofilter;Gravel;Chippings;Nitrification;Denitrification;浸水式生物濾床;礫石;碎石;硝化;脫硝
出版社: 環境工程學系所
引用: 一、中文部分 邱志成, 2000,「以生物濾床與浸水式生物濾膜槽做為水回收設備之探討」,私立東海大學環境科學研究所, 碩士論文. 邱仁杰, 2001,「浸水式生物濾床處理污水營養鹽物質之研究」,國立中央大學環境工程研究所, 博士論文. 邱于特, 2002,「利用固定式生物膜反應器系統處理煉油廠廢水之研究」,國立高雄第一科技大學環境工程衛生研究所, 碩士論文. 林炅勳, 2001,「生物濾床併同去除碳、氮、磷之研究」,國立中央大學環境工程研究所, 碩士論文. 曾建貴, 2001,「水平流式生物濾床行硝化脫氮之研究」,國立屏東科技大學環境工程與科學研究所, 碩士論文. 曾四恭、張欽裕、張朝謙, 1996,「以不同的無氧-好氧程序去除養殖廢水中碳、氮及磷之研究」, 第二十一屆廢水處理技術研討會, 頁54-61. 吳建一、陳嘉仁、陳正坤、陳國誠, 1998,「固定化微生物在廢水處理程序之應用-間歇曝氣效率之探討」, 第二十三屆廢水處理技術研討會, 頁74-85. 曾治乾、鄭維薇、陳榮耀、陳文鄉、鄭幸雄, 1998,「內包性生物擔體微結構與菌相之觀察分析研究」, 第二十三屆廢水處理技術研討會, 頁128-133. 趙守誠、吳建一、陳慶彥、陳國誠, 1999,「固定化微生物廢水處理程序之應用在ORP 即時監控系統下探討間歇曝氣操作效率」, 第二十四屆廢水處理技術研討會, 頁54-62. 周定、王健尤、侯文華、岳其賢、熊岳平, 1993,「固定化細胞在廢水中之應用與前景」, 環境科學, 頁51-54 . 陳國誠, 1998,微生物固定化技術在廢水處理的應用, 經濟部工業局八十七工業技術人材培訓計劃講義, 第68期, 頁1-35. 歐陽嶠暉, 1980,「旋轉生物原板法污泥特性」, 中國文化學院,博士論文. 歐陽嶠暉, 2002, 下水道工程學, 長松出版社, 頁225 – 240;頁384. 鄭育麟, 1988, 環工指標微生物, 復文出版社, 頁108 – 140. 行政院環境保護署;台中市環保局, 2002, 環境保護計劃書, 頁2-13. 行政院環境保護署;彰化縣環保局, 2003, 環境保護計劃書, 頁2-16;頁2-17. 行政院環保署;2005, 環境白皮書, 頁18. 二、西文部分 Antonie, R. L., Kluge, D. L. and Mielke, J. H., 1974,“Evluation of a rotating disk wastewater treatment plant,”JWPCF., Vol.46, NO.3, pp498-511. Bishop, P. L., 1997,“Biofilm structure and kinetics,”Water Science and Tech- nology., Vol.36, NO.1, pp.287-294. Canler, J. P. and Perret, J. M., 1994,“Biological aerated filters,assessment of the process base on 12 sewage treatment plans,”, Water Science and Techno- ogy., Vol.29, NO.10-11, pp.13-22. Cassidy, M. B., Lee, H. and Trevors, J. T., 1996,“Environmental applications of immobilized microbial cells,”A Review, J. of Industrial Microbiology 16., pp.79-102 Characklis, W. G. and Marshall, K. C., 1990,“Biofilm,”John Wiley and So- ns., INC. Chen, K. J., Chen, C. Y., Peng, J. W. and Houng, J. Y., 2002,“Real-time con- trol of an immobilized- cell reactor of wastewater treatment using ORP,”Wat- er Research., Vol.36,pp.230-238. Chiou, R. J. and Ouyang, C. F., 2001,“The effect of recycle ratio on nitrogen removal in the combined pre-denitrification / nitrification biofilter system,” Chemistry Technology and Biotechnology. Chui, P. C., Terashima, Y., J. H. and Ozaki, H., 1996,“Performance of a part- ly aerated biofilter in the removal of nitrogen,”Water Science and Technology ., Vol.34, NO.1-2, pp.187-194. Chudoba, P. and Pujol, R., 1996,“A three-stage biofilter process:per formanc- es of a plant,”IAWQ 19th Biennial Internional Conference, Vancouver, Canda, pp.262-269. Fdz-Polanco, F., Mendez, E. and Villaverde, S., 1995,“Study of nitrifying bi- ofilms in submerged biofilters by experimental desing methods”, Water Scie- nce and Technology., Vol.32, NO.8, pp.227-233. Fdz-Polanco, F., Villaverde, S. and Garcia, P. A., 1996,“Nitrite acculuation in submerged biofilters-combined effects,”Water Science and Technology., Vol. 34, NO.3-4, pp.371-378. Fdz-Polanco, F., Mendez, E., Uruena, M. A., Villaverde, S. and Garcia, P. A., 2000,“Spatial distribution of heterotrphs and nitrifier in a submerged biofilter for nitrification,”Water Research., Vol.34, NO.16, pp.4081-4089. Friedman, B. A.,1969,“Structure of excellular polymers and their relationship to bacterial