Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5294
DC FieldValueLanguage
dc.contributor鄭幸雄zh_TW
dc.contributor林明瑞zh_TW
dc.contributor洪俊雄zh_TW
dc.contributor.advisor李季眉zh_TW
dc.contributor.author蔡佳玲zh_TW
dc.contributor.authorTsai, Chia-Lingen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:34:29Z-
dc.date.available2014-06-06T06:34:29Z-
dc.identifierU0005-1607200715080300zh_TW
dc.identifier.citation參考文獻 Akkerman I., Janssen M., Rocha J., Wijffels R. H., 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy 27, 1195-1208. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D., 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letters in Applied Microbiology 13, 202-206. Baier U., Zwiefelhofer H. D., 1991. Sludge stabilization, effects of aerobic thermophilic pretreatment. Water Science and Technology. 3, 56-61. Beaudet R., Gagnon C., Bisaillon J. G., Ishaque M. 1990. Microbiological aspects of aerobic thermophilic treatment of swine waste. Applied and Environmental Microbiology 56, 971-976. Bolliger R., Zürrr, H., Bachofen R., 1985. Photoproduction of molecular hydrogen from wastewater of sugar refinery by photosynthetic bacteria. Applied microbiology and biotechnology 23, 147-151. Borowski S., Szopa J. S., 2007. Experiences with the dual digestion of municipal sewage sludge. Bioresource Technology 98, 1199-1207. Chen C. Y., Lee C. M., Chang J. S., 2006. Photohydrogen production by Rhodopseudomonas palustris WP 3-5 using optical-fiber-illuminating photobioreactors. Biochemical Engineering Journal 32, 33-42. Chu A., Mavinic D. S., Ramey W. D., Kelly H. G., 1994. Volatile fatty acid production in thermophilic aerobic digestion of sludge. Water Research 28, 1513-1522. Chu A., Mavinic D. S., Ramey W. D., Kelly H. G., 1996. A biochemical model describing volatile fatty acid metabolism in thermophilic aerobic design of wastewater sludge. Water Research 30, 1759-1770. Claus D., Berkeley R. C. W., 1986. Genus Bacillus Cohn 1872. Williams and Wilkins, Baltimore. Bergey’s Manual of Systematic Bacteriology 2, 1105-1139. Conrad R., Schlegel H. G., 1997. Influence of aerobic and phototrophic growth conditions on the distribution of glucose and fructose carbon into the Entner-Doudoroff and Embden-Meyerhoff pathways in Rhodopseudomonas sphaeroides. J Gen Microbiol. 101, 277-90. Couillard, D., Zhu, S. 1993. Thermophilic aerobic process for the treatment of slaughterhouse effluent with protein recovery. Environmental Pollution 79, 121-126. Debabrata D., Veziroğlu T. N., 2001. Hydrogen production by biological process:a survey of literature. International Journal of Hydrogen Energy 26, 13-28. Droffner, M. L., Brinton, W. F. 1995. Survival of E. coli and Salmonella populations in aerobic thermophilic composts as measured with DNA gene probes. Zentralblatt fuer Hygiene und Umweltmedizin 197, 387-397. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F., 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry 28, 350-356. EPA. 1992. Control of pathogens and vector attraction in sewage sludge EPA/625/R-92/013 December, Washington, DC. Eroğlu E., Gündüz U., Yücel M., Türker L., Eroğlu İ., 2004. