Please use this identifier to cite or link to this item:
標題: 利用常壓電漿和高壓鍛燒法製備含氮摻雜二氧化鈦光觸媒降解異丙醇之研究
Preparation of N-Doped TiO2 Photocatalysts by Atmospheric Pressure Plasma and High Pressure Annealing Method for 2-Propanol Degradation
作者: 林志遠
Lin, Chih-Yuan
關鍵字: N-doped titanium dioxid;含氮二氧化鈦可見光觸媒;visible light;photocatalysts;常壓電漿;鍛燒
出版社: 環境工程學系所
引用: 參考文獻 1. Anpo, M. and M. Takeuchi, “The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation,” Journal of Catalysis, Vol. 216, Issues 1-2 , pp. 505-516 (2003). 2. Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293 , NO. 13 , pp. 269-271 (2001). 3. Bai, H. L., C. C. Chen, , C. H. Lin, W. Den and C. L, Chang, “Monodisperse Nanoparticle Synthesis by an Atmospheric Pressure Plasma Process: an Example of a Visible Light Photocatalyst,” Industrial Eng.Chem. Res., Vol. 43, pp. 7200–7203 (2004). 4. Battiston, G. A., R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G. A. Rizzi, “PECVD of Amorphous TiO2 Thin Films: Effect of Growth Temperature and Plasma Gas Composition”, Thin Solid Films, Vol. 371, pp. 126 (2000). 5. Bessergenev, V. G., R. J. F. Pereira, M. C. Mateus, I.V. Khmelinskii, D. A. Vasconcelos, “Study of Physical and Photocatalytic Properties of Titanium Dioxide Thin Films Prepared from Complex Precursors by Chemical Vapor Deposition,” Thin Solid Films, Vol. 503, pp. 29–39 (2006). 6. Carp, A., C. L. Huisman and A. Reller, “Photoinduced Reactivity of Titanium Dioxide / Progress in Solid State,” Chemistry, Vol. 32, pp. 33–177 (2004). 7. Chen, C. C., H. L. Bai, S. M. Chang, C. L Chang and W. Den, “Preparation of N-doped TiO2 photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources,” Journal of Nanopartile Research, Vol. 9, pp. 365-375 (2007). 8. Chen, X., Y. B. Lou, A. C. S. Samia, C. Burda and J. L. Gole, “Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder,” Advanced Functional Materials , Vol. 15, NO.1 , pp. 41-49 (2005). 9. Duminica, F. D., F. Maury, F. Senocq, “Atmospheric Pressure MOCVD of TiO2 Thin Films Using Various Reactive Gas Mixtures,” Surface & Coatings Echnology, Vol. 188–189, pp. 255– 259 (2004). 10. Foest, C., F. Adler, F .Sigeneger, S Martin, “Study of an Atmospheric Pressure Glow Discharge (APG) for Thin Film Deposition,” Surface and Coatings Technology, Vol. 323, pp. 163-164 (2003). 11. Fuhishima, A., Hashimoto, K., Watanabe, T, TiO2 photocatalysis Fundamentals and Applications, Published by BKC, Inc., Japan (1999). 12. Fujishima A., T. N. Rao and D. A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 1, pp. 1–21 (2000). 13. Fujishima, A. and K. Honda, Nature, Vol. 238, pp. 37 (1972). 14. Hitchman, M. L. and F. Tian, “ Studies of TiO2 Thin Films Prepared by Chemical Vapour Deposition for Photocatalytic and Photoelectrocatalytic Degradation of 4-Chlorophenol,” Journal of Electroanalytical Chemistry, Vol. 538-539, pp. 165-172 (2002). 15. Irie H., Y. Watanabe and K. Hashimoto, “Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders,” Journal of Physical Chemistry B, Vol. 107, NO. 23 pp. 5483–5486 (2003). 16. Kitamurwasnd T. and H. Kumazawa, “Augmentation of Photocatalytic Activity of TiO2 Thin Films Prepared by a Sol-Gel Technique,” Chem. Eng. Comm., Vol. 192, pp. 795–804 (2005). 17. Kobayashi, T., K. K. Hirakuri , N. Mutsukura and Y. Machi, “Synthesis of CVD Diamond at Atmospheric Pressure Using the Hot-Filament CVD Method,” Diamond and Related Materials, Vol. 8, pp. 1057–1060 (1999). 