flocculation,”Jour. Bacterial., Vol.98, pp.1328-1334. Furumai, H., Tagui, H. and Fukita, K.,1996,“Effects of pH and alkalinity on sulfur-denitrification in a biological granular filter,”Water Science and Techn- ology., Vol.34, NO.1-2, pp.355-362. Galvez, J. M., Gomez, M. A., Hontoria, E. and Gonzalez-Lopez, J., 2003,“I- nfluence of hydraulic loading and air flowrate on urban wastewater nitrogen r- emoval with a submerged fixed-film reactor,”Elsevier, Spain, Journal of Haz- ardous Materials (B101)., pp.219-229. Gaudy, A. F. and Turer, B. G., 1964,“Effect of air flowrate on response of acti- vated sludge to quantitative shock loading,”JWPCF.,Vol.36,NO.5,pp767-781. Gouzalez-Martinez, S. and Wilderer, P. A., 1991,“Phosphate removal in a bi- ofilm reactor,”Water Science and Technology., Vol.23, pp.1405-1415. Halling, S. B., 1993,“The removal of nitrogen compounds form wastew- Ater,”Elsevier, Denmark, pp.153-165;215-216. Henze, M., 1991,“Capabilities of biological nitrogen removal processes from Wastewater,”Water Science and Technology., Vol. 23, pp.669-679. Huang, J. C. and Bates, V. T., 1980,“Comparative performance of rotating biological contactors using air and pure oxygen,”JWPCF., Vol.52, NO.11, pp.2686-2703. Hu, H. Y., Fujie, K. and Urano, K., 1993,“Dynamic behavior of aerobic sub- merged biofilter,”Water Science and Technology., Vol.28, NO.7, pp.179-185. Janning, K. F., Tallec ., X. L. and Harremoës, P., 1998,“Hydrolysis of orga- nic wastewater particles in laboratory scale and pilot scale biofilm reactors un- der anoxic and aerobic conditions,”Water Science and Technology., Vol.38, NO.8-9, pp.179-188. Kent, T. D., Fitzpatrick, C. S. B. and William, S. C., 1996,“Treating of bio- gical aerated filter (BAF) media,”Water Science and Technology., Vol.34, NO.1-2, pp.347-353. Kim, D. J. and Joo, S. H., 1999,“Nitrite accumulation in a biological aerated filter by oxygen limitation,”IAWQ Conference on Biofilm Systems, New York, USA. Laverman, A. M., Blum, J. S., Schaefer, E. J. P., Philips, D. R. Lovley. and R. S. Oremland., 1995,“Growth of strain ses-3 with arsenate and other diverse electron acceptors,”Apple Environ Microbial., Vol.61, NO.10, pp.3556-3561. Ling, J. and Chen, S., 2005,“Impact of organic carbon on nitrification p- erformance of different biofilter,”Elsevier, USA, Aquacultural Engineering., Vol.33, pp.150-162. Lupton, F. S. and Marshall, K. C., 1979,“Effectivencess of surfactants in the microbial degradation of oil,”Geomicrobial. J., Vol.1, NO.3, pp.235-247. Matsao, T., Mino, T. and Satoh, H., 1992,“Metabolism of organic substrate in anaerobic phase of biological phosphorus uptake process,”Water Science and Technology., Vol.25, NO.6, pp.83-92. Mino, T., Satoh, H. and Matsuo, T., 1994,“Metabolisms of different bacterial populations in enhanced biological phosphate removal process,”Water Scien- ce and Technology., Vol.29, NO.7, pp.67-70. Morgenroth, E. and Wilderer, P, A., 1999,“Controlled biomass removal – the key parameter to achieve enhanced biological phosphorus removal in biofilm systems,”Water Science and Technology., Vol.39, NO.7, pp.33-40. Ohashi, A., Viraj de Silva, D. G., Mobarry, B., Manem, J. A., Stahl, D. A. and Rittmann, B. E., 