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. International Journal of Hydrogen Energy 29, 163–171. Eroğlu E., Eroğlu İ., Gündüz U., Türker L., Yücel M., 2006. Biological hydrogen production from olive mill wastewater with two-stage processes. International Journal of Hydrogen Energy 31, 1527-1535. Fascetti E., D''addario E., Todini O., Robertiello A., 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International Journal of Hydrogen Energy. 23, 753-760. Hallenbeck P. C., 1983. Nitrogenase reduction by electron carriers: Influence of redox potential on activity and ATP/2e- ratio. Archives of Biochemistry and Biophysics 220, 657-660. Hamer G., 1987. Fundamental aspect of aerobic thermophilic aerobic digestion and processing requirements for landfilling. pp. 2-19. Elsevier Applied Science. Hasegawa S., Shiota N., Katsura K., Akashi A., 2000. Solubilization of organic sludge by thermophilic aerobic bacteria as pretreatment for anaerobic digestion. Water Science and Technology 41, 163-169. Häner A., Mason A. C., Hamer G., 1994. Aerobic thermophilic waste sludge biotreatment : carboxylic acid production and utilization during biodegradation of bacterial cells under oxygen limitation. Applied Microbiology and Biotechnology 40(6), 904-909. Hillmer P., Gest H., 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulate-- H2 production by growing culture. Journal of Bacteriology 129, 724-731 Imhoff J. F., Trüper H. G., 1992. The genus Rhodospirillum and related Genera. In:H. Balows, H. G. Trüper., M. Dworkin, W. Hareder and K. H. Schleifer(2nd ed.),The Prokaryotes. Springer-Verlag, New York 3, 2141-2155. Keeney D. R., Nelson D. W., 1982. Indophenol-blue method. Chemical and microbiological properties. pp. 674-676. Khatipov E., Miyake M., Miyake J., Asada Y., 1998. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrate. FEMS Microbiology Letters 162, 39-45. Kim Y. K., Bae J. H., Oh B. K., Lee W. H., Choi J. W., 2002. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process. Bioresource Technology 82, 157-164. Koku H., Eróglu I., Gunduz U., Yucel M., Türker L., 2002. Aspect of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 27, 1315-1329. Kondratieva E. N., 1976. Phototrophic micro-organisms as source of hydrogenase formation. In:H.G.Schlegel and J. Barnea(eds.), Microbial Energy Conversion, Erich Goltze KG, Göttingen. 205-216. LaPara T., Alleman J., 1999. Thermophilic aerobic biological wastewater treatment. Water Research. 33:895-908. Lee C. M., Chen P. C., Wang C. C., Tung Y. C., 2002. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy. 27, 1309-1313. Lee D. J., Mueller J. A., 2001. Preliminary treatments, in sludge into biosolids, processing, disposal, utilization. In: Spinosa, L., Vesilind A. ed. IWA Publishing, London: IWA. Li D. H., Ganczarczyk J. J., 1989. Fractal geometry of particle aggregates generated in water and wastewater treatment process. Environmental Science and Technology. 23, 1385-1389. Li D. H., Ganczarczyk J. J., 1990. Structure of activated sludge floes. Biotechnology and Bioengineering. 