Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52810
DC FieldValueLanguage
dc.contributor.author黃介辰zh_TW
dc.contributor.other行政院國家科學委員會zh_TW
dc.contributor.other國立中興大學生命科學系(所)zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T08:57:45Z-
dc.date.available2014-06-06T08:57:45Z-
dc.identifierNSC100-ET-E005-002-ETzh_TW
dc.identifier.urihttp://hdl.handle.net/11455/52810-
dc.description.abstractBytakingtheadvantageofinteractionsofcohesindomainanddockerindomainfromcellulosome,anartificialcellulosomewillbeconstructedinthisprojectasamulti-enzymesproductionsystem,forexpressingthoseheterologouslignocellulosedegradationgenesthroughsyntheticbiologicaltechnique.SincethecellulosomeofC.thermocellumpossessedthermostableenzymesandshowedhighefficiencyinhightemperature,thecellulosomewillbeusedisatemplateforthisbio-mimicapproach.Thecomplexwillbeengineeredtoincludetheanchorprotein,thescaffoldingproteinandthosespecificcellulolyticenzymes,whileotherheterologousgenesdevelopedfromothersub-projectswillbeaddedinourbioengineeredcohesiondomaintodevelopacross-speciesdesignercellulosome.Inourresultsfromfirstyear,thecellulosomalgeneshavebeenengineeredwithinanartificialcellulosomethroughsyntheticbiologicaltechnique.Syntheticbiologicaltechniquewasusedintheprojectbyitsabilitytoligasemulti-genesinonestep.Ontheotherhand,BacillussubtiliswaschooseasexpressionhostbecauseitwascloselyrelatedtoClostridium,anditwasalsoknownforitsfastgrowthandproteinsecretionabilityforindustrialusage.Exceptthecellulosomalsystemformulti-enzymesproductionplatform,theoptimalenzymecombinationofsaccharificationforlignocellulosicmaterialwillbedevelopedinoursecondyearofproject.Theresourcesoflignocellulosehydroliticenzymesinthisprojectwerenotjustlimitedonbacterialgenesbutthegenesfromfunguswillbealsoinvestigatedforenhancingtheefficiencyoflignocellulosehydrolysis.en_US
dc.description.abstract本子計畫將利用纖維素分解酵素複合體之cohesin domains與dockerin domain之結合關係,配合合成生物學技術以建構出可表現異源性木質纖維素分解酵素之人工纖維素分解酵素複合體,並研發以其複合體為基礎之酵素量產平台。將以耐高溫並在高溫可表現高度活性之C. thermocellum所產生之cellulosome為主要架構,利用其anchor protein與支架蛋白以及其主要木質纖維素分解酵素初步建構人工纖維素分解酵素複合體後再配合其他子計畫所開發之酵素,以酵素工程之方式置入cohesin domains以期能與支架蛋白結合而形成具異源性基因之人工纖維素複合體,最後再測試整組基因群之酵素量產化條件以建立量產平台。本子計畫已在第一年度(99年1月開始)執行迄今,已成功的透過合成生物學技術以突破以往的分子生物技術能轉殖基因之數目所受之局限,將人工纖維素分解酵素複合體相關基因同時表現在Bacillus subtilis宿主中。由於Bacillus subtilis除了與Clostridium具相近的親源關係之外,其外泌系統極為發達並可在有氧環境中快速培養成長,非常適合工業化酵素生產的應用。第二年(100年)將建構出能表現異源性木質纖維素分解酵素之人工纖維素分解酵素複合體系統。透過計畫之執行,除可建構該酵素表現平台外,更可利用合成生物學技術的便利性,探討何種酵素之組合可達特定料源之最佳分解活性。而透過總計畫之合作平台,目標基因來源不僅僅限定於細菌,亦將由其他子計畫所篩選真菌出有效之纖維素分解脢,再藉由此方法討論不同宿主來源酵素活性間的組合,期最終能增加反應效率及料原之多元性以降低生質能源生產成本。zh_TW
dc.language.isozh_TWzh_TW
dc.subject能源工程zh_TW
dc.subject應用研究zh_TW
dc.subjectsynthetic biological techniqueen_US
dc.subjectartificial cellulosomeen_US
dc.subjectlignocellulose hydrolytic enzymesen_US
dc.title纖維素與半纖維素生物醣化關鍵技術之開發-子計畫三:研發以人工纖維素分解酵素複合體為基礎之酵素量產平台(II)zh_TW
dc.titleDevelopment of Artificial Cellulosome for Saccharificationen_US
dc.typeResearch Reportszh_TW
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.openairetypeResearch Reports-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:生命科學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.