1995,“Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs,”Water Science and Technology., Vol.32, NO.5, pp.75-84. Pelanda, J. G., Lemmel, H. and Pujol, R., 1996,“High nitrification rate with upflow biofilteration,”Water Science and Technology., Vol.34, NO.5, pp.75- 84. Pujol, R., Canler, J. P. and Vachon, A., 1992,“Biological aerated filters:an at- tractive and altermative biological process,”Water Science and Technology., Vol.26, NO.3-4, pp.693-702. Randall, C. W., Barnard, J. L. and Stensel, H. D., 1992,“Design and retrofit of wastewater treatment plants for biological nutrient removal,”Technomic Publishing Company. Rahmani, H., Rols, J. L., Capdeville, B., Cornier, J. C. and Deguin, A., 1995,“Nitrite removal by a fixed culture in a submerged granular biofilter,”Water Research., Vol.29, NO.7, pp.1745-1753. Rozzi, A., Albano, C. and Bani - Hani, A., 1999,“Kinetics of ammonia oxidat- iion to nitrite in movimg bed biofilm reactors,”IAWQ Conference on Biofilm Systems, New York, USA. Shanableh, A., Abeysinghe, D. and Hijazi, A., 1997,“Effect of cycle duration on phosphorus and nitrogen transformations in biofilters,”Water Research., Vol.28, NO.1, pp.149-153. Shanableh, A. and Hukazi, A., 1998,“Treatment of simulated aquaculture wat- er using biofilter subjected to aeration/noaeration cycles,”Water Science and Technology., Vol.38, NO.8-9, pp.223-231. Tijhuis, L., Loosdrecht, M. C. M. and Heijnen, J. J., 1992,“Nitrification with biofilms on small suspended particles in airlift reactors,”Water Science and Technology., Vol.26, NO.3-4, pp. 2207-2211. Villaverde, S., Garcia-Encina, P. A. and Fdz-Polanco, F., 1997,“Influence of pH over nitrifying biofilm activity in submerged biofilters,”Water Science and Technology., Vol.31, NO.5, pp.1180-1186. Venkata Mohan, S., Chandrasekhara Rao, N., Krishna Prasad, K. and Sar- ma, P. N., 2005,“Bioaugmentation of an anaerobic sequencing batch biofilm- reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater,”Elsevier, Indian, Process Biochemistry., Vol. 40,pp.2849-2857. Wang, J. and Yang, N., 2004,“Partial nitrification under limited dissolved oxy- gen condition,”Elsevier, China, Process Biochemistry., Vol. 39, pp.1223-1229 Wang, C., Li, J., Wang, B. and Zhang. G., 2006,“Development of an empiric- al model for domestic wastewater treatment by biological aerated filter,”Else- vier, China, Process Biochemistry., Vol. 41, pp.778-782. Ward, D. M., Bateson, M. M., Weller, R. and Ruff-Roberts, A. L., 1992,“Ri- bosomal RNA anolysis of microorganism as they occur in nature,”Adv. In Microb.Ecal., Vol.12, pp.219-286. Watanabe, Y., Okabe, S., Arata, T. and Haruta, Y., 1996,“Study on the perfo- rmance of an up–flow aerated biofilter (UAB) in municipal wastewater treat- ment,”Water Science and Technology., Vol.30, NO.11, pp.25-33. Webb, F. M., 1969,“Environmental Biotechnology:Cell immobilization,”Elli- swood Limited, pp.347-371 . Welch, F. M., 1969,“New approach to aerobic treatment process,”Water and Waste Engineering, Vol.6, NO.7, pp.12-15. Wentzel, M. C., Lotter, L. H., Ekama, G. A., Loewenthal, R. E. and Marais, G. R., 1991,“Evaluation of biochemical models for biological excess phosph- orus removal,”Water Science and Technology., Vol. 23, pp.567-576.