35, 57-65. Madigan M. T., Martinko J. M., Parker J., 2006. Brock biology of microorganisms. Pearson Education Inc., 11th edition. Mason C. A., 1986. Microbial death lysis and ''cryptic'' growth: Fundamental and applied, DIss. ETH No. 8150 Swiss Federal Institute of Technology. Mason C. A., Hamer G., Fleischmann T., Lang C., 1987., Aerobic thermophilic biodegradation of microbial cells:some effects of dissolved oxygen and temperature. Applied and Microbiology Biotechnology 25, 568-576. Malladi B., Ingham S. C., 1993. Thermophilic aerobic treatment of potato-processing wastewater. World Journal of Microbiology and Biotechnology 9, 45-49. McIntosh K. B., Oleszkiewicz J. A., 1997. Volatile fatty acid production in aerobic thermophilic pre-treatment of primary sludge. Water Science and Technology 36, 189-196. Messenger J. R., Villiers H. A., Laubscher H. A., Kenmuir S. J. A., Ekama K. G. A., 1993. Evaluation of dual digestion system: Part 1:Overview of the Milnerton experience. Water SA 19, 185-191. Minami M., 1997. Biohydrogen production using sewage sludge by photosynthetic bacteria. In Biohydrogen 97’, the international conference on Biological Hydrogen Production, Kona, Hawaii, USA. Mueller J. A., 2000. Pretreatment processes for the recycling and reuse of sewage sludge. Water Science and Technology 42(9), 167-174. Nazina T. N., Tourova T. P., Poltaraus A. B., Novikova E. V., Grigoryan A. A., Ivanova A. E., Lysenko A. M. V., Petrunyaka G. A. O. V., Belyaev S. S., Ivanov M. V., 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermo-catenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. International Journal of Systematic and Evolutionary Microbiology 51, 433-446. Nazina T. N., Sokolova D. S., Grigoryana A. A., Shestakova N. M., Mikhailova E. M., Poltaraus A. B., Tourova T. P., Lysenko A. M., Osipov G. A., Belyaev S. S., 2005. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Systematic and Applied Microbiology 28, 43-53. Odom J. M., Wall J. D., 1983. Photoprodution of H2 from cellulose by an anaerobic bacteria Co-culture. Applied Environmental Microbiology 45(4), 1300-1305. Ozturk I., Altinbas M., Koyuncu I., 2003. Advanced physico-chemical treatment experience on young municipal landfill leachates. Waste Management 23, 441-446. Pagilla K., Kim H., Cheunbarn T., 2000. Aerobic thermophilic and anaerobic mesophilic treatment of swine waste. Water Research 34(10), 2747-2753. Pfennig N., 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology 28, 283-288. Pitt A. J., Ekama G. A., 1996. Dual digestion of sewage sludge using air and pure oxygen. Proceedings of the 69th Water Environment Federation Annual Conference and Exposition. Dallas, TX, USA, vol.2, pp. 69-82. Rainey F. A., Fritze D., Stackebrandt E., 1994. The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbial. Lett. 115, 205-211 Sakai Y., Aoyagi T., Shiota N., Akashi A., Hasegawa S., 2000. Complete decomposition of biological waste sludge by thermophilic aerobic bacteria. Water Science and Technology. 42, 81-88. Sasikala C., Ramana C. V., Rao P. R., 1991. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 16, 597-601. Sasikala K., Ramana C., Raghuveer R., 1992. Photoproduction of hydrogen from the wastewater of a distillery by Rhodobacter sphaeroides O.U. 001. International Journal of hydrogen Energy. 17 : 23-27. Schlegel H. G., Schneider K., 1985. Microbial metabolism of hydrogen. In:M. Moo-Young (ed.), Comprehensive Biotechnology. Pergamon Press, Qxford. 