Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5314
標題: 製備與改質環管狀二氧化鈦光觸媒及雙氯酚異相光催化降解之研究
The study of preparing and modifying circular tube TiO2 thin film and degradation of dichlorophenol photocatalysis
作者: 劉謹銓
Liu, Chin-Chuan
關鍵字: photocatalysis;光催化;titanium dioxide;dichlorophenol;chemical vapor disposition method;catalyst modification;二氧化鈦;二氯酚;化學氣相沈積法;觸媒改質
出版社: 環境工程學系所
引用: 申洋文,車雲霞,無機化學叢書,第八卷,鈦分類,北京:科學出版社 (1998)。 林榮良,TiO2光催化原理和應用例子,CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), Vol. 60, No. 3, pp. 457-461 (2002)。 吳怡玲,以化學氣相沈積法製備二氧化鈦光觸媒之研究,碩士論文,國立中興大學環境工程研究所 (2001)。 邵盈傑,二氧化鈦光觸媒對水溶液中小分子有機酸之去除及大腸桿菌殺菌效果之探討,碩士論文,國立中興大學環境工程研究所 (2005)。 胡振國譯,半導體元件-物理與技術,全華圖書公司 (1989)。 莊達人,VLSI製程技術,高立出版社,台灣 (1998)。 陳松興,異相催化反應,徐氏基金會 (1978)。 陳俊翔,二氧化鈦觸媒製備對氣相苯及甲苯光催化分解之影響,碩士論文,國立台灣科技大學化學工程系 (2000)。 陳耀茂譯,田口實驗計畫法,滄海書局 (1997)。 黃欣栩、曾迪華、莊連春,UV/TiO2系統中氫氧自由基產生與單氯苯降解效果之相關性,第二十九屆廢水處理技術研討會 (2004)。 張名毅,以UV/TiO2程序處理染整廢水可行性之研究,碩士論文,國立中興大學環境工程研究所 (1999)。 張季娜等譯,田口式品質工程導論,中華民國品質管制學會 (1989)。 楊金鐘、鄭人豪,利用薄膜式奈米級光觸媒處理氯苯水溶液之研究,第一屆環境保護與奈米科技學術研討會論文集 (2004)。 趙鵬文,以UV/TiO2程序處理氣相中三氯乙烷之研究,碩士論文,國立中興大學環境工程學系 (1999)。 劉暢、暴寧鐘、楊祝紅、陸小華,催化學報,22,pp. 215-218 (2001)。 謝芳生、劉濱達譯,微電子學,東華書局 (1986)。 盧明俊、阮國棟、陳重男,二氧化鈦薄膜催化光分解二氯松之研究,第十六屆廢水處理技術研討會論文集 (1991)。 盧明俊、陳重男、林欣棟、張國泰,比較2-氯酚於UV及UV/TiO2/Fe3+程序中之分解途徑,第六屆海峽兩岸環境保護研討會,台北高雄,pp1169-1173(1999) 賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所 (2000)。 Aegerter, M.A., “Sol-gel: science and technology.” World Scientific, New Jersey. (1989) Aguado, M. A., and M. A. Anderson, “Degradation of Formic Acid over Semiconducting Membranes Supported on Glass: Effects of Structure and Electronic Doping”, Solar Energy Materials & Solar Cells., Vol. 28, p. 345 (1993)。 Albert, M., Y. M. Gao, D. Toft, K. Dwight, and A. Wold, “Photoassisted Gold Deposition of Titanium Dioxide”, Materials Research Bulletin, Vol. 27, p. 961 (1992)。 Annapragada, R., R. Leet, R. Changrani, and G. B. Raupp, “Vacuum Photocatalytic Oxidation of Trichloroethylene”, Environmental Science & Technology, Vol. 31, p. 1898 (1997)。 Antonaraki, S. , E. Androulaki, D. Dimotikali, A. Hiskia, E. Papaconstantinou, “Photolytic degradation of all chlorophenols with polyoxometallates and H2O2”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 148 pp.191-197 (2002) Augugliaro,V., M.J. López-Muñoz, L. Palmisano and J. Soria, “Influence of pH on the Degradation Kinetics of Nitro-phenol Isomers in a Heterogeneous Photocatalytic System”, Applied Catalysis A : general, Vol. 10l, pp. 7-13 (1993)。 Axelsson, A. k. , L. J. Dunnea, ”Mechanism of photocatalytic oxidation of 3,4-dichlorophenol on TiO2 semiconductor surfaces”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 144, pp. 205-213(2001)。 Barbeni, M., E. Pramauro, and E. Pelizzetti, “Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles”, Chemosphere, Vol. 14, No. 2, pp. 195 (1985)。 Brinker, C. J. and G. W. Scherer, “Sol gel science.” Academic Press. (1990)。 Bulent E. and Yoldas, “Hydrolysis of titanium alkoxide and effect of hydrolytic polycondensation parameters.” Journal of Materials Science, Vol. 21, pp. 1087-1092. (1986)。 Childs, L. P. and D. F. Ollis, “Is Photocatalysis Catalytic?”, Journal of Catalysis, Vol. 66, p. 383 (1980)。 