Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5241
標題: 奈米碳管、活性碳與沸石吸附二氧化碳溫室氣體之研究
A Study on the Adsorption of Carbon Dioxide From Air Streams by Carbon Nanotubes, Activated Carbon and Zeolite
作者: 吳碧蓮
Wu, Pi-Lien
關鍵字: carbon nanotubes;溫室氣體;MEA;NH3(aq);APTS;CO2;二氧化碳;奈米碳管;MEA;NH3(aq);APTS
出版社: 環境工程學系所
引用: 西文參考文獻 Aaron, D and Tsouris, C. (2005 ). "Separation of CO2 from Flue Gas: A Review." Separation Science and Technology Vol. 40: pp. 321-348. Badger, W. L. and Banchero, J. T (1955). "Introduction to Chemical Engineering " McGRAW-HILL Book Company. Bai, H and Yeh, A. C. (1997). "Removal of CO2 greenhouse gas by ammonia scrubbing." Ind. Eng. Chem. Res.(Vol.36): pp.2490. Bai, H and Yeh, A. C. (1999). "Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions." The Science of Total Environment Vol.228: pp.121. Barrett, E, P., Joyner, L.G. and Halenda, P.P. (1951). "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms " American Chemical Society Vol.73: pp.373-880. Boehm, H.P. (1994). "Some Aspects of The Surface Chemistry of Carbon Blacks and Other Carbons." Carbon Vol.32: pp.759. Brunauer, S., Deming, L. S., Deming, W. S. and Teller, E. (1940). Journal of American Chemical Society Vol.62: pp.1723. Chang, A. C. C., Chuang, S. S. C. , Gray, M. and Soong, Y. (2003). "In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with r-(Aminopropyl)triethoxysilane." Energy & Fuels Vol. 17: pp. 468. Chang, C. W. and Tontiwachwuthikul, P. (1996). "A Decision Support System for Solvent Selection of CO2 Separation Processes." Energy Convers Vol.37: pp.941-946. Chen, J.P. and Wu, S. (2004). "Acid/Base-Treated Activated Carbons:Characterization of Function Groups and Metal Adsorption Properties." Langmuir Vol.20: pp.2233. Cinke, M. , Charles, J. L., W., Bauschlicher Jr., Ricca, A. and Meyyappan, M. (2003). "CO2 adsorption in single-walled carbon nanotubes." Chemical Physics Letters vol. 376: pp. 761. Dean, J. A. (1987). "Lange’s Handbook of Chemistry." Mc Graw-Hill, New York. Dubinin, M. M. (1989). "Fundamental of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures " Carbon 27: 457. Gray, M.L. , Soong, Y. , Champagne, K.J. , Baltrus, J., R.W., Stevens J., Toochinda, P. and S.S.C., Chuangand (2004). "CO2 capture by amine-enriched fly ash carbon sorbents." Separation and Purification Technology Vol. 35 . pp. 31. Gray, M.L., Soong, Y., Champagne, K.J., Pennline, H., Baltrus, J.P. and Stevens, R.W. (2005). "Improved immobilized carbon dioxide capture sorbents." Fuel Processing Technology." Fuel Processing Technology Vol.86(pp.1449-1455). Hendriks, C. A. , K., Blok and C., Turkenburg W. (1991). "Technology and Cost of Recovering and Storing Carbon Dioxide from an Integrate Gasifier Combined-Cycle Plant." Energy Convers Vol.16: pp.1277. Hiyoshi, N., Yogo, K. and Yashima, T. (2005). "Adsorption characteristics of carbon dioxide on organically functionalized SBA-15." Microporous and Mesoporous Materials Vol. 84: pp. 357. Huang, H. Y., Yang, R. T., Chinn, D. and Munson, C. L. (2003). "Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas." Ind. Eng. Chem. Res. Vol.42: pp.2427. IPCC (1990). Policymakers'' Summary of the scientific Assessment of Climate Change. Izumi, T., J., kawabata and K., Asano (1997). "Absorption of carbon dioxide with a freely falling aqueous sodium hydroide solution drop." Chem. Eng. Comm Vol.150(pp.119). Kim, Y. S. and Yang, S. M. (2000). "Absorption of Carbon Dioxide through Hollow Fiber Membranes Using Various Aqueous Absorbents." Separation and Purification Technology Vol.21: pp.109. Knowles, G. P., Graham, J. V., Delaney, S. W. and L., Chaffee A. (2005). "Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents." Fuel Processing Technology Vol. 86: pp. 1435. Knowles, G.P., Delaney, S.W. and A.L., Chaffee (2006). "Diethylenetriamine[propyl(silyl)]-Functionalized (DT) Mesoporous Silicas as CO2 Adsorbents." Ind. Eng. Chem. Res. Vol.45: pp.2626. Lillo-Rodenas, M. A., Cazorla-Amoros, D. and Linares-Solano, A. (2005). "Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations." Carbon Vol.43: pp.1758. Nakicenovic, N. (1993). "Other Environmental Technologiest." Energy:the international Journal Vol.18: pp.485. Przepiorski, J. , Skrodzewicz, M. and Morawski, A.W. (2004). "High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption." Applied Surface Science Vol. 225: pp. 235. Rangwala, H. A. (1996). "Absorption of Carbon Dioxide into Aqueous Solution Using Hollow Fiber Membrane Contractors." J. of Membrane Science Vol.112: pp.240. Ruthven, D. M. Principles of Adsorption and Adsorption Process; , 1984. (1984). "Principles of Adsorption and Adsorption Process." John Wiely: New York. Sun, J., Chen, S., Rood, M. J. and Rostam-Abadi, M. (1998). "Correlating N2 and CH4 adsorption on microporous carbon using a new analytical model." Energy & Fuels 12: 1071. Teng, H. and Kinoshita, C. M. (1995). "Hydrate formation on the surface of a CO2 droplet in hight-pressure, low-temperature water." Chemical Engineering Science Vol.50(4) pp. 559-564. Tontiwachwuthikul, P., Meisen, A. and Lim, C. J. (1989). "Novel Pilot plant technique for sizing gas absorber with chemical reaction." The Canadian Journal Of Chemical Eng Vol.67: pp.602. Xu, X. , Song, C. , Andresen, J. M. , Miller, B. G. and Scaroni, A. W. (2003). "Preparation and characterization of novel CO2‘molecular basket ’adsorbents based on polymer-modified mesoporous molecular sieve MCM-41." Microporous and Mesoporous Materials Vol.62: pp.29. Xu, X. , Song, C. , Miller, B. G. and Scaroni, A. W. (2005). "Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous bmolecular basketQ adsorbent." Fuel Processing Technology Vol.86: pp.1457. Zheng, F. , Tran, D. N. , Busche, B. J. , Fryxell, G. E., Addleman, R. S. , Zemanian, T. S. and Aardahl, C. L. (2005). "Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent." Ind. Eng. Chem. Res. Vol. 44: pp. 3099. Zhou, D. and Lange, D. A. (1994). "Carbon Dioxide Recovery and Conversion " the 87th Annual Meeting & Exhibition of A&W MA Conference. 中文參考文獻 田中正之,石廣玉,李昌明 (1995). "地球在變暖." 吳碧蓮,盧重興,白曛綾 (2006). "奈米碳管與活性碳吸附二氧化碳溫室氣體之研究." 中華民國環境工程學會空氣污染控制技術研討會. 李文峰 (2002). "以MEA溶液去除煙道氣中二氧化碳之研究." 碩士論文,成功大學環境工程研究所,台南市. 李孟珊 (2006). "多壁奈米碳管應用於苯廢氣處理之特性研究." 碩士論文,中興大學環境工程研究所,台中市. 侯萬善 (2002). "工業溫室氣體盤查減量宣導手冊." 經濟部工業局. 郭肇東 (2003). "燃煤電廠SOx、CO2空污減量方案之環境效益與評估模型構建." 成功大學工程管理研究所碩士論文. 陳君豪 (2001). "利用真空變壓吸附法濃縮及回收二氧化碳." 碩士論文,中央大學化學工程研究所,桃園縣. 陳重修 (2000). "二氧化碳與二氧化硫整合性控制技術之研究." 碩士論文,台灣大學環境工程研究所,台北市. 葉安晉、白曛綾 (2000). "以氨水及乙醇胺去除二氧化碳溫室氣體之比較研究." 第十四屆空氣污染控制技術研討會論文專輯: pp.347-352. 廖國荏 (2002). "都市焚化爐廢氣中二氧化碳控制技術研究." 台灣大學環境工程研究所碩士論文. 臺中縣環境保護局 (2006). "臺中縣溫室氣體調查研究及減量評估計畫." 潘守保 (1998). "以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究." 碩士論文,交通大學環境工程研究所,新竹市. 蕭吉良 (2005). "以氨水溶液於填充塔中去除二氧化碳之研究." 碩士論文,成功大學環境工程研究所,台南市.
摘要: 
本研究探討以奈米碳管、活性碳與沸石為吸附材料,針對溫室氣體二氧化碳做吸附特性之研究。同時亦藉由化學處理一級醇胺(monoethanolamine,MEA)、NH3(aq)及3-aminopropyl-triethoxysilane(APTS)提高二氧化碳吸附效率,並進行奈米碳管、活性碳與沸石處理前後吸附特性比較。
經APTS處理過之吸附劑物化特性皆有所改變,包括表面官能基與鹼基增加,因此提高二氧化碳吸附量。等溫吸附結果顯示,50%二氧化碳進流濃度時,未經表面處理奈米碳管、活性碳與沸石最大吸附容量分別為69.2、73與63.4 mg/g。經APTS表面處理後吸附容量分別為96.3 、79.5與82.4 mg/g。顯示CNT(APTS)具有最佳二氧化碳吸附能力。吸附機制仍是以物理性吸附為主。環境因子對吸附行為之影響研究中,二氧化碳於CNT(APTS)之吸附量隨著溫度之增加而呈現遞減的關係。然而,CNT(APTS)可在乾燥無水分或含有濕度環境下皆可有效進行二氧化碳吸附。

Carbon nanotubes (CNT), Granular Activated Carbon (GAC) and Zeolite were modified by MEA (monoethanolamine), NH3(aq) and APTS (3-aminopropyltriethoxysilane) solutions and were selected as adsorbents to study their characterizations and adsorption properties of carbon dioxide from air streams.
The physicochemical properties of adsorbents were changed after modification by APTS solutions. These modifications include the increase in surface functional groups and surface basic sites, which enhance the chemisorption capacity of CO2. The 50% CO2 inlet concentration of adsorption capacities of CNT, GAC and Zeolite are 69.2, 73 and 63.4 mg/g for raw adsorbents, respectively. The modified adsorbents are 96.3, 79.5 and 82.4 mg/g. The CNT(APTS) shows the greatest enhancement of CO2 adsorption. The adsorption mechanism appears mainly attributable to physical force. In the temperature range of 5 to 45℃, the adsorption capacity of CNT(APTS) decreased with a rise in temperature. The CNT(APTS) was effective both in the absence and presence of water vapor.
URI: http://hdl.handle.net/11455/5241
其他識別: U0005-0107200722025400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.