Please use this identifier to cite or link to this item:
標題: 以沸石擔持二氧化鈦光觸媒之製備方法及特性研究
Study on the Preaparation and Characterization of Zeolite Supported TiO2 Photocatalyst
作者: 謝佑岱
Shie, Yao-Dai
關鍵字: Titanium Dioxide;二氧化鈦;Zeolite;Photocatalytic;沸石;光催化
出版社: 環境工程學系所
引用: Annapragada, R., R. Leet, R. Changrani, and G. B. Raupp, “Vacuum Photocatalytic Oxidation of Trichloroethylene,” Environmental Science & Technology, Vol. 31, p. 1898 (1997). Armagan, B., M. Turan, O. Ozdemir, and M. S. Celik,”Color Removal of Reactive Dyes from Water by Clinoptilolite,” Journal of Environmental Sciences and Health Part A-Toxic/Hazardous Substance & Environmental Engineerimg, Vol. A39, pp. 1251-1261 (2004). Barbeni, M., E. Pramauro, and E. Pelizzetti, “Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles,” Chemosphere, Vol. 14, No. 2, p. 195 (1985). Childs, L. P. and D. F. Ollis, “Is Photocatalysis Catalytic?,” Journal of Catalysis, Vol. 66, pp. 383-390 (1980). Dibble, L. A., “Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated TiO2,” Ph. D. Dissertation, Arizona State Univ. (1989). Dibble, D. A. and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams,” Environmental Science & Technology, Vol. 26, p. 492 (1992). Doede, C. M. and C. A. Walker, “Photochemical Engineering,” Chemical Engineering, Vol. 62, No. 2 , pp. 159-178 (1955). Durgakumari, V., M. Subrahmanyam, K.V. Subba Rao, A. Ratnamala, M. Noorjahan, and K. Tanaka,”An easy and efficient use of TiO2 supported HZSM-5 and TiO2 + HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol,” Applied Catalysis A : General, Vol. 234, pp. 155-165 (2002). Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, Vol. 93, pp. 341-350 (1993). Fretwell, R., and P. Douglas, “An active, robust and transparent nanocrystalline anatase TiO2 thin film – preparation, characterization and the kinetics of photodegradation of model pollutants,” Journal of Photochemistry and Photobiology A : Chemistry, Vol. 143, pp. 229-240 (2001). Fukahori, S., H. Ichiura, T. Kitaoka, and H.Tanaka, “Capturing of bisphenol A photodecomposition intermediates by composite TiO2 – zeolite sheets,” Applied Catalysis B: Environmental, Vol. 46, pp. 453-462 (2003). Gratzel, M., Energy :Resources through Photochemistry and Catalysis,Acadamic Press lnc (1983)。 Guan, G., T. kida, K. Kusakabe, K. Kimura, Eiichi Abe, and A. Yoshida,”Photocatalytic reactivity of noble metal – loaded ETS-4 zeolite,” Inorganic Chemistry Communications, Vol. 7, pp. 618-620 (2004). Hashimoto, K., K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami, and Y. Kera,”Photocatalytic oxidation of nitrogen oxide over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B : Environmental, Vol. 30, pp.429-436 (2001). Hisanaga, T., and K. Tanaka, “ Photocatalytic degradation of benzene on zeolite – incorporated TiO2,” Journal of Hazardous Materials, Vol. B93, pp. 331-337 (2002). Hsien, Y.H., C.F. Chang, Y.H. Chen, and S. Cheng,”Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves,” Applied Catalysis B : Environmental, Vol. 31, pp. 241-249 (2001). Hung, C.H. and B.J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Environmental Science & Technology, Vol. 31, p. 562 (1997). Kajitvichyanukul, P., and P. Amornchat., “Effect of diethylene glycol on TiO2 thin film properties prepared by sol-gel process,” Science and Technology of Advanced Material, Vol. 6, pp. 344-347 (2005). Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces,” Chemical Reviews, Vol. 93, pp. 267-269 (1993). Legan, R. W., “Ultraviolet Light Takes on CPI Roles”, Chemical Engineering, January, pp. 95 -99 (1982). Li, Gang., X. Wang, X. Guo, S. Liu, Q. Zhao, X. Bao, and L. Lin,”Titanium species in titanium silicalite TS-1 prepared by hydrothermal method,” Materials Chemistry and Physics, Vol. 71, pp. 195-201 (2001). Luo, Y., G.Z. Lu, Y.L. Guo, and Y.S. Wang,”Study on Ti-MCM-41 zeolite prepared with inorganic Ti sources, characterization and catalysis,” Catalysis Communications, Vol. 3, pp. 129-134 (2002). Legrand-Buscema, C., C. Malibert, and S. Bach,”Elaboration and characterization of thin film of TiO2 prepared by sol-gel process,” Thin Solid Film, Vol. 418, pp. 79-84 (2002). Maron, S. H. and J. B. Lando, “Fundamentals of Physical Chemistry”, Macmillan Publishing Co. Inc., New York, pp. 720 (1974). Monneyron, P., M.-H. Manero, J.-H. Foussard, F. Benoit-Marquie, and M.-T. Maurette,”Hetergeneous photocatalysis of butanol and methyl ethyl ketone-characterization of catalyst and dynamic study,” Chemical Engineering Science, Vol. 58, pp.971-978 (2003). Meteš, A., D. Kovačević, D. Vujević, and S. Papić,”The role of zeolite in wastewater treatment of printing inks,” Water Research, Vol. 38, pp. 3373-3381 (2004). Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of the Chemical Society of Japan, Vol. 58, pp. 2015-2022 (1985). Peral, J. and D.F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation,” Journal of Catalysis, Vol. 136, p. 554 (1992). Phadke, M. S., “Quality Engineering Using Robust Design.”, Prentice Hall, p. 291 (1989)。 Pulgarin, C., P. Peringer, P. Albers, and J. Kiwi,”Effect of Fe-ZSM-5 zeolite on the photochemical and biochemical degradation of 4-nitrophenol,” Journal of Molecular Catalysis A: Chemical, Vol. 95, pp. 61-74 (1995). Pecchi, G., P. Reyes, P. Sanhueza, and J. Villasenor,”Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts,” Chemosphere, Vol. 43, pp. 141-146 (2001). Phonthammachai, N., M. Krissanasaeranee, E. Gulari , A.M. Jamieson, and S. Wongkasemjit,”Crystallization and catalytic activity of high titianium loaded TS-1 zeolite,” Material Chemistry and Physics, Vol. 97, pp.458-467 (2005). Sampath, S., H. Uchida, and H. Yoneyama, “Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide,” Journal of Catalysis, Vol. 149, pp. 189 (1994). Sanjuan, A., G. Aguirre, M. Alvaro, and H. Garcia,”2,4,6-Tripthenylpyrylinm ion encapsulated within Y zeolite as photocatalyst for the degradation of methyl parathion,” Water. Research., Vol. 34, pp.320-326 (2000). Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemistry B, pp. 829-832 (1990). Stumm, W., “Chemstry of the Solid-Water Interface,” John Wiley and Sons, New York (1992). Turner, J.C.R.,”An introduction to the theory of catalytic reactors”, Catalysis Science and Technology, Vol. 1, pp. 43-86 (1981). Turro, N. J., “Molecular Photochemistry,” Columbia University, N. Y. p. 1 (1965). Yan, G., X. Wang, X. Fu, and D. Li,”A primary study on the photocatalytic properties of HZSM-5 zeolite,” Catalysis Today, Vol.93-95, pp. 851-856 (2004). Zhang, S., N. Fujii, and Y. Nosaka,”The dispersion effect of TiO2 loaded over ZSM-5 zeolite,” Journal of Molecular Catalysis A: Chemical, Vol. 129, pp. 219-224 (1998). Li, G., X.S. Zhao, and Madhumita B. Ray,”Advanced oxidation of orange Ⅱ using TiO2 supported on porous adsorbents: The role of pH, H2O2, and O3,” Separation and Purification Technology, Vol. 55(1), pp. 91-97 (2007). Suri, R. P. S., J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water.,” Water Environment Research, Vol. 65, No. 5, pp. 665-669 (1993)。 