Chen, H. W., Ku, Y., and Kuo, Y. L., "Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis." Water Research, In Press, Corrected Proof. (2007)。 Chen, J., D. F. Ollis, W. H. Rulkens, and H. Bruning, “Kinetic Processes of Photocatalytic Minerlization of Alcohols on Metallized Titaium Dioxde”, Water Research, Vol. 33, No. 5, pp. 1173-1180 (1999)。 Chen, L. C. and T. C. Chou, “Photodecolorization of Methyl Orange Using Silver Ion Modified TiO2 as Photocatalyst”, Industrial & Engineering Chemistry Research, Vol. 33, pp. 1436-1443 (1994)。 Daneshvar, N., M. Rabbani, N. Modirshahla and M. A.Behnajady, “Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process.”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 168, Issue. 1-2, pp. 39-45 (2004)。 Dean, J. A., ed., Lange''s Handbook of Chemistry, Ilth ed., Mcgraw-Hill, New York, pp. 3-123 (1973)。 Dibble, L. A., “Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated TiO2”, Ph. D. Dissertation, Arizona State Univ. (1989)。 Dibble, D. A. and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams”, Environmental Science & Technology, Vol. 26, pp. 492 (1992)。 Doede, C. M. and C. A. Walker, “Photochemical Engineering”, Chemical Engineering, Vol. 62, No. 2 , pp. 159 (1955)。 Doeuff, S., Henry, M., Sanchez, C. and Livage, J., "Hydrrolysis of titanium alkoxide: Modification of the molecular precursor by acetic acid." Journal of non-crystalline solids, Vol. 89, pp. 206-216(1987)。 Driessen, M. D., and V. H. Grassian, “Photooxidation of Trichloroethylene on Pt/ TiO2”, Journal of Physical Chemistry B, Vol. 102, p. 1418(1998)。 Ewa L. K. , R. B. James, “ Peroxide Mediated Photodegradation of 4-Chlorophenol As Studied by a Flash Photolysis/HPLC Technique”, Enviromental Sci. Technology , Vol. 26, No. 2, pp.259-261(1992) Finklea, H. O., “Semiconductor Electrode”, Elsevier Press, New York (1988)。 Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis”, Chemical Reviews, Vol. 93, pp. 341-350 (1993)。 Fuyuki, T., T. Kobayashi, and H. Matsunami, “Effects of Small Amount of Water on Physical and Electrical Propities of TiO2 Film Deposited by CVD Method, “J. Electrochem. Soc.:Solid-State and Technology, Vol. 135, p. 248(1988). Gao, Y. M., H. S. Shen, K. Dwight, and A. Wold, “Preparation and Photocatalytic Properties of Titanium (IV) Oxide Films”, Materials Research Bulletin., Vol. 27, p. 1023 (1992)。 Gotic, M., Ivanda, M., Seculic, A., Music, S., Popovic, S., Turkovic, A. and Furic, K., "Microstructure of nanosized TiO2 obtained by sol-gel synthesis." Materials Letters, Vol. 28, pp. 225-229. (1996) Gratzel, M., Energy :Resources through Photochemistry and Catalysis,Acadamic Press lnc(1983)。 Gratzel, M., “Colloidal Semiconductor-in Photocatalysis”, Serpone, N. and Pelizzetti, E., Ed., John Wiley & Sons, New York(1989)。 Hague, D. C. and Mayo, M. J., “Controlling crystallinity during processing of nanocrystalline titania.” Journal of the American Ceramic Society, Vol. 77, pp.1957-1960(1994)。 Herrmann, J. M., H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, and A. Fernandez, Applied Catalysis B : Environmental, Vol. 13, p. 219(1997)。 