摘要: 
在河川廢水中,仍含有不少的氮(包括氨氮、有機氮及硝酸鹽氮等),而水中的氮是造成水體優養化(Eutrophication)的原因之一,不僅會降低水中的溶氧,影響水源用水的安全與衛生,亦會破壞水中原有的自然生態環境。且以92年放流水標準(氨氮不得超過10 mg/L,硝酸鹽氮不得超過50 mg/L)來看,許多污水廠之廢水因含氮濃度過高,無法合乎該標準,將此廢水排放至河川中即帶來更為嚴重的污染。而去除廢水中含氮物質的方法,可採用物理、化學或生物法,其中以生物處理法是最經濟的方法之一。所以本實驗利用一0.45m ×0.45m × 1.8m(長×寬×高)的鋼板水槽來當作反應槽稱為浸水式生物濾床,共有三段分別為進水區(高0 ~ 0.5m)、介質區(高0.5 ~ 1.3m)、出水區(高1.3 ~ 1.8m)。操作上係利用碎石與礫石當介質,採以不曝氣、100 %出流水迴流,批次下進行除氮之研究,藉由不同污染源(彰化縣-溪湖大排與台中市-綠川河水)以比較進出流水中各水質項目的變化,進而找出最適當的操作條件並進行水質參數的推估。
由結果顯示,在氮的去除方面,無論對溪湖排水(NH4+負荷為58.1 g/m3.day)與綠川河水(負荷為78.4 g/m3.day)而言,去除率分別可達85%(滯留時間= 6天以上)與84%(滯留時間= 8天以上),而對兩者原廢水之TN的去除效果似乎不太理想,究其原因可能為(1)處理之迴流水中仍含有過高的溶氧(溪湖:3mg/L;綠川:1 mg/L以上),溶氧偏高以致影響脫硝反應;(2)進流水中的碳源不足(溪湖:TCOD/NO3- = 0.4 ~ 2.2 mg/L;綠川:0.3 ~ 1.2 mg/L)或大都為生物難分解性所造成。不過,此時的放流水NH4+ 濃度分別可從10.7 mg/L、7.9 mg/L降至1.73 mg/L與1.21 mg/L以下,可達92年之放流水標準,所以單就硝化來說,此系統應該是可行的。另外在體積需求推估方面,將體積負荷與污染物之處理效能進行二元一次線性迴歸分析,可知:BOD、COD、TKN、NH4+、TP 具有良好之再線性,R2分別可達0.85、0.83、0.83、0.83、0.94。將此參數反推,估算出1510m3 對溪湖或綠川河水即可處理1000人所排放之廢水量使達乙類河川水體標準。

It is common to designate different species and concentrations of nitrogen (e.g. NH3+-N, Org-N and NO3--N) in the polluted riverwater. Nitrogen is known to cause the entrophication in a water body. The existence of nitrogen in the water not only consumes the dissolved oxygen, but also has an adverse impact upon the safety and hygiene of drinking water. Based on the effluent standard in 2003 promulgated by Taiwan EPA (NH3+-N<10 mg/L , NO3--N<50 mg/L), many wastewater treatment plants will not be able to meet this requirement. Thus, removal of nitrogen in the wastewater is necessary and urgent. Nitrogen can be removed by physical, chemical, or biological methods, among which biological manner is the most economical one. In this study, a steel-made vessel of Submerged Biofilter (L * W * H = 0.45m * 0.45m * 0.18m) was set up to investigate the removal of nitrogen. The system has three sections in all which are in the order of influent area (H = 0 ~ 0.5m), reaction vessel (H = 0.5 ~ 1.3m), effluent area (H = 1.3 ~1.8 m) respectively. Two types of riverwater were introduced into the reactor vessel in a series of batches. No aeration device was employed to enhance the oxygen dissolution. Gravel and chippings acted as fitter bed material which support most bacterial on the surface.
From the result it was found that, as to river of high loading (Xihu) under retention time of 8 days and NH4+ loading of 78.4 g/m3.day, 84% of NH4+ removal could be reached, but as to low loading (Lyuchuan) 88% nitrification efficiency could be reached under 6 days retention time and 58.1 g/m3.day NH4+ loading. Performance of denitrification was not as good as nitrification, with a low rate of the total nitrogen removal efficiency. The poor performance of denitrification could be due to: (i) the recirculation flow brought back the flow also the dissolves oxygen which made the denitrification unfavorable, (ii) although the BOD in the influent could serve as the electron donor for denitrification, the BOD was not quite biodegradable and thus made the denitrification unfavorable.
URI: http://hdl.handle.net/11455/5239
其他識別: U0005-3107200614313500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.