439-457. Shi X. Y., Yu H. Q., 2005. Optimization of volatile fatty acid compositions for hydrogen production. by Rhodopseudomonas capsulata. Journal Chemistry Technology Biotechnology. 80, 1198-1203. Shiota N., Akashi A., Hasegawa S., 2002. A strategy in wastewater treatment process for significant reduction of excess sludge production. Water Science and Technology. 45, 127-134. Sierfert E., Itgens R. L. and N. Pfennig. 1978. Phototrophic purple and green bacteria in a sewage treatment plant. Appl. and Environ. Microbiol 35(1), 38-44 Stevens P., Vos C. V. P., Ley J., 1984. The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulata strains. Biotechnology Letters. 6, 277-282. Stover E. L., Samuel G. J., 1997. High rate thermophilic pretreatment of high strength industrial wastewaters. Presented at the 52nd Purdue Industrial Waste Conference, Purdue University, West Lafayette. Tabita F. R., 1995. The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE, editors.Anoxygenic photosynthetic bacteria. The Netherlands: Kluwer Academic Publishers,. p. 885-914. Ugwuanyi, J. O. 1999. Aerobic thermophilic digestion of model agricultural wastes. Ph.D. Thesis. University of Strathclyde, Glasgow. Ugwuanyi J. O., Harvey L. M., McNeil B., 2005a. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technology 96, 707-719. Ugwuanyi J. O., Harvey L. M., McNeil B., 2005b. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste. Bioresource Technology 96, 721-730. Vijayaraghvan K., Mohd A. M. Soom., 2004. Trend in biological hydrogen production- a review. International Journal of Hydrohen Energy. Ward D., Stensel D. H., Ferguson J. F., 1998. Effect of autothermal treatment on anaerobic digestion in the dual digestion process. Water Science Technology 38(8-9), 435-442. White D., Sharp R. J., Priest F. G., 1993. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Leeuwenhoek. 64, 357-386. Willison J. C., 1988. Pyruvate and acetate metabolism in the photosynthetic bacterium Rhodobacter capsulatus. J Gen Microbiol. 134:2429-39. Yakunin A. F., Tsygankov A. A., Troshina O. Y., Gogotov I. N., 1991. Growth and nitrogenase activity of continuous cultures of the purple bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides depending on the presence of Mo, V and W in the medium. Mikrobiyolgiya 60, 41-46. Yetis M., Gündüz U., Eroglu I., Yücel M., Türker L., 2000. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 25, 1035-1041. Tao Y. Z., Chen Y., Wu Y. Q., He Y. L., Zhou Z.H., 2007. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. International Journal of Hydrogen Energy 32, 200-206. Zeigler D. R., 2001. The Genus Geabacillus. Bacillus Genetic Stock Center Catalog of Strains. Zhu H., Suzuki T., Tsygankov A. T., Asada Y., Miyake J., 1999a. Hydrogen production from tofu wastewater by Rhodobater sphaeroides immobilized in agar gels. International Journal of hydrogen Energy 27, 1349-1357. Zhu H., Wakayama T., Suzuki T., Asada Y., Miyake J., 1999b. Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence of NH4+. Journal of Bioscience and Bioengineering 88, 507-512. Zürrer H., Bachhofen R., 1982. Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass 2, 165-174. 