Hirano, K., H. Asayama, A. Hoshino, and H. Wakatsuki, “Metal Power Addition Effect on the Photocatalytic Reactions and the Photo-generated Electric Charge Collected at an Inert Electrode in Aqueous TiO2 Suspensions”., Journal of Photochemistry & Photobiology A : Chemistry, Vol. 110, pp. 307-311 (1997)。 Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chemical Reviews, Vol. 95, pp. 69-75(1995)。 Hu, C., J. C. Yu, Z. Hao and P. K. Wong, “Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions.”, Applied Catalysis B : Environmental, Vol. 42, pp. 47-55 (2003)。 Hufschmidt, D., D. Bahnemanna, J. J. Testa, C. A. Emilio and M. I. Litte, “Enhancement of the photocatalytic activity of various TiO2 materials by platinisation”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 148, pp. 223–231 (2002)。 Hung, C. H. , “Gas Phase photocatalytic Degradation of Trichloroethylene and Formation of Reaction Product on Immobilized Titanium Dioxide”, Ph. D. Dissertation, University of Purdue, West Lafayette, USA(1995)。 Hung, C. H. and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, Environmental Science & Technology, Vol. 31, p. 562 (1997)。 Hwang S., M. C. Lee and W. Choi, “Highly enhanced photocayalytic oxidation of CO titania deposited with Pt nanoparticles : kinetics and mechanism.”, Applied Catalysis B : Environmental, Vol. 46, pp. 49-63 (2003)。 Ilisz I. , D. András, M. Károly, F. András, D. Imre, ”Removal of 2-chlorophenol from water by adsorption combined with TiO2 photocatalysis”, Applied Catalysis B: Environmental, Vol. 39, pp. 247–256(2002)。 Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M.. "Preparation of stable anatase-type TiO2 and its photocatalytic performance." International Journal of Inorganic Materials, Vol. 3, pp. 809–811(2001)。 Jackson, J. D.:Classical Electrodynamics, Wiley & sons, New York, pp. 424 (1975)。 Jardim, W. F. and S. G. Moraes and M. M. K. Takiyama, “Photocatalytic Degradation of Aromatic Chlorinated Compounds Using TiO2: Toxicity of Intermediates”, Wat. Res. Vol. 31, No. 7, pp.1729-1732(1997)。 Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces”, Chemical Reviews, Vol. 93, pp. 267-269 (1993)。 Kamat, P. V. and D. Meisel, “Nanoscience opportunities in environmental remediation.”, Comptes Rendus Chimie,Vol. 6, pp. 999-1007 (2003)。 Kato, S., Y. Hirano, M. Iwata, T. Sano, K. Takeuchi and S. Matsuzawa, “Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide.”, Applied cayalysis B : Environmental, Vol. 57, pp. 109-115 (2005)。 Kima, S. B., S. C. Hongb, “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst.”, Applied Catalysis B : Environmental, Vol. 35, pp. 305-315 (2002)。 Kim, E. J. and Hahn, S. H., "Microstructure and photoactivity of titania nanoparticles prepared in nonionic W/O microemulsions." Material Science and Engineering A, Vol. 303(1-2), pp. 24-29(2001)。 Kumar, K. P., Keizer, K., Burggraaf, A. J., Okubo, T., Nagamoto, H. and Morooka, S., "Densification of nanostructured titania assisted by aphase-transformation," Nature, Vol. 358, pp. 48-51(1992)。 Kirkbir, Fk. and H. Komiyama, “Formation and Growth Mechanism of Porous, Amorphous, and Fine Particles Prepared by Chemical Vapor Deposition. Titania From Titanium Tetraisopropoxide, “The Canadian Journal of Engineering, Vol. 65, p. 759(1987)。 