Serrano, D. P., G. Calleja, J. A. Botas, and F. J. Gutierrez,”Characterization of adsorptive and hydrophobic properties of silicalite-1, TS-1, and Beta zeolite by TPD technique,” Separation and Purification Technology, Vol. 54(1), pp. 1-9 (2007). Yahiro, H., T. Miyamoto, N. WAtanable, and H. Yamaura,”Photocatalytic partial oxidation of α-methylstyrene over TiO2 supported on zeolite,” Catalysis Today, Vol. 120, pp. 158-162 (2006). Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste,” Environmental Science & Technology, Vol. 22, No. 3, pp. 256 -259 (1988). 申洋文,車雲霞,無機化學叢書,第八卷,鈦分類,北京:科學出版社 (1998)。 吳怡玲,以化學氣相沈積法製備二氧化鈦光觸媒之研究,碩士論文,國立中興大學環境工程研究所 (2001)。 吳致誠,UV/TiO2程序中氫氧自由基之生成研究,碩士論文,國立中 興大學環境工程研究所 (2002)。 邱琬婷,以銀、鉑改質二氧化鈦薄膜反應器之光催化活性研究,碩士論文,國立中興大學環境工程研究所 (2005)。 胡振國譯,半導體元件-物理與技術,全華圖書公司,台北 (1989)。 洪雲傑,以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究,碩士論文,國立中興大學環境工程研究所 (2006)。 張名毅,以UV/TiO2程序處理染整廢水可行性之研究,碩士論文,國立中興大學環境工程研究所 (1999)。 張季娜等譯,田口式品質工程導論,中華民國品質管制學會 (1989)。 陳耀茂譯,田口實驗計畫法,滄海書局 (1997)。 趙鵬文,以UV/TiO2程序處理氣相中三氯乙烷之研究,碩士論文,國立中興大學環境工程學系 (1999)。 盧明俊、阮國棟、陳重男,二氧化鈦薄膜催化光分解二氯松之研究,第十六屆廢水處理技術研討會論文集 (1991)。 賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所 (2000)。 謝芳生、劉濱達譯,微電子學,東華書局 (1986)。
實驗結果顯示,將TTIP、乙醇(EtOH)及二甘醇(DEG)之莫耳數比控制在1:40:0.5,並且經過600℃鍛燒90 min後,可得到光催化活性最佳之TiO2光觸媒,且利用化學性的結合方式將TiO2光觸媒披覆在沸石(zeolite)上的組合,將有較佳的沉降效果、結合強度和污染物去除效果。找出最佳之TiO2粉體配方製備比例後,接著探討TiO2/
zeolite複合式觸媒之最佳反應結合比例和pH值,結果發現結合重量百分比TiO2佔約90 %在pH為7之情況下,將會有較佳的亞甲基藍去除效果之呈現。
經由SEM (EDS)、XRD等表面分析結果,TiO2之結晶構造主要為Anatase晶型,而且當其披覆在沸石上後,並不會對TiO2光觸媒的特性造成改變,經由觸媒沈降實驗證實,TiO2/zeolite之複合式觸媒可提升約40%~70%之沈降效果,將增加實場應用之可行性。將TiO2及不同披覆比例之複合式觸媒進行光催化實驗所得的數據進行反應動力的模擬,其結果是符合一階的反應模式,推測經過一小時吸附已達飽和,觸媒表面進行著動態平衡的吸附作用。

This investigation aimed at the preparation and characterization of zeolite-supported TiO2 photocatalyst. TiO2 photocatalyst was prepared by the sol-gel technique based on Taguchi's experimentaled method. In addition, TiO2/zeolite catalysts were synthesized by physical and chemical approaches.
The results indicated that the best candidate of TiO2 photocatalyst was obtained at a molar ratio of TTIP to ethanol (EtOH) to diethylene glycol (DEG) of 1: 40: 0.5, calcination at 600℃ for 90 minutes. The TiO2/zeolite photocatalyst synthesized by the chemical approach exhibited the best settling ability, binding strength and photocatalysic performance. The photocatalyst of 90 wt % TiO2 resulted in the best color removal at pH 7.
Based on the analysis of SEM-EDS and XRD, the results show that the grain size of TiO2 was about 50 nm and the crystal structure was mainly anatase form. Integration with zeolite does not change the structure and chemical properties of the TiO2 powder. In kinetic analysis
, the photodegradation of methylene blue by TiO2/zeolite photocatalyst fits the pseudo-first-order kinetics.
其他識別: U0005-0407200715341800
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.