Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5296
標題: 預測萘污染土壤之生物可及性研究
Prediction of Napthalene Bioavailability in Contaminated Soils
作者: 曹志興
Tsao, Chih-Hsing
關鍵字: Bioavailability;生物可及性;Persulfate Oxidation and Sonication;Bioremediation;過硫酸鹽氧化暨超音波萃取;生物復育
出版社: 環境工程學系所
引用: 王櫻芳 (2002) 瀝青拌合至鋪面過程各階段之PAHs逸散特徵與鋪面之暴露評估,碩士論文,國立成功大學環境醫學研究所,台南。 李秀霞 (1996) 超臨界二氧化碳萃取土壤中芳香烴有機污染物質,碩士論文,國立中興大學環境工程研究所,台中。 李茂山 (1998) 受2,4-二氯酚、三氯乙烯污染土壤之生物復育,碩士論文,國立中興大學環境工程研究所,台中。 李俊福、黃富昌、曾文妮 (1999) 土壤吸附揮發性有機物之回顧與評析,國立中央大學環境工程學刊,第六期,頁69-86。 林宜儒 (2003) 生物固體物做為污染土壤生物復育添加劑之可行性研究,碩士論文,國立中興大學環境工程學系,台中。 林財富 (2004) ISCO整治技術之發展與案例分析,土壤及地下水應用技術講習會論文集。 邱明良 (2000) 受多環芳香族碳氫化合物–萘、菲污染土壤之生物復育研究,碩士論文,國立中興大學環境工程學系,台中。 郭峻銘 (2003) 超臨界流體萃取法於下水污泥中直鏈烷基苯磺酸分析之研究,碩 士論文,國立交通大學環境工程研究所,新竹。 姚俊旭、張宏毅、陳慧英 (2003) 超臨界二氧化碳萃取技術之簡介,2003年超臨界流體技術應用與發展研討會暨設備展研討會,頁3-1。 袁紹英、張碧芬 (1997) 土壤受多環芳香族碳氫化合物之整治技術與問題評析, 環工年會,第六屆土壤污染防治研討會論文集,台北,頁19-36。 張碧芬、袁邵英 (1999) 多環芳香族碳氫化合物(PAHs)之環境流布及生物分解。 http://www.niea.gov.tw/analysis/publish/month/22/3-1.htm 。 陳靜生 (1992) 水環境化學,曉園出版社,台北。 陳炳伸 (1997) 受2,4-硝基酚污染土壤之生物復育,碩士論文,國立中興大學環境工程研究所,台中。 陳錕榮 (1999) 重金屬污染場址調查與復育技術評估之研究,碩士論文,國立雲林科技大學環境與安全工程系,雲林。 陳孝昇 (2003) 異辛烷汽油添加劑對機車引擎排放多環芳香烴化合物之影響,碩士論文,嘉南藥理科技大學,台南。 惠國顧問(股)公司,生物可及性應用於土壤污染整治之簡介。 游宗霖 (2003) 以純化菌種Candida viswanathii 處理海水中柴油多環芳香烴之研究,碩士論文,國立中山大學環境工程所,高雄。 黃慧貞 (2006) 土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究,博士論文,國立中央大學環工所,桃園。 葉玉雯 (1999) 比較索氏萃取法與超臨界萃取法對含萘及五氯酚土壤萃取之研究,碩士論文,國立中興大學環境工程學系,台中。 詹昌龍 (2006) 以索氏萃取及超音波萃取土壤中的萘與菲:土壤含水份與pH的效應,碩士在職專班論文,國立中興大學環境工程研究所,台中。 鄭惠裕 (2003) 多環芳香烴物質模擬口腔吸附特徵之研究,碩士論文,國立雲林科技大學環境與安全工程系,雲林。 蕭志清 (1996) 受硝基芳香族化合物生物分解之影響,碩士論文,國立中興大學環境工程研究所,台中。 賴耿陽 (1992) 超音波工學理論實務,復漢出版社,台南。 蘇世昌 (1999) 受多環芳香族化合物–萘污染環境之生物復育可行性研究,碩士論文,國立中興大學環境工程學系,台中。 環保署(2003),土壤污染管制標準,中華民國九十年十一月二十一日(90)環署水字第○○七三六八四號。 Alexander, M. (1995) How Toxic Are Toxic Chemicals in Soil? Environmental Science and Technology., 29, pp. 2713-2717. Alexander, M. (2000) Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environmental Science and Technology., 34, pp. 4259-4265. Barnabas, I. J., J. R. Dean., S. M. Hitchen, and S. P. Owen (1994) Supercritical Fluid Extraction of Organochlorine Pesticides from an Aqueous Matrix. J. Chromatogr. A., 66, pp. 307-315. Bowyer, J. R. and J. D. Pleil (1997) Comparison of Supercritical Fluid Extraction and Soxhlet Extraction of Organic Compounds from Carpet, Samples. J. Chromatogr. A., 787, pp. 171-179. Bøwadt, S., L. Mazeas., J. D. Miller, and S. B. Hawthorne (1997) Field-Portable Determination of Polychlorinated Biphenyls and Polynuclear Aromatic Hydrocarbons in Soil Using Supercritical Fluid Extraction. J. Chromatogr. A., 785, pp. 205-217. Chen, P., W. Zhou, and L. L. Tavlarides (1997) Remediation of Polychlorinated Biphenyl Contaminated Soils/Sediments by Supercritical Fluid Extraction. Environmental Progress., 16, pp. 227-236. Chesler, N., A. P. Emery, and D. L. Duewer (1997) Recovery of Diesel Fuel from Soil by Supercritical Fluid Extraction-Gas Chromatography. J. Chromatography. A., 790, pp. 125-130. Chiou, C. T., S. E. McGroddy, and D. E. Kile (1998) Partition Characteristics of Polycyclic Aromatic Hydrocarbons on Soils and Sediments. Environmental Science and Technology., 32, pp. 264-269. Chung, N. and M. Alexander (1998) Differences in Sequestration and Bioavailability of Organic Compounds Aged in Dissimilar Soils. Environmental Science and Technology., 32, pp. 855-860. Chung, N. and M. Alexander (2002) Effect of Soil Properties on Bioavailability and Extractability of Phenanthrene and Atrazine Sequestered in Soil. Chemosphere., 48, pp. 109-115. Cornelissen, G., H. Rigterink., M. F. Marijke., C. M. Paul, and V. Noort (1998) Rapidly Desorbing Fraction of