李季眉,1988。以紫色含硫光合作用細菌Amoebobacter pedioformis strain CML2處理豬糞尿廢水之硫化氫。第13屆廢水處理技術研討會論文集,第206-215頁。 李季眉,1990。以固定化之紫色含硫光合作用細菌處理處理豬糞尿廢水之硫化氫。第15屆廢水處理技術研討會論文集,第313-327頁。 李季眉,1991。以固定化之紫色含硫光合作用細菌處理處理豬糞尿廢水之硫化氫—連續流程試驗。第16屆廢水處理技術研討會論文集,第157-168頁。 朱敬平,李篤中。 2001. 污泥處置Ⅰ:簡介及膠羽特性. 台大工程學刊 81:47-58. 朱敬平,李篤中. 2001. 污泥處置Ⅱ:污泥之前處理. 台大工程期刊 82:49-76. 洪仁陽。2003。污泥水解減量技術。化工資訊與商情。第12卷第4期。頁數66-73。 王炳南。2005。厭氧醱酵產氫與光合產氫之反應槽串聯可行性評估。碩士論文。國立中興大學。台中。 洪國展。2004。光合產氫之程序組合及應用。碩士論文。國立中興大學。台中。 郁揆民。2003。紫色不含硫光合作用細菌產氫限制因子之研究。碩士論文。國立中興大學。台中。 涂良君。1999。產氫光合作用細菌之分離與篩選。碩士論文。國立中興大學。台中。 謝孟廷。2005。高溫性細菌分解有機污泥之研究。碩士論文。國立中興大學。台中。 蕭景庭。2000。產氫光合作用細菌之生理特性研究。碩士論文。國立中興大學。台中。 陳菀貽。2006。高溫性細菌分解有機污泥及光合作用細菌利用汙泥分解物生成氫氣之研究。碩士論文。國立中興大學。台中。 蔡信行。2003。替代燃料與再生能源。科學發展月刊,第365期,62-67頁。 白明德、蕭家瑢、盧文章、李宏台。2006。工業廢水能源化製氫潛能評估, 第18屆環工年會論文集光碟 法新社新聞 http://afp.cnanews.gov.tw/client.sample/index.php 中央氣象局全球資訊網 http://www.cwb.gov.tw/ World Energy Council http://www.worldenergy.org/wec-geis/ 氣候變化綱要公約全球資訊網 http://sd.erl.itri.org.tw/fccc/ Intergovernmental Panel on Climate Change http://www.ipcc.ch/. Shell.com-The Royal Dutch/Shell Group of Companies http://www.shell.com/home/Framework?siteId=home. 聯合國網站(英文) http://www.un.org/english/zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5294-
dc.description.abstract高溫好氧消化系統是一個可以有效將污泥減量的程序,而當系統中的氧氣受到限制的時候,微生物的代謝途徑會改變,使槽內累積大量的有機酸。微生物產氫為現今新興的產氫方式,是一項對環境友善的技術,其中紫色不含硫光合菌產氫相當受到重視。有機酸為紫色不含硫菌產生氫氣重要的基質,因此若能結合高溫污泥消化以及光合菌產氫的程序,則可同時達到廢棄物處理減量以及能源回收的目的。 本研究先行探討提升高溫污泥消化槽有機酸累積量的條件。首先提升污泥起始的SS濃度,並添加固定的菌量觀察有機酸的累積情形。當起始SS濃度為13000 mg/L時,添加645.4 mg/L的純菌株Geobacillus thermocatenulatus S2有最高的累積產酸量1105 mg/L,yield達0.28 mg VFAs/△mg VSS,且有最高的VFAs-C/NH4+-N比3.1。此外,並探討有供氧及未供氧對有機酸累積的影響,結果顯示有供氧的條件下雖然有機酸的yield較低但反應較快,且氨氮的累積濃度也較低。而在污泥連續流的試驗中顯示,系統在連續流的操作下若中途未發生塞管或是機器故障,可穩定的操作達120 hr,且在HRT為24 hr的時候有較佳的有機酸累積量(330 mg/L)及yield(1.4 mg VFAs/△mg VSS)。 污泥出流水中含有高濃度的氨氮,對光合菌產氫是一個重要的抑制因子,故利用在鹼性條件下曝空氣來去除氨氮。由結果可知在pH值為12時有最佳的氨氮去除效果,17 hr內即可將氨氮由原先的76.8 mg/L降至偵測極限以下。然而當氨氮濃度大於100 mg/L時則效果不佳,曝氣28 hr僅去除掉一半的氨氮(由137 mg/L減少到64 mg/L),且有機酸濃度會由400 mg/L下降至170.6 mg/L。 利用污泥出流水做為光合菌產氫的基質需要經過前處理以降低氨氮的濃度。紫色不含硫菌Rhodopseudomonas palustris WP 3-5以曝氣去除氨氮後的污泥出流水做為基質可成功地產生氫氣,累積產氫量可達25.8 ml(瓶頂空間50 ml)。將污泥出流水與含有高濃度有機酸及低氨氮濃度的酒糟廢水混合可有效提升有機酸濃度及降低氨氮濃度,成為適合光合菌產氫的基質。結果顯示當酒糟廢水:污泥出流水=4:10時有最佳的產氫效果,最大累積產氫量可達263.9 ml(氫氣濃度66%),產氫速率為12.4 ml H2/L-culture/hr。 單純利用酒糟廢水稀釋亦可作為光合菌產氫的基質。批次實驗結果指出,當酒糟廢水含量為40%的時候,有最佳的產氫效率,且不會有遲滯期,最大累積產氫量可達278.3 ml(氫氣濃度69.6%),產氫速率為13.06 ml H2/L-culture/hr。此外,比較混合廢水及單純酒廠廢水稀釋的產氫效率,可發現單純以酒廠廢水稀釋有較快的產氫速率,但混合廢水有較大的累積產氫量。zh_TW
dc.description.abstractThermophilic aerobic digestion (TAD) which applies thermotolerant microbes and their extracellular enzymes to degrade waste activated sludge (WAS) is considerably new and dynamic technique. It was mentioned that when TAD process was modified to be operated under microaerobic condition, the accumulation of volatile fatty acid (VFAs) was expected. Hydrogen production by microbes is a new technology for hydrogen production. One of the most important hydrogen producing bacteria is purple nonsulfur photosynthetic bacteria. VFAs are important substrates for purple nonsulfur bacteria to grow and produce hydrogen. Thus, combining the modified TAD process with photohydrogen production makes sludge removal