Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5298
標題: 探討顆粒性厭氧產氫反應槽中各微生物組成關係對產氫效能之影響
Explore the Relationship Between Microbial Community and Hydrogen Production in a Granule-Forming Anaerobic Fermentation Reaction
作者: 官荻偉
Guan, Di-Wei
關鍵字: Dark fermentation;厭氧生物醱酵產氫;Streptococcus sp.;Klebsiella sp.;Granule activated sludge;Streptococcus sp.;Klebsiella sp.;顆粒污泥
出版社: 環境工程學系所
引用: 中文文獻 圖書 許駿發 (1998) 工業技術人才培訓計畫講義-高溫丁醇發酵之理論與應用. 台北: 經濟部工業局. 陳嘉芬 (1999) 現代遺傳學. 台北:藝軒圖書出版社. 蔡文城 (1984) 應用臨床微生物診斷學. 台北:九州出版社. 期刊 吳耿東 及 李宏台 (2004) 生質能源. 科學發展. 383:20-27 吳石乙, 白景成, 林祺能 及 陳政群 (2004) 生質產氫之三相流反應器介紹. 化工技術. 12: 129-146. 陳國誠 (1998) 微生物固定化技術在廢水處理的應用. 工業污染防治季刊. 17:1-23. 黃加成 (1991) 乳酸菌之特性與利用. 雜糧與畜產. 221:21-28. 論文集 吳石乙, 林奇賢, 黃俊榮, 許秉叡, 林棋能 及 張嘉修 (2005) 崩潰型生物可分解塑膠生物產氫可行性評估. 第三十屆廢水處理技術研討會論文集. 第113頁, 桃園. 李國興, 黃郁欣, 曾國瑞, 尹浚任, 林屏杰 及 張嘉修 (2005) 以攪拌式反應器進行連續式醱酵產氫之操作策略探討. 第三十屆廢水處理技術研討會論文集. 第88頁, 桃園. 鄭幸雄, 李學霖, 趙禹杰 及 黃良銘 (2005) 利用澱粉及蛋白腖複合基質進行厭氧生物產氫程序. 第三十屆廢水處理技術研討會論文集. 第14頁, 桃園. 鄭景鴻, 洪俊雄, 鄭如琇, 官荻偉 及 廖珮瑜 (2006) 以分子生物技術分析產氫系統中Clostridium族群之研究--專一性引子應用. 第三十一屆廢水處理技術研討會論文集. 第51頁, 台中. 論文 白明德 (1998) 厭氧生物產氫機制與程序操作策略之研究. 國立成功大學環境工程學系. 碩士論文, 台南. 余憲忠 (2005) 以流式細胞儀偵測厭氧產氫醱酵系統中微生物產氫活性. 國立中興大學生命科學所. 碩士論文, 台中. 李國興 (2004) 以顆粒污泥程序進行高速厭氧醱酵產氫. 逢甲大學化學工程學系.博士論文, 台中. 林明正 (2000) CSTR厭氧產氫反應槽之啟動及操作. 逢甲大學土木及水利工程學系. 碩士論文, 台中. 林祺能 (2002) 固定化細胞產氫Hydrogen Production with Immobilized Cells. 逢甲大學化學工程學系. 博士論文, 台中. 許淳鈞 (2001) 利用混合特定菌種生產氫氣之研究. 國立中央大學化學工程研究所. 碩士論文, 桃園. 陳欣微 (2005) 完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析. 國立中興大學環境工程學系. 碩士論文, 台中. 黃郁欣 (2005) 以創新之攪拌式顆粒污泥床進行厭氧醱酵產氫 逢甲大學化學工程學系. 碩士論文, 台中. 葉韋志 (2004) 不同高徑生物反應器對固定化細胞醱酵產氫之影響 逢甲大學化學工程學系. 碩士論文, 台中. 蔡孟倫 (2004) CSTR系統醱酵產氫之研究溫度效應與效能提升策略之探討. 逢甲大學化學工程學系. 碩士論文, 台中. 鄭如琇 (2006) 以微生物組成探討厭氧醱酵系統之產氫效能. 國立中興大學環境工程學系. 碩士論文, 台中. 賴欣宏 (2002) 不同環境條件下完全混合式反應槽厭氧產氫效率及反應力學之比較研究. 國立台中師範學院環境教育研究所. 碩士論文, 台中. 羅泳勝 (2005) 以反應曲面實驗設計法探討本土厭氧產氫菌Clostridium butyricum CGS2之最佳發酵產氫條件. 國立成功大學化學工程學系. 碩士論文,台南. 網路資料 大紀元時報 (2005) IEA:氫用量增世紀中可減一半溫室氣體排量. http://www.epochtimes.com/b5/5/12/2/n1140171.htm 粟德金 (2006) 美國石油時代的終結. http://www.washingtonobserver.org/document.cfm?documentid=1233&charid=2 經濟部能源局 (2006) 再生能源. http://www.taipower.com.tw/left_bar/power_life/power_development_plan/Regeneration_energy.htm 英文文獻 Adams, M.W.W., Mortenson, L.E., and Chen, J.S. (1980) Hydrogenase. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 594: 105-176. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., and Lukas, J. (2002) Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Akcil, A., Karahan, A.G., Ciftci, H., and Sagdic, O. (2003) Biological Treatment of Cyanide by Natural Isolated Bacteria (Pseudomonas sp.). Minerals Engineering 16: 643-649. Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995) Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiology Reviews 59: 143-169. Amann, R.I., Krumholz, L., and Stahl, D.A. (1990) Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology. Journal of Bacteriology 172: 762-770. Aristidou, A., and Penttila, M. (2000) Metabolic Engineering Applications to Renewable Resource Utilization. Current Opinion in Biotechnology 11: 187-198. Armor, J.N. (1999) The Multiple Roles for Catalysis in the Production of H2. Applied Catalysis A: General 176: 159-176. Baronofsky, J.J., Schreurs, W.J.A., and Kashket, E.R. (1984) Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum. Applied and Environmental Mircoblogy 48: 1134-1139. Batstone, D.J., Keller, J., and Blackall, L.L. (2004) The Influence of Substrate Kinetics on the Microbial Community Structure in Granular Anerobic Biomass. Water Research 38: 1390-1404. Biebl, H. (2001) Fermentation of Glycerol by Clostridium pasteurianum -- Batch and Continuous Culture Studies. Journal of