PAHs in Contaminated Sediments as a Predictor of the Extent of Bioremediation. Environmental Science and Technology., 32, pp. 966-970. Cuypers, C., T. Grotenhuis., J. Jan, and W. Rulkens (2000) Rapid Persulfate Oxidation Predicts PAH Bioavailability in Soils and Sediments. Environmental Science and Technology., 34, pp. 2057-2063. Cuypers, C. (2001) Bioavailability of Polycyclic Aromatic Hydrocarbons in Soils and Sediments. PhD Thesis, Wageningen University, The Netherlands. Cuypers, C., R. Clemens., T. Grotenhuis, and W. Rulkens (2001) Prediction of Petroleum Hydrocarbon Bioavailability in Contaminated Soils and Sediments. Soil and Sediment Contamination., 10, pp. 459-482. Cuypers, M. P., T. Grotenhuis, and W. Rulkens (1999) In Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Proceedings Fifth int. In Situ and On Site Bioremediation Symposium, Battelle Press: Columbus., Vol. 8, pp. 241-246. Dean, J. R. and G. Xiong (2000) Extraction of Organic Pollutants from Environmental Matrices: Selection of Extraction Technique. Trends in Analytical Chemistry., 19, pp. 553-564. Ehlers, L. J. and R. G. Luthy (2003) Contaminant Bioavailability in Soil and Sediment. Environmental Science and Technology., 37, pp. 295-302. Environment Agency (2003) Review of the Fate and Transport of Selected Contaminants in the Soil Environment. Draft Technical Report P5-079/TR1,UK. Erstfeld, K. M. and C. Y. Chen (1998) Comparson of Supercritical Fluid and Soxhlet Extraction Methods for the Determination of Chlorothalonil from Cranberry Bog Soils. J. Agric. Food Chem., 46, pp. 499-503. Gibson, D. T. (1984) Microbail Degradation of Organic Compounds. Marcel Dekker, Inc., N.Y., U.S.A. 13. Grathwohl, P. (1990) Influence of Organic Matter from Soils and Sediments from Various Origins on the Sorption of Some Chlorinated Aliphatic Hydrocarbons: Implications on Koc Correlations. Environmental Science and Technology., 24, pp. 1687-1693. Harmsen, J. and M. Ferdinandy(1999) Measured Bioavailability as a Tool for Managing Clean-up and Risks on Landfarms. In: A. Leeson & B. C. Alleman (eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds. Columbus (Ohio USA), Battelle, 1999. Fifth int. In Situ and On Site Bioremediation Symposium., Vol. 5(8), pp. 57-62 Hawthorne, S. B., D. G. Poppendieck., C. B. Grabanski, and R. C. Loehr(2001)PAH Release During Water Desorption, Supercritical Carbon Dioxide Extraction, and Field Bioremediation. Environmental Science and Technology., 35, pp. 4577- 4583. Hawthorne, S. B. and D. J. Miller (1991) Quantitative Extraction of Linear Alkylbenzenesulfonates Using Supercritical Carbon Dioxide and a Simple Device for Adding Modifiers. J. Chromatogr., 541, pp. 185-194. Hawthorne, S. B. and D. J. Miller (2003) Evidence for Very Tight Sequestration of BTEX Compounds in Manufactured Gas Plant Soils Based on Selective Supercritical Fluid Extraction and Soil/Water Partitioning. Environmental Science and Technology., 37, pp. 3587-3594. Hess, T. F., S. K. Schmidt., J. Silverstein, and B. Howe (1990) Supplemental Substrate Enhancement of 2,4-Dinitrophenol Mineralization by a Bacterial Consortium. Appl Envir. Microbiol., 56, pp. 1551-1558. Howsam, M. and K. C. Jones (1998) In PAHs and Related Compounds: Chemistry ; the Handbook of Environment Chemistry. Springer. Berlin. Germany., 3, pp. 137-174. Hwu, C.-S. and T. Grotenhuis (2003) Assessing Bioavailability of Petroleum Hydrocarbons in Contaminated Soils and Sediments. 