and energy recycle possible. In order to increase the accumulation concentration of VFAs in TAD reactor, first we raised the initial concentration of the SS. When initial SS concentration of sludge is 13000 mg/L, and the inoculation concentration of Geobacillus thermocatenulatus S2 was 645.4 mg/L, the accumulated concentration of VFAs was 1105 mg/L, which was the highest. The yield and C/N ratio was 0.28 mgVFAs/△mg VSS and 3.1, respectively. Second, the experiments with or without aeration was discussed. The result showed that TAD system with aeration had better reaction rate. Furthermore, the 2 L TAD reactor was operated in a continuous model at 65℃. The result indicated that when HRT is 24 hr, the accumulated concentration of VFAs was 330 mg/L, which was higher than when HRT was 12 hr. The NH4+-N concentration of TAD effluent was too high to inhibiting the hydrogen production of purple nonsulfur bacteria. The pH value of the effluent was adjusted to be alkaline and aerated to remove ammonia. The result showed that when pH value was 12.0, NH4+-N concentration could be removed under detection limitation within 17 hr. However, when NH4+-N concentration of the TAD effluent was higher than 100 mg/L, the efficiency of aeration was low. Moreover, the VFAs concentration of the TAD effluent decreased. Hydrogen production by Rhodopseudomonas palustris WP 3-5 using the pretreated effluent of TAD was investigated. The highest accumulated hydrogen volume was 25.8 ml (while the headspace was 50 ml) when using the TAD effluent which has already removed NH4+-N by aeration. On the other hand, we found that the distillery wastewater contained high concentration of VFAs and low concentration of NH4+-N, so we mixed the distillery wastewater with the effluent of TAD. The result showed that the best ratio of distillery wastewater to the effluent of TAD for H2 production was 2: 5, and the highest accumulated H2 volume and hydrogen production rate (HPR) was 263.9 ml and 12.4 ml H2/L-culture/hr, respectively (while the headspace was 150 ml). We also used the dilution distillery wastewater as substrate for hydrogen production. The result indicated that when content of distillery wastewater was 40%, the highest accumulated H2 volume and HPR was 278.3 ml and 13.06 ml H2/L-culture/hr, respectively. Furthermore, comparing the H2 producing efficiency of mixed wastewater and diluted distillery wastewater, it was observed that the diluted distillery had higher HPR, but the mixed wastewater had higher accumulated H2 volume.en_US
dc.description.tableofcontents目錄 摘要………………………………………………………………………I 英文摘要………………………………………………………III 目錄……………………………………………………………………V 圖目錄…………………………………………………………………IX 表目錄………………………………………………………………XIII 第一章 前言……………………………………………………………1 第二章 文獻回顧……………………………………………………….3 2-1 能源危機與環境問題……………………………………………3 2-2 替代能源…………………………………………………………4 2-2-1 氫能源………………………………………………………5 2-2-2 氫氣的產生…………………………………………………5 2-3 生物產氫…………………………………………………………6 2-4 紫色不含硫菌的產氫作用………………………………………8 2-4-1 影響紫色不含硫菌產氫的因子…………………………12 2-5 紫色不含硫菌的應用…………………………………………18 2-5-1 紫色不含硫菌在環工上的應用………………………….18 2-5-2 紫色不含硫菌利用實際廢水產氫之研究………………19 2-6 污泥之處置及利用……………………………………………21 2-6-1 污泥處理…………………………………………………22 2-7 高溫好氧污泥處理系統(aerobic thermophilic sludge treatment)………………..