Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5243
DC FieldValueLanguage
dc.contributor盧重興zh_TW
dc.contributor王竹方zh_TW
dc.contributor.advisor鄭曼婷zh_TW
dc.contributor.author林志遠zh_TW
dc.contributor.authorLin, Chih-Yuanen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:34:21Z-
dc.date.available2014-06-06T06:34:21Z-
dc.identifierU0005-0108200700154000zh_TW
dc.identifier.citation參考文獻 1. Anpo, M. and M. Takeuchi, “The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation,” Journal of Catalysis, Vol. 216, Issues 1-2 , pp. 505-516 (2003). 2. Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293 , NO. 13 , pp. 269-271 (2001). 3. Bai, H. L., C. C. Chen, , C. H. Lin, W. Den and C. L, Chang, “Monodisperse Nanoparticle Synthesis by an Atmospheric Pressure Plasma Process: an Example of a Visible Light Photocatalyst,” Industrial Eng.Chem. Res., Vol. 43, pp. 7200–7203 (2004). 4. Battiston, G. A., R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G. A. Rizzi, “PECVD of Amorphous TiO2 Thin Films: Effect of Growth Temperature and Plasma Gas Composition”, Thin Solid Films, Vol. 371, pp. 126 (2000). 5. Bessergenev, V. G., R. J. F. Pereira, M. C. Mateus, I.V. Khmelinskii, D. A. Vasconcelos, “Study of Physical and Photocatalytic Properties of Titanium Dioxide Thin Films Prepared from Complex Precursors by Chemical Vapor Deposition,” Thin Solid Films, Vol. 503, pp. 29–39 (2006). 6. Carp, A., C. L. Huisman and A. Reller, “Photoinduced Reactivity of Titanium Dioxide / Progress in Solid State,” Chemistry, Vol. 32, pp. 33–177 (2004). 7. Chen, C. C., H. L. Bai, S. M. Chang, C. L Chang and W. Den, “Preparation of N-doped TiO2 photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources,” Journal of Nanopartile Research, Vol. 9, pp. 365-375 (2007). 8. Chen, X., Y. B. Lou, A. C. S. Samia, C. Burda and J. L. Gole, “Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder,” Advanced Functional Materials , Vol. 15, NO.1 , pp. 41-49 (2005). 9. Duminica, F. D., F. Maury, F. Senocq, “Atmospheric Pressure MOCVD of TiO2 Thin Films Using Various Reactive Gas Mixtures,” Surface & Coatings Echnology, Vol. 188–189, pp. 255– 259 (2004). 10. Foest, C., F. Adler, F .Sigeneger, S Martin, “Study of an Atmospheric Pressure Glow Discharge (APG) for Thin Film Deposition,” Surface and Coatings Technology, Vol. 323, pp. 163-164 (2003). 11. Fuhishima, A., Hashimoto, K., Watanabe, T, TiO2 photocatalysis Fundamentals and Applications, Published by BKC, Inc., Japan (1999). 12. Fujishima A., T. N. Rao and D. A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 1, pp. 1–21 (2000). 13. Fujishima, A. and K. Honda, Nature, Vol. 238, pp. 37 (1972). 14. Hitchman, M. L. and F. Tian, “ Studies of TiO2 Thin Films Prepared by Chemical Vapour Deposition for Photocatalytic and Photoelectrocatalytic Degradation of 4-Chlorophenol,” Journal of Electroanalytical Chemistry, Vol. 538-539, pp. 165-172 (2002). 