第一屆土壤與地下水研討會論文集光碟 第十五屆環工年會. Julian, J. (1984) Polynuclear Aromatic Hydrocarbons. Environmental Science and Technology., 18, pp. 93A-95A. Joop, H., W. Rulkens., H. Eijsackers, and R. C. Sims (2005) From Concept of Bioavailability to Application of Standardized Methods for Management of Bioremediation. In: B. C. Alleman and M. E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation–2005. Proceedings of the Eighth International. In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 6–9, 2005). ISBN 1-57477-152-3, Battelle Press: Columbus, OH., pp. F-12. Juhasz, A., L. Natasha, and R. S. Waller (2005) Can Bioavailability Assays Predict the Efficacy of PAH Bioremediation?In: B. C. Alleman and M. E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation–2005. Proceedings of the Eighth International. In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 6–9,2005). ISBN 1-57477-152-3, Battelle Press: Columbus, OH., pp. F-21. Kelsey, J. W., B. D. Kottler, and M. Alexander (1997) Selective Chemical Extractants to Predict Bioavailability of Soil-Aged Organic Chemicals. Environmental Science and Technology., 31, pp. 214-217. Krauss, M. and W. Wilcke (2001) Biomimetic Extraction of PAHs and PCBs from Soil with Octadecyl-Modified Silica Disks to Predict Their Availability to Earthworms. Environmental Science and Technology., 35, pp. 3931-3935. Langenfeld, J. J., S. B. Hawthorne., D. J. Miller, and J. Pawliszyn (1994) Role of Modifiers for Analytical-Scale Supercritical Fluid Extraction of Environmental Samples. Anal. Chem., 66, pp. 909-916. Lei, L., M. T. Suidan., A. P. Khodadoust, and H. H. Tabak (2004) Assessing the Bioavailability of PAHs in Field-Contaminated Sediment Using XAD-2 Assisted Desorption. Environmental Science and Technology., 38, pp. 1786-1793. Liste, H. and M. Alexander (2002) Butanol Extraction to Predict Bioavailability of PAHs in Soil. Chemosphere., 46, pp. 1011-1017. Lin, J. G., R. Arunkumar, and C. H. Liu (1999) Efficiency of Supercritical Fluid Extraction for Determining 4-Nonylphenol in Municipal Sewage Sludge. J. Chromatography. A., 840, pp. 71-79. Loibner, A. P., M. Holzer., M. Gartner., O. H. J. Szolar, and R. Braun (2000) The Use of Sequential Supercritical Fluid Extraction for Bioavailability Investigations of PAH in Soil. Die Bodenkultur., 51, pp. 225-231. Luque, D. C. M. D. and A. L. E. Garcia (1998) Soxhlet Extraction of Solid Materials: An Outdated Technique with a Promising Innovative Future. Analytica Chemica Acta., 369, pp. 1-10. Luque, D. C. M. D. and M. T. Tena (1996) Strategies for Supercritical Fluid Extraction of Polar and Ionic Compounds. trends in analytical chemistry., 15, pp. 32-37. McCarty, P. L. (1998) Bioengineering Issues Related to in Situ Remediation of Contaminated Soils and Groundwater, In G. S. Omenn(ed), Environ. Biotechnol. lenum, New York., pp. 143-163. Menzie, C. A., B. B. Potocki, and J. Stantodonato (1992) Exposure to Carcinogenic PAHs in the Environment. Environmental Science and Technology., 26, pp. 1278-1284. Mueller, J. G., C. E. Cerniglia, and P. H. Pritchard (1996) In: Bioremediation Principles and Applications;Biotechnology Research Series, Cambridge University Press : Cambridge, UK., Vol. 6, pp.125-194. National Research Council. (2002) Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications;National Academic Press: Washington, DC. Northcott, G. L. and K. C. Jones (2001) Partitioning, Extractability, and Formation of Nonextractable PAH Residues in soil. E. ects on Compound Dissolution Behavior. Environmental Science and Technology., 35, pp. 1111-1117. Peters, R. W. (1999) Chelant Extraction of Heavy Metals from Contaminated Soils. Journal of Hazardous Materials., 66, pp. 51-210. Reid, B. J., A. L. Swindell., I. J. Allen, and K. T. Semple (2005) Predicting Bioremediation Endpoints Based on Cyclodextrin Extractable