……………………………………24 2-7-1 高溫好氧污泥處理統之原理及特性……………………24 2-7-2 高溫好氧菌………………………………………………28 2-7-3 高溫好氧消化系統之代謝途徑…………………………29 2-7-4 利用高溫好氧消化槽累積有機酸之研究………………33 第三章 材料與方法……………………………………………………36 3-1 實驗架構………………………………………………………36 3-2 好氧高溫菌……………………………………………………36 3-2-1 菌種來源…………………………………………………36 3-2-2 菌種保存與培養…………………………………………38 3-3 高溫好氧消化槽有機酸累積量提升之測試…………………38 3-3-1 污泥來源與保存…………………………………………38 3-3-2 提升高溫消化槽有機酸量最適條件探討………………38 3-4 高溫好氧消化污泥連續流試驗………………………………40 3-5 污泥消化出流水氨氮去除測試………………………………41 3-6 紫色不含硫菌的菌種保存及培養……………………………41 3-6-1 菌種來源…………………………………………………41 3-6-2 菌種保存及培養…………………………………………42 3-7 紫色不含硫光合菌利用污泥消化出流水產氫批次實驗……42 3-7-1 以曝氣去除氨氮後的污泥消化出流水產氫實驗………45 3-7-2 以酒糟廢水與污泥出流水混合產氫實驗………………45 3-8 紫色不含硫光合菌以酒糟廢水產氫批次實驗………………46 3-8-1 以不同稀釋倍率酒糟廢水產氫實驗……………………46 3-8-2 不同醣類對菌株WP 3-5產氫的影響……………………46 3-9 分析設備及方法………………………………………………47 3-10 實驗用水及鹼洗液……………………………………………53 第四章 結果與討論……………………………………………………54 4-1 細胞密度與細胞乾重…………………………………………54 4-1-1 菌株S2細胞密度(O.D.600)與細胞乾重…………………54 4-1-2 菌株WP 3-5細胞密度(O.D.660)與細胞乾重……………55 4-2 提升高溫好氧污泥消化槽有機酸累積量最適條件探討……56 4-2-1 高溫好氧槽累積有機酸最適菌株添加量與起始SS濃度 比例…………………………………………………………56 4-2-2 高溫好氧及高溫厭氧對累積有機酸的影響……………62 4-2-3 初步結論…………………………………………………67 4-3 高溫好氧污泥消化連續流實驗………………………………67 4-3-1 水力停留時間12 hr污泥連續流實驗……………………68 4-3-2 水力停留時間24 hr污泥連續流實驗……………………70 4-3-3 初步結論…………………………………………………72 4-4 污泥出流水氨氮去除試驗……………………………………73 4-4-1 不同pH下對曝氣去除氨氮的影響………………………73 4-4-2 高濃度氨氮曝氣去除試驗………………………………75 4-4-3 初步結論…………………………………………………75 4-5 紫色不含硫光合菌Rhodopseudomonas palustris WP 3-5利用 污泥消化出流水產生氫氣批次實驗…………………………77 4-5-1 菌株WP 3-5利用去除氨氮後污泥出流水產氫試驗……77 4-5-2 菌株WP 3-5利用污泥出流水與酒糟廢水混合產氫試驗79 4-5-2-1 污泥出流水與酒糟廢水混合產氫批次試驗-1………79 4-5-2-2 污泥出流水與酒糟廢水混合產氫批次試驗-2………85 4-5-2-3 污泥出流水與酒糟廢水混合產氫批次試驗-3………91 4-5-2-4 空白試驗………………………………………………96 4-5-2-5 利用污泥出流水與酒糟廢水混合產氫綜合討論……98 4-5-3 初步結論…………………………………………………104 4-6 紫色不含硫光合菌Rhodopseudomonas palustris WP 3-5利用 酒糟廢水產生氫氣批次實驗…………………………………105 4-6-1 菌株利用不同稀釋倍率酒糟廢水產氫批次-1…………105 4-6-2 菌株利用不同稀釋倍率酒糟廢水產氫批次-2…………108 4-6-3 菌株利用不同稀釋倍率酒糟廢水產氫批次-3…………111 4-6-4 不同稀釋倍率酒糟廢水產氫綜合討論…………………115 4-6-5 不同醣類對菌株WP 3-5產氫的影響……………………118 4-6-6 初步結論…………………………………………………122 4-7 利用稀釋酒糟廢水及酒糟廢水與污泥出流水混合產氫之比較 …………………………………………………………………123 4-8 廢水水質對產氫的影響………………………………………128 第五張 結論與建議…………………………………………………130 5-1 結論……………………………………………………………130 5-2 建議……………………………………………………………132 參考文獻……………………………………………………………...133 圖目錄 圖2-1 紫色不含硫菌產氫機制圖……………………………………10 圖2-2 固氮酵素固定氮氣的機制及電子傳遞情況…………………10 圖2-3 紫色不含硫光合作用細菌代謝總觀…………………………12 圖2-4 紫色不含硫光合菌的碳代謝簡觀……………………………13 圖2-5 民國87年至民國100年,總污泥推估產量………………23 圖2-6 S-TE process®示意圖…………………………………………27 圖2-7 高溫消化槽內調整曝氣量於微好氧狀態之生化代謝機制…32 圖3-1 本實驗基本架構圖……………………………………………37 圖3-2 高溫好氧消化槽累積有機酸批次實驗流程…………………39 圖3-3 高溫污泥消化連續流裝置圖…………………………………40 圖3-4 菌株WP 3-5於固體培養基之保存流程……………………44 圖3-5 紫色不含硫光合菌產氫批次實驗流程………………………45 圖3-6 組合式光合反應槽裝置圖……………………………………48 圖4-1 菌株S2細胞密度(O.D.600)與細胞乾重之檢量線………54 圖4-2 菌株WP 3-5細胞密度(O.D.660)與細胞乾重之檢量線…55 圖4-3(a) 65℃下,曝氣速率0.25 vvm,添加菌量645.4 mg/L,起 始SS濃度7000 mg/L累積有機酸實驗結果………………57 圖4-3(b) 65℃下,曝氣速率0.25 vvm,添加菌量645.4 mg/L,起 始SS濃度9000 mg/L累積有機酸實驗結果………………59 圖4-3(c) 65℃下,曝氣速率0.25 vvm,添加菌量645.4 mg/L,起 始SS濃度13000 mg/L累積有機酸實驗結果………………60 圖4-4(a) 65℃下,起始SS濃度6000 mg/L在好氧下(曝氣速率0.25 vvm)累積有機酸實驗結果………………………………63 圖4-4(b) 65℃下,起始SS濃度6000 mg/L在厭氧下(未曝氣)累 積有機酸實驗結果…………………………………………65 圖4-5 65℃、曝氣速率0.25 vvm,水力停留時間12 hr高溫好氧污 泥消化槽連續流試驗…………………………………………69 圖4-6 65℃、曝氣速率0.25 vvm,水力停留時間24 hr高溫好氧污 泥消化槽連續流試驗…………………………………………71 圖4-7 於室溫下,不同pH曝氣去除氨氮結果。