15. Irie H., Y. Watanabe and K. Hashimoto, “Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders,” Journal of Physical Chemistry B, Vol. 107, NO. 23 pp. 5483–5486 (2003). 16. Kitamurwasnd T. and H. Kumazawa, “Augmentation of Photocatalytic Activity of TiO2 Thin Films Prepared by a Sol-Gel Technique,” Chem. Eng. Comm., Vol. 192, pp. 795–804 (2005). 17. Kobayashi, T., K. K. Hirakuri , N. Mutsukura and Y. Machi, “Synthesis of CVD Diamond at Atmospheric Pressure Using the Hot-Filament CVD Method,” Diamond and Related Materials, Vol. 8, pp. 1057–1060 (1999). 18. Martin, N., C Rousselot, D. Rondot, E. Palmino and R. Mercier, “Microstructure Modification of Amorphous Titanium Oxide Thin Films during Annealing Treatment”, Thin Solid Films, Vol. 300, pp. 113-121 (1997). 19. Martin, S., F. Massines, N. Gherardi and C. Jimenez, “Atmospheric Pressure PE-CVD of Silicon Based Coatings Using a Glow Dielectric Darrier Discharge,” Surface and Coatings Technology, Vol. 693, pp. 177-178 (2004). 20. Martinet, C. , V. Paillard, A. Gagnaire and J. Joseph, “ Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating,” Journal of Non-Crystalline Solids, Vol. 216, pp. 77-82 (1997). 21. Mills, A.and S. Le Hunte, “An Overview Semiconductor Photocatalysis,” Journal of Photochemistry Photobiolgy A: Chemitry, Vol. 108, pp.1-35 (1997). 22. Mohamed, S. H., O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad and M. Wuttig, “ Effect of Heat Treatment on Structural, Optical and Mechanical Properties of Sputtered TiOx-Ny Films”, Thin Solid Films, Vol. 468, pp. 48– 56 (2004). 23. Nakamura, R., T. Tanaka, and Y. Nakato, “Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes,” Journal of Physical Chemistry B, Vol. 108, pp. 10617 -10620 (2004). 24. Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, “Preparation of S-doped TiO2 Photocatalysts and their Photocatalytic Activities under Visible Light,” Applied Catalysis A: General, Vol. 265, pp. 115–121 (2004). 25. Okazaki, S., M. Kogoma, M. Uehara and Y. Kimura, “Appearance of Stable Glow Discharge in Air, Argon, Oxygen and Nitrogen at Atmospheric Pressure Using a 50 Hz Source,” Journal of Physical D: Appied. Physical, Vol. 26, pp. 889-892 (1993). 26. Suda,Y., H. Kawasaki, T. Ueda, T. Ohshima, “Preparation of Nitrogen-Doped Titanium Oxide Tthin Film Using a PLD Method as Parameters of Target Material and Nitrogen Concentration Ratio in Nitrogen/Oxygen Gas Mixture,” Thin Solid Films, Vol. 475, pp.337– 341 (2005). 27. Takahashi, Y. and Y. Matsuoka, “Dip-Coating of TiO2 FilmsUsing a Sol Derived from Ti(O-i-Pr)4-Diethanolamine-H2O-i-PrOH System,” Journal of Materials Science, Vol. 23, pp. 2259-2266 (1988). 28. Tatsuma, T., S. I. Tachibana and A. Fujishima, “Remote Oxidation of Organic Compounds by UV-Irradiated TiO2 via the Gas Phase,” Journal of Physical Chemistry B, Vol. 105, pp. 6987-6992 (2001). 