Industrial Microbiology and Biotechnology 27: 18-26. BIO-RAD (2003) Protocol of Dcodetm Universal Mutation Detection System: BIO-RAD. Bowles, L.K., and Ellefson, W.L. (1985) Effects of Butanol on Clostridium acetobutylicum. Applied and Environmental Mircoblogy 50: 1165-1170. Brock, T.D., Madigan, M.T., Martiko, J.M., and Parker, J. (1994) Biology of Microorganisms: Pretice-Hall. Cato, E.P., Moore, W.L., and Finegold, D.L. (1986) Genus Clostridium. Bergey''s Manual of Systematic Bacteriology 2: 1141-1200. Chang, J.J., Chen, W.E., Shih, S.Y., Yu, S.J., Lay, J.J., Wen, F.S., and Huang, C.C. (2006) Molecular Detection of the Clostridia in an Anaerobic Biohydrogen Fermentation System by Hydrogenase mRNA-Targeted Reverse Transcription-PCR. Applied Microbial and Cell Physiology 70: 598-604. Chen, C.C., Lin, C.Y., and Chang, J.S. (2001) Kinetics of Hydrogen Production with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate. Applied Microbiology and Biotechnology 57: 56-64. Chen, J.S., and Mortenson, L.E. (1974) Purification and Properties of Hydrogenase from Clostridium pasteurianum W5. Biochimica et Biophysica Acta (BBA) - Protein Structure 371: 283-298. Chen, W.M., Tseng, Z.J., Lee, K.S., and Chang, J.S. (2005) Fermentative Hydrogen Production with Clostridium butyricum CGS5 Isolated from Anaerobic Sewage Sludge. International Journal of Hydrogen Energy 30: 1063-1070. Chen, X., Sun, Y., Xiu, Z., Li, X., and Zhang, D. (2006) Stoichiometric Analysis of Biological Hydrogen Production by Fermentative Bacteria. International Journal of Hydrogen Energy 31: 539-549. Chin, H.L., Chen, Z.S., and Chou, C.P. (2003) Fed-Batch Operation Using Clostridium acetobutyricum Suspension Cultures as Biocatalyst for Enhancing Hydrogen Production. Biotechnol Prog 19: 283-388. Collet, C., Adler, N., Schwitzguebel, J.P., and Peringer, P. (2004) Hydrogen Production by Clostridium thermolacticum during Continuous Fermentation of Lactose. International Journal of Hydrogen Energy 29: 1479-1485. Czuppon, T.A., Knez , S.A., and Newsome, D.S. (1996) Othmer Encyclopedia of Chemical Technology. New York: Wiley. Dabrock, B., Bahl, H., and Gottschalk, G. (1992) Parameters Affecting Solvent Production by Clostridium pasteurianum. Applied and Environmental Mircoblogy 58: 1233-1239. Das, D., and Veziroglu, T.N. (2001) Hydrogen Production by Biological Processes: A Survey of Literature. International Journal of Hydrogen Energy 26: 13-28. Delong, E.F., Wickham, G.S., and Pace, N.R. (1989) Phylogenetic stain: Ribosomal rRNA-Based Probes for the Indentification of Single Cells. Science 243: 1360-1363. Desvaux, M., Guedon, E., and Petitdemange, H. (2000) Cellulose Catabolism by Clostridium cellulolyticum Growing in Batch Culture on Defined Medium. Applied and Environmental Mircoblogy 66: 2461-2470. Diaz, E., Amils, R., and Sanz, J.L. (2003) Molecular Ecology of Anaerobic Granular Sludge Grown at Different Conditions. Water Science and Technology 48: 57-64. Dorigo, U., Volatier, L., and Humbert, J.F. (2005) Molecular Approaches to the Assessment of Biodiversity in Aquatic Micorbial Communities. Water Research. 39: 2207- 2218 Ezeji, T.C., Qureshi, N., and Blaschek, H.P. (2005) Continuous Butanol Fermentation and Feed Starch Retrogradation: Butanol Fermentation Sustainability Using Clostridium beijerinckii BA101. Journal of Biotechnology 115: 179-181. Fang, H., Zhang, T., and Liu, H. (2002a) Microbial Diversity of a Mesophilic Hydrogen-Producing Sludge. Applied Microbiology and Biotechnology 58: 112-118. Fang, H.H.P., Liu, H., and Zhang, T. (2002b) Characterization of a Hydrogen-Producing Granular Sludge. Biotechnology and Bioengineering 78: 44-52. Fang, H.H.P., Li, C., and