Kitamura, K., K. Sayama, H. Kusama, K. Okabe and H. Arakawa “In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2”, Applied Catalysis A: General, Vol. 165, Issues 1-2, pp. 391-409(1997)。 Kondo, M. M., and W. F. Jardim, “Photodegration of Chloroform and Urea Using Ag-Loading Titanium Dioxide as Catalyst.”, Water Research, Vol. 25, pp. 823-827 (1991)。 Korman, C., D. W. Bahnemann, and M. R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO and Desert Sand”, Environmental Science & Technology, Vol. 24, p. 798 (1988)。 Ksibi, M., A. Zemzemi and R. Boukchina, “Photocatalytic degradability of substituted phenols over UV irradiated TiO2.”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 159, pp. 61-70 (2003)。 Ku, Y., R.-M. Leu and K.-C. Lee, “Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide”,Water Research,Vol. 30, Issue 11, pp. 2569-2578(1996)。 Lam, S. W., K. Chiang, T. M. Lim, R. Amal and G. K.-C. Low, “Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol.”, Applied Catalysis B : Environmental, Vol. 55, pp. 123-132 (2005)。 Lee, M. S., S. S. Park, G.-D. Lee, C.-S. Ju and S.-S. Hong, “Synthesis of TiO2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity.”, Catalysis Today, Vol. 101, pp. 283-290 (2005)。 Legan, R. W., “Ultraviolet Light Takes on CPI Roles”, Chemical Engineering, January, p. 95 (1982)。 Lewis, N. S. and M. L. Rosenbluth, “Theory of Semiconductor Materials”, in Photocatalysis: Fundamentals and Applications; Serpone, N. and Pelizzetti, Ed., John Wiley & Sons, New York (1989)。 Li, C.-H., Y.-H. Hsieh, W.-T. Chiu, C.-C. Liu and C.-L. Kao, “Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts”, Separation and Purification Technology, Vol. 58, Issue 1, pp. 148-151(2007)。 Li, F. B. and X. Z. Li, “The Enchancement of Photodegradation Efficiency Using Pt-TiO2 Catalyst”, Chemodphere, Vol. 48, pp. 1103-111 (2002)。 Lifongo, L. L., D. J. Bowden and P. Brimblecombe, “Photodegradation of haloacetic acids in water.”, Chemosphere, Vol. 55, pp. 467-476 (2004)。 Liu, S. X., Z. P. Qu, X. W. Hanb and C. L. Suna, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide”, Catalysis Today, Vol. 93-95, pp. 877-884 (2004)。 Maron, S. H. and J. B. Lando, “Fundamentals of Physical Chemistry”, Macmillan Publishing Co. Inc., New York, p. 720(1974)。 Marruyama, T., and A. Susuma, “Titanium Dioxide Thin Films Prepared by Chemical Vapor Deposition”, Solor Energy Material and Solor Cells, Vol. 26, pp. 232(1992)。 Mohamed, O. S., A. E.-A. M. Gaber and A. A. Abdel-Wahab, “Photocatalytic oxidation of selected aryl alcohols in acetonitrile.”, Journal of Photochemistry and Photociology A : Chemistry, Vol. 148, pp. 205-210 (2002)。 Ohno, T. , F. Tanigawa, K. Fufihara, S. Izumi, and M. Matsumura, “Photocatalytic Oxidation of Water by Visible Light Using Ruthenium-Doped Titanium Dioxide Powder”, Journal of Photochemistry and Photociology A : Chemistry, Vol. 127, pp. 107-110 (1999)。 Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of the Chemical Society of Japan, Vol. 58, pp. 2015-2022 (1985)。 O11is, D. F., E. Pelizzetti, and N. Serpone,“Destruction of Water Contaminants”, Environmental Science & Technology, Vol. 25, No. 9 (1991)。 