29. Valentine, C. D. , G. Pacchioni, A. Selloni, S. Livraghi andE. Giamello, “Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations”, Physical Chemistry B, Vol. 109, pp. 11414 (2005). 30. Wang, Z. C., U. Helmersson, P. O. Ka¨ll, “Optical Properties of Anatase TiO2 Thin Films Prepared by Aqueous Sol–Gel Process at Low Temperature,” Thin Solid Films, Vol. 405, pp. 50–54 (2002). 31. Weller, H. and A.. Eychmueller, “Photochemistry and Photoelectrochemistry of Quantized Matter: Properties of Semiconductor Nanoparticle in Solution and Thin-Film Electrodes,” Adventure Photocheistry, Vol. 20, pp. 165-216 (1995). 32. Won, D. J.; C. H Wang, H. K. Jang and D. J. Choi, “Effects of Thermally Induced Anatase-to-Rutile Phase Transition in MOCVD-Grown TiO2 Films on Structural and Optical Properties”, Applied. Physical A, Vol. 73, pp. 595 (2001). 33. Yamashita, H., M. Honda, M. Harada, Y. Ichihashi and M. Anpo, “Preparation of Titanium Oxide Photocatalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photocatalytic Reactivities for the Degradation of 2-Propanol Diluted in Water,” Journal of Physical Chemistry B, Vol. 102, pp. 10707-10711 (1998). 34. Xu, P., L. Mi and P. N. Wang, “Improved Optical Respone for N-Doped Anatase TiO2 Film Prepared by Pulsed Laser Deposition in N2/NH3/O2 Mixture,” Journal of Crystal Growth, Vol. 289, pp. 433-439 (2006). 35. Yang, M. C., T. S.Yang and M.S. Wong, “Nitrogen-Doped Titanium Oxide Films as Visible Light Photocatalyst by Vapor Deposition,” Thin Solid Films, Vol. 469–470, pp.1-5 (2004). 36. Yin, S. , K. Ihara, Y. Aita, M. Komatsu and T. Sato, “Visible-Light Induced Photocatalytic Activity of TiO2−xAy (A=N, S) Prepared by Precipitation Route,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 179, pp.105–114 (2006). 37. Yokoyama, T., M. Kogoma, T. Moriwaki and S. Okazaki, “The Mechanism of the Stabilisation of Glow Plasma at Atmospheric Pressure,” Journal of Physical D: Applied Physical, Vol. 23 , pp. 1125-1128 (1990). 38. Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste Waste”, Environmental Science. & Technology, Vol. 22, NO. 3, pp. 256 (1988). 39. Zhao, J., X. Yang, “Photocatalytic Oxidation for Indoor Air Purification: a Literature Review,” Building and Environment, Vol. 38, pp. 645 – 654 (2003). 40. Zoppi, R. A., B. C. Trasferetti and C. U. Davanzo, “Sol-Gel Titanium Dioxide Thin Films on Platinum Substrates: Preparation and Characterization,” Journal of Electroanalytical Chemistry, Vol. 544, pp. 47-57 (2003). 41. 張君正、張木彬,以介電質放電法處理揮發性有機物之研究,第十一屆空氣污染控制技術研討會論文集,第344-351頁 (1994). 42. 吳偉宏,奈米TiO2光觸媒粉體與超親水性薄膜之低溫製備與特性分析,國立臺灣大學化學工程學研究所碩士論文,台北 (2002). 43. 曾郁茗,以含氮氣體於常溫常壓電漿輔助程序製造可見光及紫外光觸媒研究,國立交通大學環境工程研究所碩士論文,新竹 (2005).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5243-