Zhang, T. (2006a) Acidophilic Biohydrogen Production from Rice Slurry. International Journal of Hydrogen Energy 31: 683-692. Fang, H.H.P., Zhang, T., and Li, C. (2006b) Characterization of Fe-Hydrogenase Genes Diversity and Hydrogen-Producing Population in an Acidophilic Sludge. Journal of Biotechnology 126: 357-364. Fascetti, E., and Todini, O. (1995) Rhodobacter sphaeroides RV Cultivation and Hydrogen Production in a One- and Two-Stage Chemostat. Applied Microbiology and Biotechnology 44: 300-305. Ferris, M.J., and Ward, D.M. (1997) Seasonal Distributions of Dominant 16S rRNA-Defined Populations in a Hot Spring Microbial Mat Examinant by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Mircoblogy 63: 1375-1381. Flickinger, M. (1980) Current Biological Research in Conversion of Cellulosic Carbohydrates Intoliquid Fluels: How Far Have Wecome. Biotechnology and Bioengineering 22: 27-48. Franks, A.H., Harmsen, H.J., Raangs, G.C., Jansen, G.J., Schut, F., and Welling, G.W. (1998) Variations of Bacterial Populations in Human Feces Measured by Fluorescent in Situ Hybridization with Group-Specific 16S rRNA-Targeted Oligonucleotide Probes. Applied and Environmental Mircoblogy 64: 3336-3345. Freni, S., Calogero, G., and Cavallaro, S. (2000) Hydrogen Production from Methane through Catalytic Partial Oxidation Reactions. Journal of Power Sources 87: 28-38. Garcia, J.L., Patel, B.K.C., and Ollivier, B. (2000) Taxonomic, Phylogenetic, and Ecological Diversity of Methanogenic Archaea. Anaerobe 6: 205-226. Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P. (1995) Regulation of Metabolic Shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17: 287-297. Gottschalk, G. (1986) Bacterial Metabolism New York: Springer-Verlag. Gray, C.T., and Gest, H. (1965) Biological Formation of Molecular Hydrogen. Science 148: 186-192. Grotenhuis, J.T.C., Smit, M., Plugge, C.M., Yuansheng, X., van Lammeren, A.A.M., Stams, A.J.M., and Zehnder, A.J.B. (1991) Bacterial Composition and Structure of Granular Sludge Adapted to Different Substrates. Applied and Environmental Mircoblogy 57: 1942-1949. Hallenbeck, P.C., and Benemann, J.R. (2002) Biological Hydrogen Production; Fundamentals and Limiting Processes. International Journal of Hydrogen Energy 27: 1185-1193. Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I. (2002) Sustainable Fermentative Hydrogen Production: Challenges for Process Optimization. International Journal of Hydrogen Energy 27: 1339-1347. Huang, W.C., Chen, S.J., and Chen, T.L. (2006) The Role of Dissolved Oxygen and Function of Agitation in Hyaluronic Acid Fermentation. Biochemical Engineering Journal 32: 239-243. Imai, T., Ukita, M., Liu, J., Sekine, M., Nakanishi, H., and Fukagawa, M. (1997) Advanced Start up of UASB Reactors by Adding of Water Absorbing Polymer. Water Science and Technology 36: 399-406. Ingraham, J.L., Maaloe, O., and Neidhardt, F.C. (1983) Growth of the Bacteria Cell. Sunderland, Massachusetts. Jetten, M.S.M., de Bruijn, P., and Kuenen, J.G. (1997) Hydroxylamine Metabolism in Pseudomonas PB16: Involvement of a Novel Hydroxylamine Oxidoreductase. Antonie van Leeuwenhoek 71: 69-74. Jones, D.T., and Woods, D.R. (1986) Acetone-Butanol Fermentation Revisited. Microbiology Reviews 50: 484-524. Junelles, A.M., Janati-Idrissi, R., Petitdemange, H., and Gay, R. (1988) Iron Effect on Acetone-Butanol Fermentation. Current Microbiology 17: 299-303. Kapdan, I.K., and Kargi, F. (2006) Bio-Hydrogen Production from Waste Materials. Enzyme and Microbial Technology 38: 569-582. Kataoka, N., Miya, A., and Kiriyama, K. (1997) Studies on Hydrogen Production by Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria. Water