Pandiyan, T. , O. M. Rivas, J. O. Martinez, G. B. Amezcua, M. A. Martinez-Carrillo, “Comparison of Method for the Photochemical Degradation of Chlorophenol”, Journal of Photobiology A: Chemistry 146,pp.149-155(2002)。 Paola, A. D., E. García-López, S. Ikeda, G. Marcì, B. Ohtani and L. Palmisano, “Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2”, Catalysis Today, Vol. 75, Issues 1-4, pp. 87-93(2002)。 Paola, A. D., V. Augugliaro, L. Palmisano, G. Pantaleo and E. Savinov, “Heterogeneous photocatalytic degradation of nitrophenols.”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 155, pp. 207-214 (2003)。 Park, H. K., Kim, D. K. and Kim, C. H., “Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4.” Journal of the American Ceramic Society, Vol. 80, pp. 743-749(1997)。 Park, H. K., Moon, Y. T., Kim, D. K. and Kim, C. H., “Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2.” Journal of the American Ceramic Society, Vol. 79, pp. 2727-2734. (1996)。 Park, S. D., Cho, Y. H., Kim, W. W. and Kim, S. J., “Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature.” Journal of Solid State Chemistry, Vol. 146, pp. 230-238. (1999)。 Peill, N. J. and M. R. Hoffmann, “Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor: Photocatalytic Degradation of 4-Chlorophenol”, Environ. Sci. & Technol., Vol. 29, p.2974(1995)。 Peral, J. and D. F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation”, Journal of Catalysis, Vol. 136, p. 554 (1992)。 Phadke, M. S., “Quality Engineering Using Robust Design.”, Prentice Hall, p. 291 (1989)。 Prengle, H. W. and C. E. Mauk,“New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection”, AIChE Symposium Series, Vol. 74, No. 178, p. 228 (1978)。 Qamar, M., M. Saquib and M. Muneer, “Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide.”, Dyes and Pigments, Vol. 65, pp. 1-9(2005)。 Rao, N. N., A. K. Dubey, S. Mohanty, P. Khare, R. Jain and S. N. Kaul, “Photocatalytic degradation of 2-chlorophenol a study of kinetics, intermediates and biodegradability.”, Journal of Hazardous Materials, Vol. B101, pp. 301-314(2003)。 Rominder, P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water”, Water Environment Research, Vol. 65, No. 5, p. 655 (1993)。 Sakkas, V. A. and T. A. Albanis, “Photocatalyzed degradation of the biocides chloroghalonil and dichlofluanid over aqueous TiO2 suspensions.”, Applied Catalysis B : Environmental, Vol. 46, pp. 175-188 (2003)。 Sampath, S., H. Uchida, and H. Yoneyama, “Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide”, Journal of Catalysis, Vol. 149, p. 189(1994)。 Sakata, T. and T. Kawai, “Photosynthesis and Photocatalysis with Semiconductor Powder-in Energy Resources through Photochemistry and Catalysis”, Gratzel, M., Ed., Academic Press, New York (1983)。 Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemistry B, pp. 829-832 (1990)。 Serpone, N., P. Maruthamuthu, P. Pichat, H. Hidaka and E. Peizzctti, “Exploiting the Interparticle electron Transfer Process in the Photocatalysed :Chemical Evidence for Electron and Hole Transfer Between Coupled Semiconductor”, Journal of Photochemistry & Photobiology A : Chemistry, Vol. 85, pp. 247-255 (1995)。 