Fractions. In: B. C. Alleman and M. E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation–2005. Proceedings of the Eighth International. In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 6-9,2005). ISBN 1-57477-152-3, Battelle Press: Columbus, OH., pp. F-15. Reid, B. J., K. C. Jones, and K. T. Semple (2000) Bioavailability of Persistent Organic Contaminants in Soils and Sediments a Perspective on Mechanisms, Consequences and Assessment. Environmental Pollution., 108, pp. 103-112. Ringelberg, D. B., J. W. Talley.,. E. J. Perkins., S. G. Tucker., R. G. Luty., E. J. Bouwer, and H. L. Fredrickson (2001) Succession of Phenotypic, Genotypic, and Metabolic Community Characteristics During in Vitro Bioslurry Treatment of Polycyclic Aromatic Hydrocarbon-Contaminated Sediments. Applied and Environmental Microbiology Apr., 67, pp. 1542-1550. Rizvi, S. S. H. (1986) Thermodynamic Properties of Food in Dehydration. In: M. A. Rao, and S. S. H. Rizvi (Eds.). Engineering properties of foods., pp. 133-214. Rothman, L. B., R. J. Robey., M. K. Ali, and D. J. Mount (2002) Supercritical Fluid Process for Semiconductor Device Fabrication, Advanced Semiconductor Manufacturing, 2002 IEEE/SEMI Conference and Workshop, SC Fluids, Inc. USA. Saiz, J. C. and J. D. Leeuw (1987) Chemical Structure of a Soil Humic Acid as Revealed. J. Anal. Appl. Pyrolysis., 11, pp. 367-376. Sandra, B. M., M. Kastelan, and M. Petrovic (1998) Determination of Agrochemical Combinations in Spiked Soil Samples. Water Science and Technology., 37, pp. 243-250. Semple, K. T., A. W. J. Morriss, and G. I. Paton (2003) Bioavailability of Hydrophobic Organic Contaminants in Soils: Fundamental Concepts and Techniques for Analysis. European Journal of Soil Science., 54, pp. 809-818. Semple, K. T., K. J. Doick., K. C. Jones., A. Craven., P. Burauel, and H. Harms (2004) Defining Bioavailability and Bioaccessibility for the Risk Assessment and Remediation of Contaminated Soils and Sediments. Environmental Science and Technology., 38, pp. 228A-231A. Stokes, J. D., G. I. Paton, and K. T. Semple (2006) Behaviour and Assessment of the Bioavailability of Organic Contaminants in Soil : Relevance for Risk Assessment and Remediation. Soil Use and Management., 21, pp. 475-486. Tiehm, A., K. Nickel, and U. Neis (1997) The Use of Ultrasound to Accelerate the Anaerobic Digestion of Sewage Sludge. Water Science and Technology., 36, pp. 121-128. Travis, C. C., J. MacInnis, and I. Mac (1992) Vapor Extraction of Organics from Subsurface Soils: Is It Effect? Environmental Science and Technology., 26, pp. 1885-1887. Weber, W. J., Jr. and T. M. Young (1997) A Distributed Reactivity Model for Sorption by Soils and Sediments. Mechanistic Implications of Desorption under Supercritical Fluid Conditions. Environmental Science and Technology., 31, pp. 1686-1169. Wilson, S. C. and K. C. Jones (1993) Bioremediation of Soil Contaminated with Polynuclear Aromatic Hydrocarbons (PAHs) : A Review. Environ Pollut., 80, pp. 229-249. Yang, Y., A. Gharaibeh., S. B. Hawthrone, and D. J. Miller (1995) Combined Temperature/ Modifier Effects on Supercritical CO2 Extraction Efficiencies of Ppolycyclic Aromatic Hydrocarbons from Environmental Samples. Anal. Chem., 67, pp. 641-646. Young, T. M., Jr. and W. J. Weber (1995) A Distributed Reactivity Model for Sorption by Soils and Sediments. Effects of Diagenetic Processes on Sorption Energetics. Environmental Science and Technology., 29, pp. 92-97. Zhou, H., H. Li, and O. Xu (1995) Partition of Nonpolar Organic Pollutants from Water to Soil and Wediment Organic Matters. Environmental Science and Technology., 29, pp. 1401-1406.