Science and Technology 36: 41-47. Kato, S., Shin, H., Zong, J.C., Masaharu, I., and Yasuo, I. (2004) Effective Cellulose Degradation by a Mixed-Culture System Composed of a Cellulolytic Clostridium and Aerobic Non-Cellulolytic Bacteria. FEMS Microbiology Ecology 51: 133-142. Kawasaki, S., Nakagawa, T., Nishiyama, Y., Benno, Y., Uchimura, T., Komagata, K., Kozaki, M., and Niimura, Y. (1998) Effect of Oxygen on the Growth of Clostridium butyricum (Type Species of the Genus Clostridium), and the Distribution of Enzymes for Oxygen and For Active Oxygen Species in Clostridia. Journal of Fermentation and Bioengineering 86: 368-372. Kim, S.H., Han, S.K., and Shin, H.S. (2006) Effect of Substrate Concentration on Hydrogen Production and 16S rDNA-Based Analysis of the Microbial Community in a Continuous Fermenter. Process Biochemistry 41: 199-207. Kosourov, S., Tsygankov, A., Seibert, M., and Ghirardi, M.L. (2002) Sustained Hydrogen Photoproduction by Chlamydomonas reinhardtii: Effects of Culture Parameters. Biotechnology and Bioengineering 78: 731-740. Lamed, R.J., Lobos, J.H., and Su, T.M. (1988) Effects of Stirring and Hydrogen on Fermentation Products of Clostridium thermocellum. Applied and Environmental Mircoblogy 54: 1216-1221. Lay, J.J. (2000) Modeling and Optimization of Anaerobic Digested Sludge Converting Starch to Hydrogen. Biotechnology and Bioengineering 68: 269-278. Lay, J.J. (2002) Biohydrogen Generation by Mesophilic Anaerobic Fermentation of Microcrystalline Cellulose. Biotechnology and Bioengineering 74: 280 - 287. Lay, J.J., Lee, Y.J., and Noiko, T. (1999) Feasibility of Biologocal Hydrogen Product from Organic Fraction of Municipal Solid Waste. Water Research 11: 2569-2586. Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., and Chang, J.S. (2004) Anaerobic Hydrogen Production with an Efficient Carrier-Induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering 87: 648-657. Lee, Y. J., Miyahara, T., and Noike, T. (2002) Effect of pH on Microbial Hydrogen Fermentation. Journal of Chemical Technology & Biotechnology 77: 694-698. Lens, P.N.L., de Beer, D., Cronenberg, C.C.H., Houwen, F.P., Ottengraf, S.P.P., and Verstraete, W.H. (1993) Heterogeneous Distribution of Microbial Activity in Methanogenic Aggregates: pH and Glucose Microprofiles. Applied and Environmental Mircoblogy 59: 3803-3815. Lettinga, G., Velsen, A.F.M., Hobma, S.W., Zeeuw, W., and Klapwijk, A. (1980) Use of the Upflow Sludge Using Activated-Carbon Supported Packed-Bed Biological Wastewater Treatment. Biotechnology and Bioengineering 22: 699-734. Levin, D.B., Pitt, L., and Murray, L. (2004) Biohydrogen Production: Prospects and Limitations to Practical Application. International Journal of Hydrogen Energy 29: 173-185. Levin, D.B., Islam, R., Cicek, N., and Sparling, R. (2006) Hydrogen Production by Clostridium thermocellum 27405 from Cellulosic Biomass Substrates. International Journal of Hydrogen Energy 31: 1496-1503. Lin, C.Y., and Chang, R.C. (1999) Hydrogen Production during the Anaerobic Acidogenic Conversion of Glucose. Journal of Chemical Technology & Biotechnology 74: 498-500. Lin, C.Y., and Lay, C.H. (2005) A Nutrient Formulation for Fermentative Hydrogen Production Using Anaerobic Sewage Sludge Microflora. International Journal of Hydrogen Energy 30: 285-292. Lin, T.Y., and Chien, M.F.C. (2007) Exopolysaccharides Production as Affected by Lactic Acid Bacteria and Fermentation Time. Food Chemistry 100: 1419-1423. Lipski, A., Friedrich, U., and Altendorf, K. (2001) Application of rRNA-Targeted Oligonucleotide Probes in Biotechnology. Applied Microbiology and Biotechnology 56: 40-57. Liu, G., and Shen, J. (2004) Effects