dc.description.abstract本研究主要探討自製的含氮二氧化鈦可見光觸媒之特性及其降解異丙醇的效率,研究方法係利用平板式常壓電漿反應器製備含氮摻雜二氧化鈦奈米微粒,在不同電壓下生成不同粒徑之奈米微粒粉末,再經過1至7 Bar不同高壓氮氣中鍛燒後完成觸媒製作,然後分析觸媒微粒之粒徑、摻雜氮之含量及觸媒晶相特性,最後利用製備的觸媒進行對異丙醇降解效率之研究。 研究結果顯示,常壓電漿反應器在10~20 kV交流電電壓、頻率60 Hz運作產生觸媒,經由TEM、SEM圖量測到觸媒顆粒粒徑20~30 nm,並且在不同壓力之鍛燒情形中觸媒顆粒不會變形。利用ESCA儀器量測到觸媒有氮原子鍵能存在,約為400 eV。在高壓氮氣鍛燒觸媒,可發現到氮氣壓力提升有助於觸媒對異丙醇降解速率增加,以壓力5 Bar溫度500 ℃製備完成觸媒有最佳降解效果,其一階反應速率常數為0.44 hr-1,此研究結果證實氮摻雜二氧化鈦在可見光亦可有效降解異丙醇氣體污染物。zh_TW
dc.description.abstractThis study mainly investigated the characteristics of N-doped titanium dioxide photocatalysts and their efficiency on reducing 2-propanol. A Atmospheric Pressure-Plasma Reactor was used to produce nano-photocatalysts with various voltages. The produced catalysts were annealed in nitrogen which pressures varied from 1 to 7 bar. The size of nanoparticles、the N atom concentrations and the crystallization of the catalyst were then further analysed. Finally these photocatalysts were used to investigated the destruct efficiency of 2-propanol. Scanning and transmission electron (SEM and TEM) micrographs revealed nanoparticle sizes ranging from 20 to 30 nm in operating 10 to 20 kV AC. Particle shapes were not deformed by pressure. Electron spectroscopy for chmical analysis (ESCA) revealed the bond energy of nitrogen atom in the photocatalysts to be 400 eV. N-doped titanium dioxide particles annealed under higher pressures of nitrogen were found to improve the efficiency of 2-propanol destruction. The rate constant of 2-pronanol degradation under visible light was approximately 0.44 hr-1 when using the 5 bar/ 500 ℃ photocatalyst. We conclude that N-doped titanium dioxide nanoparticles can act as effective catalysts and significantly improve the efficiency with which the gaseous pollutant 2-propanol can be resolved under visible light.zh_TW
dc.description.tableofcontents目錄 摘要...............................................................................................................i Abstract…………………………………………………………………….ii 目錄.............................................................................................................iii 表目錄..........................................................................................................vi圖目錄.........................................................................................................vii 第一章 前言 1 1.1 研究緣起和目的 1 1.2 研究方法 3 第二章 文獻回顧 4 2.1 半導體性質與光化學反應 4 2.1.1 半導體性質 4 2.1.2 光化學反應之理論 5 2.2 二氧化鈦的基本特性與結晶結構 6 2.2.1 二氧化鈦的基本特性 6 2.2.2 二氧化鈦的結晶結構 6 2.3 二氧化鈦光催化反應機制 9 2.4 二氧化鈦之製備方法 11 2.4.1溶膠凝膠法 12 2.4.2化學氣相沈積法 13 2.4.3 電漿輔助化學氣相沈積法 14 2.5 二氧化鈦光觸媒改質方法 18 2.5.1 金屬之改質 18 2.5.2 非金屬離子之改質 19 2.6 二氧化鈦光觸媒鍛燒之探討 23 2.7低溫高壓製備二氧化鈦光觸媒 24 2.8異丙醇之藥品特性 24 2.8.1 異丙醇之物化特性 24 2.8.2 光催化異丙醇反應 26 第三章 實驗材料與方法 27 3.1 實驗藥品與設備 27 3.1.1 實驗藥品及材料 27 3.1.2 實驗設備 27 3.2 研究及實驗流程 29 3.2.1平板式常壓電漿輔助奈米微粒製造系統研究流程 29 3.2.3製備光觸媒步驟 33 3.3 光催化實驗 37 3.3.1 觸媒製備方法 37 3.3.2 直接光解實驗 37 3.3.3 觸媒吸附實驗 37 3.4 觸媒顆粒之鑑定方式 38 3.4.1 吸收光譜 38 3.4.2 晶相分析 38 3.4.3 粒徑分析 39 3.4.4 元素分析 39 3.4.5 氣體分析 40 