18. Martin, N., C Rousselot, D. Rondot, E. Palmino and R. Mercier, “Microstructure Modification of Amorphous Titanium Oxide Thin Films during Annealing Treatment”, Thin Solid Films, Vol. 300, pp. 113-121 (1997). 19. Martin, S., F. Massines, N. Gherardi and C. Jimenez, “Atmospheric Pressure PE-CVD of Silicon Based Coatings Using a Glow Dielectric Darrier Discharge,” Surface and Coatings Technology, Vol. 693, pp. 177-178 (2004). 20. Martinet, C. , V. Paillard, A. Gagnaire and J. Joseph, “ Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating,” Journal of Non-Crystalline Solids, Vol. 216, pp. 77-82 (1997). 21. Mills, A.and S. Le Hunte, “An Overview Semiconductor Photocatalysis,” Journal of Photochemistry Photobiolgy A: Chemitry, Vol. 108, pp.1-35 (1997). 22. Mohamed, S. H., O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad and M. Wuttig, “ Effect of Heat Treatment on Structural, Optical and Mechanical Properties of Sputtered TiOx-Ny Films”, Thin Solid Films, Vol. 468, pp. 48– 56 (2004). 23. Nakamura, R., T. Tanaka, and Y. Nakato, “Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes,” Journal of Physical Chemistry B, Vol. 108, pp. 10617 -10620 (2004). 24. Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, “Preparation of S-doped TiO2 Photocatalysts and their Photocatalytic Activities under Visible Light,” Applied Catalysis A: General, Vol. 265, pp. 115–121 (2004). 25. Okazaki, S., M. Kogoma, M. Uehara and Y. Kimura, “Appearance of Stable Glow Discharge in Air, Argon, Oxygen and Nitrogen at Atmospheric Pressure Using a 50 Hz Source,” Journal of Physical D: Appied. Physical, Vol. 26, pp. 889-892 (1993). 26. Suda,Y., H. Kawasaki, T. Ueda, T. Ohshima, “Preparation of Nitrogen-Doped Titanium Oxide Tthin Film Using a PLD Method as Parameters of Target Material and Nitrogen Concentration Ratio in Nitrogen/Oxygen Gas Mixture,” Thin Solid Films, Vol. 475, pp.337– 341 (2005). 27. Takahashi, Y. and Y. Matsuoka, “Dip-Coating of TiO2 FilmsUsing a Sol Derived from Ti(O-i-Pr)4-Diethanolamine-H2O-i-PrOH System,” Journal of Materials Science, Vol. 23, pp. 2259-2266 (1988). 28. Tatsuma, T., S. I. Tachibana and A. Fujishima, “Remote Oxidation of Organic Compounds by UV-Irradiated TiO2 via the Gas Phase,” Journal of Physical Chemistry B, Vol. 105, pp. 6987-6992 (2001). 29. Valentine, C. D. , G. Pacchioni, A. Selloni, S. Livraghi andE. Giamello, “Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations”, Physical Chemistry B, Vol. 109, pp. 11414 (2005). 30. Wang, Z. C., U. Helmersson, P. O. Ka¨ll, “Optical Properties of Anatase TiO2 Thin Films Prepared by Aqueous Sol–Gel Process at Low Temperature,” Thin Solid Films, Vol. 405, pp. 50–54 (2002). 31. Weller, H. and A.. Eychmueller, “Photochemistry and Photoelectrochemistry of Quantized Matter: Properties of Semiconductor Nanoparticle in Solution and Thin-Film Electrodes,” Adventure Photocheistry, Vol. 20, pp. 165-216 (1995). 32. Won, D. J.; C. H Wang, H. K. Jang and D. J. Choi, “Effects of Thermally Induced Anatase-to-Rutile Phase Transition in MOCVD-Grown TiO2 Films on Structural and Optical Properties”, Applied. Physical A, Vol. 73, pp. 595 (2001). 33. Yamashita, H., M. Honda, M. Harada, Y. Ichihashi and M. Anpo, “Preparation of Titanium Oxide Photocatalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photocatalytic Reactivities for the Degradation of 2-Propanol Diluted in Water,” Journal of Physical Chemistry B, Vol. 102, pp. 10707-10711 (1998). 