of Culture and Medium Conditions on Hydrogen Production from Starch Using Anaerobic Bacteria. Journal of Bioscience and Bioengineering 98: 251-256. Liu, W.T., Mono, T., and Nakamura, K. (1996) Glycogen Accumulating Population and Its Anaerobic Uptake in Anaerobic-Aerobic Activated Substrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological Phosphate Removal. Water Research 30: 75-82. Long, M.N., Huang, J.L., Wu, X.B., Xu, H.J., Chen, J.Z., Long, C.N., Zhu, F.Z., and Xu, L.H. (2005) Isolation and Characterization of a High H2-Producing strain Klebsiella oytoca HP1 from a Hot Spring. Research in Microbiology 156: 76-81. Lovitt, R.W., Longin, R., and Zeikus, J.G. (1984) Ethanol Production by Thermophilic Bacteria: Physiological Comparison of Solvent Effects on Parent and Alcohol-Tolerant Strains of Clostridium thermohydrosulfuricum. Applied and Environmental Mircoblogy 48: 171-177. MacLeod, F.A., Guiot, S.R., and Costerton, J.W. (1990) Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor. Applied and Environmental Mircoblogy 56: 1598-1607. Madigan, M.T., and Martinko, J.M. (2006) Brock:Biology of Microorganisms. USA: Prentice Hall International. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.H. (1992) Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Systematic and Applied Microbiology 15: 593-600. Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., and Seibert, M. (2000) Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii. Plant Physiology 122: 127-136. Meyer, J., and Gagnon, J. (1991) Primary Structure of Hydrogenase I from Clostridium pasteurianum. Biochemistry 30: 9697-9704. Miyake, J., and Kawamura, S. (1987) Efficiency of Light Energy Conversion to Hydrogen by the Photosynthetic Bacterium Rhodobacter sphaeroides. International Journal of Hydrogen Energy 12: 147-149. Miyake, J., Miyake, M., and Asada, Y. (1999) Biotechnological Hydrogen Production: Research for Efficient Light Energy Conversion. Journal of Biotechnology 70: 89-101. Morimoto, K., Kimura, T., Sakka, K., and Ohmiya, K. (2005) Overexpression of a Hydrogenase Gene in Clostridium paraputrificum to Enhance Hydrogen Gas Production. FEMS Microbiology Letters 246: 229-234. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Mircoblogy 59: 695-700. Nandi, R., and Sengupta, S. (1998) Microbial Production of Hydrogenase: An Overview. Critical Reviews in Microbiology 24: 61-84. Nath, K., and Das, D. (2004) Improvement of Fermentative Hydrogen Production: Various Approaches. Applied Microbiology and Biotechnology. 65: 520-529. Ni, M., Leung, D.Y.C., Leung, M.K.H., and Sumathy, K. (2006) An Overview of Hydrogen Production from Biomass. Fuel Processing Technology 87: 461-472. Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K. (2007) A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable and Sustainable Energy Reviews 11: 401-425. Nielsen, A.T., Liu, W.T., Filipe, C., Grady, L. Jr., Molin, S., and Stahl, D.A. (1999) Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Applied and Environmental Mircoblogy 65: 1251-1258. Nochur, S.V., Demain, A.L., and Roberts, M.F. (1992) Carbohydrate Utilization by Clostridium thermocellum: Importance of Internal pH in Regulation Growth. Enzyme and Microbial Technology. 