曝氣速率為2 L/min ………………………………………………………………….74 圖4-8 於室溫下,含高濃度氨氮污泥出流水曝氣去除氨氮結果(pH 12,曝氣速率2 L/min)………………………………………76 圖4-9 菌株WP 3-5利用去除氨氮後污泥出流水產生氫氣實驗。起 始O.D.=0.3、光照強度6000 lux……………………………78 圖4-10(a) 菌株WP 3-5利用Rhodospirillaceae培養液產氫結果。起 始O.D.=0.3、光照強度6000 lux………………………82 圖4-10(b) 菌株WP 3-5利用酒糟廢水:污泥出流水=2:10混合液 產氫結果。起始O.D.=0.3、光照強度6000 lux………83 圖4-10(c) 菌株WP 3-5利用酒糟廢水:污泥出流水=4:10混合液 產氫結果(一)。起始O.D.=0.3、光照強度6000 lux……84 圖4-11(a) 菌株WP 3-5利用酒糟廢水:污泥出流水=4:10混合液 產氫結果(二)。起始O.D.=0.3、光照強度6000 lux……88 圖4-11(b) 菌株WP 3-5利用酒糟廢水:污泥出流水=5:10混合液 產氫結果。起始O.D.=0.3、光照強度6000 lux…………89 圖4-11(c) 菌株WP 3-5利用酒糟廢水:污泥出流水=7:10混合液 產氫結果。起始O.D.=0.3、光照強度6000 lux…………90 圖4-12(a) 菌株WP 3-5利用新鮮酒廠廢水與污泥出流水混合液 (5:10)產氫結果。起始O.D.=0.3、光照強度6000 lux…94 圖4-12(b) 菌株WP 3-5利用久置酒廠廢水與污泥出流水混合液 (5:10)產氫結果。起始O.D.=0.3、光照強度6000 lux…95 圖4-12(c) 菌株WP 3-5利用稀釋酒廠廢水與污泥出流水混合液 (5:10)產氫結果。起始O.D.=0.3、光照強度6000 lux…97 圖4-13 酒糟廢水:污泥出流水=4:10不加菌空白試驗。光照強 度6000 lux,曝Ar呈厭氧……………………………………99 圖4-14 酒糟廢水與污泥出流水混合經菌株WP 3-5利用產氫後 sCOD去除率………………………………………………103 圖4-15(a) 菌株WP 3-5利用0.2X稀釋酒廠廢水為基質產氫結果。 起始O.D.=0.3、光照強度6000 lux……………………106 圖4-15(b) 菌株WP 3-5利用0.4X稀釋酒廠廢水為基質產氫結果(一)。 起始O.D.=0.3、光照強度6000 lux……………………107 圖4-16(a) 菌株WP 3-5利用0.25X稀釋酒廠廢水為基質產氫結果。 起始O.D.=0.3、光照強度6000 lux……………………109 圖4-16(b) 菌株WP 3-5利用0.4X稀釋酒廠廢水為基質產氫結果。 起始O.D.=0.3、光照強度6000 lux……………………110 圖4-17(a) 菌株WP 3-5利用0.4X稀釋酒廠廢水為基質產氫結果(三)。 起始O.D.=0.3、光照強度6000 lux……………………113 圖4-17(b) 菌株WP 3-5利用0.7X稀釋酒廠廢水為基質產氫結果。 起始O.D.=0.3、光照強度6000 lux……………………114 圖4-17(c) 菌株WP 3-5利用1X稀釋酒廠廢水為基質產氫結果。 起始O.D.=0.3、光照強度6000 lux……………………116 圖4-18 不同稀釋倍率酒廠廢水經菌株WP 3-5產氫處理後sCOD 去除率………………………………………………………119 圖4-19 菌株WP 3-5利用不同醣類產氫結果。起始O.D.=0.3,光 照強度6000 lux……………………………………………120 圖4-20 菌株WP 3-5利用0.4X稀釋酒糟廢水及酒糟廢水:污泥出 流水=4:10混合廢水產氫比較。起始O.D.=0.3,光照強 度6000 lux……………………………………………………124 表目錄 表2-1 具產氫能力之微生物比較………………………………………7 表2-2 傳統厭氧污泥消化程序與高溫好氧污泥消化程序之比較…26 表2-3 Geobacillus之生理特性………………………………………30 表3-1 Rhodospirillaceae培養基成分………………………………43 表3-2 Trace element solution SL7成分……………………………43 表3-3 有機酸組成與濃度分析使用儀器與條件……………………50 表3-4 氣體組成分析使用儀器與條件………………………………52 表4-1 不同初始SS濃度,添加相同菌量累積有機酸之比較……61 表4-2 厭氧及好氧高溫污泥消化累積有機酸比較…………………66 表4-3 不同初始SS濃度添加不同菌量累積有機酸之比較………66 表4-4 酒糟廢水基本水質分析-1……………………………………80 表4-5 污泥出流水基本水質分析-1…………………………………80 表4-6 酒糟廢水基本水質分析-2……………………………………86 表4-7 污泥出流水基本水質分析-2…………………………………86 表4-8 酒糟廢水基本水質分析-3……………………………………93 表4-9 污泥出流水基本水質分析-3…………………………………93 表4-10 不同污泥出流水與酒糟廢水混合比例產氫比較…………100 表4-11 以不同酒糟廢水條件與污泥出流水混合液產氫比較……101 表4-12 酒糟廢水基本水質分析-4…………………………………112 表4-13 不同稀釋倍率酒廠廢水產氫比較…………………………117 表4-14 混合廢水及稀釋酒廠廢水產氫情形比較…………………126 表4-15 以有機廢水進行光合產氫之比較…………………………127zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1607200715080300en_US
dc.subject紫色不含硫菌zh_TW
dc.subjectpurple nonsulfur bacteriaen_US
dc.subject氫氣zh_TW
dc.subject高溫好氧消化zh_TW
dc.subject高溫菌zh_TW
dc.subject廢水zh_TW
dc.subject污泥zh_TW
dc.subjecthydrogenen_US
dc.subjectthermophilic aerobic digestionen_US
dc.subjectthermophilic aerobic bacteriaen_US
dc.subjectwastewateren_US
dc.subjectsludgeen_US
dc.title紫色不含硫光合菌利用高溫好氧污泥消化出流水產生氫氣之研究zh_TW
dc.titleHydrogen production from thermophilic aerobic digested sludge supernatant by purple nonsulfur bacteriaen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:環境工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.