34. Xu, P., L. Mi and P. N. Wang, “Improved Optical Respone for N-Doped Anatase TiO2 Film Prepared by Pulsed Laser Deposition in N2/NH3/O2 Mixture,” Journal of Crystal Growth, Vol. 289, pp. 433-439 (2006). 35. Yang, M. C., T. S.Yang and M.S. Wong, “Nitrogen-Doped Titanium Oxide Films as Visible Light Photocatalyst by Vapor Deposition,” Thin Solid Films, Vol. 469–470, pp.1-5 (2004). 36. Yin, S. , K. Ihara, Y. Aita, M. Komatsu and T. Sato, “Visible-Light Induced Photocatalytic Activity of TiO2−xAy (A=N, S) Prepared by Precipitation Route,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 179, pp.105–114 (2006). 37. Yokoyama, T., M. Kogoma, T. Moriwaki and S. Okazaki, “The Mechanism of the Stabilisation of Glow Plasma at Atmospheric Pressure,” Journal of Physical D: Applied Physical, Vol. 23 , pp. 1125-1128 (1990). 38. Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste Waste”, Environmental Science. & Technology, Vol. 22, NO. 3, pp. 256 (1988). 39. Zhao, J., X. Yang, “Photocatalytic Oxidation for Indoor Air Purification: a Literature Review,” Building and Environment, Vol. 38, pp. 645 – 654 (2003). 40. Zoppi, R. A., B. C. Trasferetti and C. U. Davanzo, “Sol-Gel Titanium Dioxide Thin Films on Platinum Substrates: Preparation and Characterization,” Journal of Electroanalytical Chemistry, Vol. 544, pp. 47-57 (2003). 41. 張君正、張木彬,以介電質放電法處理揮發性有機物之研究,第十一屆空氣污染控制技術研討會論文集,第344-351頁 (1994). 42. 吳偉宏,奈米TiO2光觸媒粉體與超親水性薄膜之低溫製備與特性分析,國立臺灣大學化學工程學研究所碩士論文,台北 (2002). 43. 曾郁茗,以含氮氣體於常溫常壓電漿輔助程序製造可見光及紫外光觸媒研究,國立交通大學環境工程研究所碩士論文,新竹 (2005).
本研究主要探討自製的含氮二氧化鈦可見光觸媒之特性及其降解異丙醇的效率,研究方法係利用平板式常壓電漿反應器製備含氮摻雜二氧化鈦奈米微粒,在不同電壓下生成不同粒徑之奈米微粒粉末,再經過1至7 Bar不同高壓氮氣中鍛燒後完成觸媒製作,然後分析觸媒微粒之粒徑、摻雜氮之含量及觸媒晶相特性,最後利用製備的觸媒進行對異丙醇降解效率之研究。
研究結果顯示,常壓電漿反應器在10~20 kV交流電電壓、頻率60 Hz運作產生觸媒,經由TEM、SEM圖量測到觸媒顆粒粒徑20~30 nm,並且在不同壓力之鍛燒情形中觸媒顆粒不會變形。利用ESCA儀器量測到觸媒有氮原子鍵能存在,約為400 eV。在高壓氮氣鍛燒觸媒,可發現到氮氣壓力提升有助於觸媒對異丙醇降解速率增加,以壓力5 Bar溫度500 ℃製備完成觸媒有最佳降解效果,其一階反應速率常數為0.44 hr-1,此研究結果證實氮摻雜二氧化鈦在可見光亦可有效降解異丙醇氣體污染物。

This study mainly investigated the characteristics of N-doped titanium dioxide photocatalysts and their efficiency on reducing 2-propanol. A Atmospheric Pressure-Plasma Reactor was used to produce nano-photocatalysts with various voltages. The produced catalysts were annealed in nitrogen which pressures varied from 1 to 7 bar. The size of nanoparticles、the N atom concentrations and the crystallization of the catalyst were then further analysed. Finally these photocatalysts were used to investigated the destruct efficiency of 2-propanol.
Scanning and transmission electron (SEM and TEM) micrographs revealed nanoparticle sizes ranging from 20 to 30 nm in operating 10 to 20 kV AC. Particle shapes were not deformed by pressure. Electron spectroscopy for chmical analysis (ESCA) revealed the bond energy of nitrogen atom in the photocatalysts to be 400 eV. N-doped titanium dioxide particles annealed under higher pressures of nitrogen were found to improve the efficiency of 2-propanol destruction. The rate constant of 2-pronanol degradation under visible light was approximately 0.44 hr-1 when using the 5 bar/ 500 ℃ photocatalyst. We conclude that N-doped titanium dioxide nanoparticles can act as effective catalysts and significantly improve the efficiency with which the gaseous pollutant 2-propanol can be resolved under visible light.
其他識別: U0005-0108200700154000
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.