14: 338-349. O''Brien, R.W., and Morris, J.G. (1971) Oxygen and the Growth and Metabolism of Clostridium acetobutylicum. Journal of general microbiology 68: 307-318. Patil, P., De Abreu, Y., and Botte, G.G. (2006) Electrooxidation of Coal Slurries on Different Electrode Materials. Journal of Power Sources 158: 368-377. Payne, M.J., Chapman, A., and Cammack, R. (1993) Evidence for an [Fe]-Type Hydrogenase in the Parasitic Protozoan Trichomonas vaginalis. FEBS Letters 317: 101-104. Peters, J.W., Lanzilotta, W.N., Lemon, B.J., and Seefeldt, L.C. (1998) X-Ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 282: 1853-1858. Poulsen, L.K., Ballard, G., and Stahl, D.A. (1993) Use of rRNA Fluorescence in situ Hybridization for Measuring the Activity of Single Cells in Young and Established Biofilms. Applied and Environmental Mircoblogy 59: 1354-1360. Ramachandran, R., and Menon, R.K. (1998) An Overview of Industrial Uses of Hydrogen. International Journal of Hydrogen Energy 23: 593-598. Regan, J.M., Harrington, G.W., and Noguera, D.R. (2002) Ammonia-and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System. Applied and Environmental Mircoblogy 68: 73-81. Saiki, Y., Iwabuchi, C., Katami, A., and Kitagawa, Y. (2002) Microbial Analyses by Fluorescence in situ Hybridization of Well-Settled Granular Sludge in Brewery Wastewater Treatment Plants. Journal of Bioscience and Bioengineering 93: 601-606. Schönheit, P., Brandis, A., and Thauer, R.K. (1979) Ferredoxin Degradation in Growing Clostridium pasteurianum during Periods of Iron Deprivation. Archives of Microbiology 120: 73-76. Schmitz, R., Daniel, R., Deppenmeier, U., and Gottschalk, G. (2006) The Anaerobic Way of Life. The Prokaryotes. Schwartz, R.D., and Keller, F.A.Jr. (1982) Acetic Acid Production by Clostridium thermoaceticum in pH-Controlled Batch Fermentations at Acidic pH. Applied and Environmental Mircoblogy 43: 1385-1392. Sleat, R., Mah, R., and Robinson, R. (1984) Isolation and Characterization of an Anaerobic,Cellulolytic Bacterium,Clostridium cellulovorans sp.nov. Applied and Environmental Mircoblogy 48: 88-93. Song, Y., Liu, C., Molitoris, D., Tomzynski, T.J., Mc Teague, M., Read, E., and Finegold, S.M. (2002) Use of 16S-23S rRNA Spacer-Region (SR)-PCR for Identification of Intestinal Clostridia. Systematic and Applied Microbiology 25: 528-535. Solomon, B.O., Zeng, A.P., Biebl, H., Schlieker, H., Posten, C., and Deckwer, W.D. (1995) Comparison of the Energentic Efficiencies of Hydrogen and Oxychemicals Formation in Klebsiella pneumoniae and Clostridium butyricum during Anaerobic Growth on Glycerol. Biotechnology 39: 107-117. Stackebrandt, E., and Rainey, F.A. (1997) The Clostridia : Molecular Biology and Pathogenesis. The Clostridia : Molecular Biology and Pathogenesis. Rood, J.I., McClane, B. A., Songer, J. G. and Titball, R.W. (ed): Academic Press, pp. 3-19. Stahl, D.A., and Amann, R.I. (1991) Development and Application of Nucleic Acid Probes in Bacterial Systematics. Sequencing and Hybridization Techniques in Bacterial Systematics. E. Stackebrandt, and M. Goodfellow (eds). England: John Wilry and Sons, pp. 205-248. Storz, G., Tartaglia, L.A., Farr, S.B., and Ames, B.N. (1990) Bacterial Defenses against Oxidative Stress. Trends in Genetics 6: 363-368. Straus, D.C. (1986) Production of an Extracellular Toxic Complex by Various strains of Klebsiella pneumoniae. American Society for Microbiology 55: 44-48. Suzuki, Y. (1982) On Hydrogen as Fuel Gas. International Journal of Hydrogen Energy 7: 227-230. Sveshnikov, D.A., Sveshnikova, N.V., Rao, K.K., and Hall, D.O. (1997) Hydrogen Metabolism of Mutant Forms of Anabaena variabilis in Continuous Cultures and under Nutritional Stress. FEMS Microbiology Letters 147: 297-301 Taguchi, F., Chang, J.D., Mizukami, N., Saito-Taki, T., and Hasegawa, K. (1993) Isolation of a Hydrogen-Producing Bacterium, Clostridium beijerinckii strain AM21B, from Termites Canadian Journal of Microbiology 39: 726-730. Take, T., Tsurutani, K., and Umeda, M. (2007) Hydrogen Production by Methanol-Water Solution Electrolysis. Journal of Power Sources 164: 9-16. Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. (2005) Crucial Role of Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the Terrestrial Cyanobacterium nostoc Commune. Applied and Environmental Microbiology 71: 7327-7333. Tanisho, S., and Ishiwata, Y. (1994) Continuous Hydrogen Production from Molasses by the Bacterium Enterobacter Aerogenes. International Journal of Hydrogen Energy 19: 807-812. Tanisho, S., Kuromoto, M., and Kadokura, N. (1998) Effect of CO2 Removal on Hydrogen Production by Fermentation. International Journal of Hydrogen Energy 7: 559-563. Terracciano, J.S., Schreurs, W.J.A., and Kashket, E.R. (1987) Membrance H+ Conduction of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum Applied and Environmental Mircoblogy 53: 782-786. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001) Characterization of a Microorganism Isolated from the Effluent of Hydrogen Fermentation by Microflora. Journal of Bioscience and Bioengineering 92: 397-400. van Beelen, P., van der Hoeven, J.S., de Jong, M.H., and Hoogendoorn, H. (1986) The Effect of Oxygen on the Growth and Acid Production of Streptococcus mutans and Streptococcus sanguis. FEMS Microbiology Letters 38: 25-30. Van Dyke, M.I., and McCarthy, A.J. (2002) Molecular Biological Detection and Characterization of Clostridium populations in Municipal Landfill Sites. Applied and Environmental Mircoblogy 68: 2049-2053. Vasconcelos, I., Girbal, L., and Soucaille, P. (1994) Regulation of Carbon and Electron Flow in Clostridium acetobutylicum Grown in Chemostat Culture at Neutral pH on Mixtures of Glucose and Glycerol. Journal of Bacteriology 176: 1443-1450. Veziroglu, T.N. (1995) Twenty Years of the Hydrogen Movement 1974-1994. International Journal of Hydrogen Energy 20: 1-7. Wagner, M., Amann, R., Lemmer, H., Manz, W., and Schleifer, K.H. (1994) Probing Activated Sludge with Fluorescently Labeled rRNA Targeted Oligonucleotides. Water Science and Technology 29: 15-23. Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing Fluorescent in situ Hybridization with rRNA-Targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cytometry 14: 136-143. Wang, G., and Wang, D.I.C. (1984) Elucidation of Growth Inhibition and Acetic Acid Production by Clostridium thermoaceticum. Applied and Environmental Mircoblogy 47: 294-298. Woese, C.R. (1987) Bacterial Evolution. Microbiology Reviews 51: 211-271. Wu, S.Y., Hung, C.H., Lin, C.N., Chen, H.W., Lee, A.S., and Chang, J.S. (2006) Fermentative Hydrogen Production and Bacterial Community Structure in High-Rate Anaerobic Bioreactors Containing Silicone-Immobilized and Self-Flocculated Sludge. Biotechnology and Bioengineering 93: 934-946. Yokoi, H., Maki, R., Hirose, J., and Hayashi, S. (2002) Microbial Production of Hydrogen from Starch-Manufacturing Wastes. Biomass and Bioenergy 22: 389-395. Yokoi, H., Maeda, Y., Hirose, J., Hayashi, S., and Takasaki, Y. (1997) H2 Production by Immobilized Cells of Clostridium butyricum on Porous Glass Beads. Biotechnology Techniques 11: 136-143. Zhang, H., Bruns, M.A., and Logan, B.E. (2006) Biological Hydrogen Production by Clostridium acetobutylicum in an Unsaturated Flow Reactor. Water Research 40: 728-734. Zhang, T., Liu, H., and Fang, H.H.P. (2003) Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. Journal of Environmental Management 69: 149-156. Zhang, Y., and Shen, J. (2006) Effect of Temperature and Iron Concentration on the Growth and Hydrogen Production of Mixed Bacteria. International Journal of Hydrogen Energy 31: 441-446. Zhu, Y., and Yang, S.T. (2004) Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium tyrobutyricum. Journal of Biotechnology 110: 143-157.