第四章 結果與討論 41 4.1平板式電漿反應器 41 4.2 二氧化鈦性質 43 4.2.1晶相分析 43 4.2.2 二氧化鈦光觸媒粒徑 47 4.2.3 元素分析 51 4.3 不同壓力鍛燒對TiO2光觸媒之影響 55 4.3.1吸收光譜影響 56 4.3.2 結晶相 60 4.3.3 顆粒影響 61 4.4可見光光催化試驗 62 4.4.1 空白試驗 62 4.4.2 不同壓力鍛燒之光觸媒催化效率 65 4.4.3 礦化反應 72 第五章 結論與建議 75 5.1 結論 75 5.2 建議 77 參考文獻 78 表目錄 表2.1半導體之光觸媒種類 5 表2.2 銳鈦礦與金紅石性質比較 8 表2.3 不同觸媒製備方法之優缺點 16 表2.4 本研究採用平板式常壓電漿法製備光觸媒設備與其他方式作比較 17 表2.5 不同氮摻雜製備方法 21 表2.6 異丙醇之物化性質 25 表3.1 平板式電漿操作條件 34 表3.2 耐高壓容器鍛燒之操作條件 35 表3.3 GC/FID分析操作條件 40 表4.1 不同溫度鍛燒光觸媒anatase晶徑的變化情形(常壓鍛燒) 46 表4.2 不同製備條件之粒徑分佈 51 表4.3 製備TiO2-xNx光觸媒之原子濃度百分比(ESCA分析) 52 表4.4 可見光與紫外光對反應器之光照度(自行量測) 64 表4.5 不同條件各觸媒降解異丙醇反應速率之常數 72 表4.6 碳原子平衡反應 73 圖目錄 圖2.1 半導體之電子電洞對示意圖 4 圖2.2 二氧化鈦晶相結構(a)銳鈦礦(b)金紅石(c)板鈦礦 7 圖2.3 二氧化鈦光觸媒的結晶構造 7 圖2.4 光觸媒表面之光催化示意圖(a)電子-電洞對產生(b)提供者氧化(D)(c)接受者還原(A)(d、e)電子-電洞再重組 9 圖2.5 氮原子摻雜二氧化鈦之能隙圖 19 圖3.1 研究流程圖 30 圖3.2 平板式常壓電漿輔助奈米微粒製造系統 31 圖3.3 平板式電漿反應器之示意圖(a)轉接焊針頭(b)不鏽鋼平板(c)石英玻璃罩 32 圖3.4 電漿反應器製備TiO2光觸媒之流程圖 34 圖3.5 高壓鍛燒TiO2光觸媒之流程圖 35 圖3.6 光催化反應器 36 圖4.1 電壓對功率 42 圖4.2 電壓對電流 42 圖4.3 電漿製備過程之溼度與溫度變化 43 圖4.4 不同鍛燒溫度觸媒後XRD圖(控制電壓為15 kV與常壓鍛燒) 45 圖4.5 不同溫度鍛燒觸媒形成晶徑變化(常壓鍛燒) 46 圖4.6 施加不同電壓生成觸媒顆粒之SEM圖(倍率70,000倍) (a)電壓0 kV(b)電壓9.6 kV (c) 電壓11.3 kV(d)電壓 12.5 kV(e)電壓15.0 kV (f)電壓17.5 kV(g)電壓20.0 kV 48 圖4.7 施加不同電壓生成觸媒顆粒之TEM (倍率70,000倍) (a)電壓11.3 kV(b)電壓15.0 kV(c)電壓 20.0 kV 50 圖4.8 X 射線光電子概觀圖譜 53 圖4.9 O 1s 之X 射線光電子圖譜(TiO2與TiO2-xNx) 54 圖4.10 Ti 2p之X 射線光電子圖譜(TiO2與TiO2-xNx) 54 圖4.11 N 1s 之X 射線光電子圖譜(TiO2-xNx與TiO2) 55 圖4.12 在電漿製備後以同溫不同壓力鍛燒觸媒之吸收光譜 (溫度300 ℃、壓力1 Bar 、3 Bar、 5 Bar、 7 Bar) 57 圖4.13 在電漿製備後以同溫不同壓力鍛燒觸媒之吸收光譜 (溫度200 ℃、壓力3 Bar、5 Bar、7 Bar) 57 圖4.14 在電漿製備後以同壓不同溫度鍛燒觸媒之吸收光譜 (壓力3 Bar、溫度200、300 ℃) 58 圖4.15 在電漿製備後以同壓不同溫度鍛燒觸媒之吸收光譜 (壓力5 Bar、溫度200、300 ℃) 59 圖4.16 在電漿製備後以同壓不同溫度鍛燒觸媒之吸收光譜 (壓力7 Bar、溫度200、300 ℃) 59 圖4.17 電漿製備後以相同壓力不同溫度鍛燒觸媒之XRD圖 (溫度200、300 ℃) 60 圖4.18 在電漿製備後以不同壓力鍛燒光觸媒之SEM (倍率 90,000倍)(a)壓力3 Bar (b)壓力5 Bar(溫度300 ℃) 61 圖4.19 無觸媒直接光照 63 圖4.20 無開燈光觸媒吸附試驗 63 圖4.21 日光燈光譜圖 65 圖4.22 電漿製備後光觸媒在可見光光催化異丙醇之濃度變化 66 圖4.23 電漿製備後以不同壓力鍛燒觸媒對異丙醇降解之效率 (鍛燒溫度300 ℃) 67 圖4.24 以同壓不同溫度鍛燒觸媒對異丙醇降解之效率 (壓力3 Bar、溫度200、300 ℃) 68 圖4.25 以同壓不同溫度鍛燒觸媒對異丙醇降解之效率 (壓力5 Bar、溫度200、300 ℃) 68 圖4.26 以同壓不同溫度鍛燒觸媒對異丙醇降解之效率 (壓力7 Bar、溫度200、300 ℃) 69 圖4.27 同溫不同壓力之觸媒之一階反應與線性相關 (製備條件電壓15kV、溫度200 ℃) 70 圖4.28 同溫不同壓力之觸媒之一階反應與線性相關 (製備條件電壓15kV、溫度300 ℃) 71 圖4.29 同溫不同壓力之觸媒一階反應與線性相關係 (製備條件電壓15kV、溫度500 ℃) 71 圖4.30 光催化降解異丙醇全反應之各濃度變化 (壓力5Bar、溫度500 ℃、質量102 mg、反應速率常數K為0.4439 hr -1) 74 圖4.31 光催化降解異丙醇全反應之各濃度變化 (壓力1Bar、溫度500 ℃、質量102 mg、反應速率常數K為0.3748 hr -1) 74zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108200700154000en_US
dc.subjectN-doped titanium dioxiden_US
dc.subject含氮二氧化鈦可見光觸媒zh_TW
dc.subjectvisible lighten_US
dc.subjectphotocatalystsen_US
dc.subject常壓電漿zh_TW
dc.subject鍛燒zh_TW
dc.title利用常壓電漿和高壓鍛燒法製備含氮摻雜二氧化鈦光觸媒降解異丙醇之研究zh_TW
dc.titlePreparation of N-Doped TiO2 Photocatalysts by Atmospheric Pressure Plasma and High Pressure Annealing Method for 2-Propanol Degradationen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.