摘要: 
本研究探討過硫酸鹽氧化暨超音波萃取法(POSE)、超臨界流體萃取法(SFE)、索氏萃取法(SE)及超音波萃取法(Sonication)於不同污染齡土壤之萃取效率,並探討其與土壤中萘(Nap)生物降解間之關係,嘗試建立預測土壤中生物可及性之萃取及分析技術。
首先針對POSE萃取法進行試驗,結果顯示,在有機質比(S2O8/OM)為11.6 g/g的條件下,最佳的反應溫度與時間為70℃、時間3 hr。此外,SFE的最佳萃取條件為溫度50℃,壓力為5000 psi、時間為20分鐘,添加助溶劑(甲醇)劑量為0.5 mL。
而生物降解試驗結果顯示,污染齡久組土壤的污染物降解曲線在20天後與新鮮污染組有明顯差異性,主要原因為齡久污染組於20天後即大量殘留貯於土壤中,其受制於污染物的物化特性、土壤特性及有機物質類型的影響以及吸附作用造成的污染物齡久(Ageing)效應,導致新鮮污染組與齡久組會有如此差異性。
另外,經生物降解性與各萃取法之實驗結果比較分析顯示,POSE萃取法可氧化土壤中 Nap 之量與生物可降解量相近,差異在10% 以內,此方法比Sonication、SFE及SE更能預測土壤中 Nap 的生物可及性。然而,Sonication、SFE及SE在新鮮污染土壤中殘留率各別為0.25、0.17及0.14,而在齡久污染土壤中則為0.42、0.36及0.33故在本研究之試驗條件下,Sonication、SFE及SE與生物降解皆相差甚大,相關性甚低,且因為上述二種現象,而導致生物可降解被高估,因此無法適運用於預測Nap污染土壤之生物可及性。

The study tried to develop a technique to predict the bioavailability of naphthalene (Nap) in contaminated soils. In this study, the relationship between the biodegradable and extractable fraction of naphthalene in soils was also tested with Supercritical Fluid Extraction (SFE), persulfate oxidation in combination with Sonication Extraction (POSE), Soxhlet Extraction (SE), and Sonication Extraction.

In the study, three major parameters, i.e., the temperature, duration of persulfate oxidation, and the ratio of persulfate to soil organic matter (g S2O82-/g SOM), were investigated to obtain the optimum operating conditions of POSE method. The results showed that the optimum operating temperature and oxidation duration of the POSE method were 70℃ and 3 hr at the ratio of 11.6 g/g, respectively. For the SFE method, the tested operating conditions included the reaction temperature, pressure, extraction time, and co-solvents. The optimal conditions were 50℃, 5000 psi, 20 min extraction time, and 0.5 mL co-solvent of methanol, respectively.

The result of biodegradability study showed that there was a significant difference of contaminant biodegradation between aged soil and fresh contaminated soil after 20 days of operation. For the aged soil, naphthalene was strongly absorbed by soil. Therefore, naphthalene was not efficiently biodegraded. These result indicated that the physical and chemical properties of contaminants and soils were the dominant factors affecting the biodegradability of contaminants adsorbed in soils.

The results of biodegradability and extraction study showed that POSE oxidized similar amounts of Nap in soils as that biodegraded by microorganisms. POSE oxidation could be used to predict the biodegradable Nap in soils. Because of the difference of residual Nap in soil after POSE oxidation and biodegradation was only 10%, POSE was validated as an acceptable method in predicting the Nap bioavailability in soils compared with SFE, SE, and Sonication. The difference between these methods was the residual Nap in soils after extractable by Sonication, SFE, SE and was 0.25, 0.17 and 0.14, respectively in fresh soils. And in aged soils residual is 0.42, 0.36 and 0.33, respectively. These methods might overestimate the available Nap in soils compared with the biodegradable fraction. Therefore, they were not suitable to be used to predict the bioavailability of Nap in soils.
URI: http://hdl.handle.net/11455/5296
其他識別: U0005-1705200714515900
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.