摘要: 
厭氧生物醱酵產氫槽已被證實具有良好的產氫能力,此系統通常操作在常溫、常壓與中性pH條件下,不僅操作容易且不需投入大量的成本;厭氧生物醱酵產氫系統之產氫效能和系統中參與醱酵產氫的微生物族群,有著密切的關係,其中絕對厭氧菌Clostridium sp.被認定為厭氧醱酵菌中最具產氫潛力之菌種;本實驗室早期針對逢甲大學「生物氫能研究團隊」所架設之生物醱酵產氫槽進行菌相分析,結果顯示不同操作條件下,微生物菌相皆存在Clostridium sp.、Streptococcus sp.及Klebsiella sp.,當反應槽操作在低水力停留時間下,系統中僅剩C. pasteurianum及Streptococcus sp.,且反應槽操作在此條件下,具最佳的產氫速率,且同時可觀察到顆粒污泥的生成。本研究則欲釐清不同菌屬存在於產氫反應槽中對產氫效能之影響。
結果指出C. pasteurianum最適生長溫度為37℃及初始pH值為7.0條件下,且在低碳源濃度下可得最大的氫氣產率為1.07 mol H2/mol glucose。K. oxytoca測試結果則顯示,其氫氣產量明顯低於C. pasteurianum,且此菌株在厭/好氧環境下皆能有效利用氧氣,因此可得知Klebsiella sp.存在於生物產氫反應槽中,能有效的消耗系統中的氧氣,使環境達到更厭氧的狀態以利絕對厭氧產氫菌的生長。菌株Strep. lutetieusis則在厭氧環境下具有分泌胞外多醣的能力,此類胞外多醣則具有黏稠等特性,因此推估Strep. lutetieusis所分泌的胞外多醣有助於細胞凝聚。透過Alcian blue染色結果指出,群聚的細胞中有胞外多醣的存在,且胞外多醣大多累積於污泥群聚的中心,因此可得知,胞外多醣生成與顆粒污泥形成的關係的確扮演著重要的角色。此外透過顆粒污泥切片觀察結果,亦可得知顆粒污泥的組成主要是以Clostridium sp.及Streptococcus sp.為主。
綜合以上的結果可得知,生物產氫反應槽中主要的優勢菌種仍是以Clostridium sp.為主,Klebsiella sp.則可以消耗反應槽中的氧氣使環境達到更厭氧狀態,反應槽中常見的非產氫菌Streptococcus sp.,則扮演者凝聚細胞形成顆粒污泥的角色,顆粒污泥的生成則可以減少氫氣反應槽操作在低水力停留時間條件下污泥洗出的現象。

The potential of efficient anaerobic fermentation reactor in hydrogen-production system had been well-documented. Benefits of applying these so-called dark fermentation bioreactor includes high hydrogen-producing capacity, high conversion efficiency, less energy intensive, less reactor volume needed and possible wastes reused. Microbial community structure analysis on sludge collected from our previous study showed that C. pasteurianum, Klebsiella sp. and Streptococcus sp. were the major microorganisms in the anaerobic fermentation reactors operated under differential hydraulic retention time. The best hydrogen producing efficiency occurred at low hydraulic retention time when a large amount of granules were self-formed and the predominated bacteria in these conditions were C. pasteurianum and Streptococcus sp. Therefore, the aim of this study is to understand the relationship between these microorganisms and their hydrogen-producing ability in a granule forming anaerobic fermentation reactor.
The best hydrogen yield and hydrogen production rate of by a pure culture of C. pasteurianum were observed at 37℃ and at an initial pH of 7.0. K. oxytoca could use oxygen as electron acceptor for growth, its further consumption of oxygen would lead to an anaerobic environment suitable for growth of strict anaerobic C. pasteurianum. Dominate bacterial groups existed in the granule activated sludge was proved to be Clostridium sp. and Streptococcus sp. by the using the Fluorescent in situ Hybridization technique (FISH). Result of Alcian Blue Stain shows that most of EPS existed in the center of aggregated bacterial granular and based on the pure culture experiments, this EPS complex was found to be produced by Strep. lutetieusis . Therefore, there is no doubt that these Streptococcus-produced EPS complexes played an important role in the forming of granule activated sludge.
From all of the data collected in this research, it can be concluded that Clostridium sp. is without a doubt the predominated hydrogen producing bacteria in anaerobic fermentation reactor. The existence of Klebsiella sp. would consume oxygen in this system and Streptococcus sp. was found to be in the position of helping bacteria aggregate and forming granule activated sludge, which can avoid being washout when the reactor was operated at low HRT.
URI: http://hdl.handle.net/11455/5298
其他識別: U0005-1707200715100100
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.