Serpone, N. , I. Texier, A. V. Emeline, P. Pichat, H. Hidaka, J. Zhao, “Post-irradiation Effect and Reductive Dechlorination of Chlorophenols at Oxygen-free TiO2/water Interfaces in the Presence of Prominent Hole Scavengers”, Journal of Photobiology A: Chemistry, Vol. 136, pp. 145-155(2002) Siemon, U., D. Bahnemanna, J. J. Testa, D. Rodriguez, M. I. Litter and N. Bruno, “Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2.”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 148, pp. 247-255 (2002)。 Stumm, W., “Chemstry of the Solid-Water Interface”, John Wiley and Sons, New York (1992)。 Sun, B. and P. G. Smirniotis, “Interaction of anatase and rutile TiO2 particles in aqueous photooxidation.”, Catalysis Today, Vol. 88, pp. 49-59 (2003)。 Suri, R. P. S., J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water.”, Water Environment Research, Vol. 65, No. 5, p. 665 (1993)。 Texier, I., J. Ouazzani, J. Delaire, and C. Giannotti, “Study of the Mechanisms of the Photodegradation of Atrazine in the Presence of Two Photocatalysts: TiO2 and Na4W10O32 Tetrahedron”, Vol. 55, Issue. 11, pp. 3401-3412 (1999)。 Turner, J.C.R.,”An introduction to the theory of catalytic reactors”, Catalysis Science and Technology, Vol. 1, pp. 43-86(1981)。 Turro, N. J., “Molecular Photochemistry”, Columbia University, N. Y. (1965)。 Uchida, H. , S. Katoh, and M. Watanabe, “Photocatalytic Degradation of Trichlorobenzene Usnig Immobilized TiO2 Films Containing Poly(tetrafluoroethylene) and Platinum Metal Catalyst”, Electrochimica Acta, Vol. 43, No. 14-15, pp. 2111-2116 (1998)。 Vamathevan, V., R. Amal, D. Beydoum, G. Low and S. Mcevoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles.”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 148, pp. 233-245 (2002)。 Vamathevan, V., R. Amal, D. Beydoum, G. Low and S. Mcevoy, “Silver methallisation of titania particles : effects on photoactivity for the oxidation of organics.”, Chemical Engineering Jounal, Vol. 98, pp. 127-139 (2004)。 Wang, C. Y., C. Y. Liu, X. Zheng, J. Chen, and T. Shen, “The Surface Chemistry of Hybrid Nanometr-sized Particles I. Photochemical Deposition of Gold on Ultrafine TiO2 Particles”, Colloids and Surfaces A-Physicochemical Engineering Aspects, Vol. 131, pp. 271-280 (1998)。 Wei, Y., Wu, R. and Zhang, Y., "Preparation of monodispersed spherical TiO2 powder by forced hydrolysis of Ti(SO4)2 solution." Materials Letters, Vol. 41, 101-103. (1999)。 Xianzhi, F., L. A. Clark, Q. Yang and M. A. Anderson, “Enhanced Photocatalytic Preformance of Titania-Based Binary Metal Oxides : TiO2/SiO2 and TiO2/ZrO2.”, Environmental Science & Technology, Vol. 30, pp. 647-653 (1996)。 Xie, Y., C. Yuan and X. Li, “Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system.”, Colloids and Surfaces A-Physicochemical Engineering Aspects, Vol. 252, pp. 87-94 (2005)。 Xu, Q. and M. A. Anderson, “Physical-Chemistry Properties of TiO2 Membrances Controlled by Sol-Gel Processing”, Mater. Res. Soc. Symp. Process. (1989)。 Yamashita, H., H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, S. Ehara, K. Kikui, L. Palmisano, A. Sclafani, M. Schiavello and M.A. Fox “Photocatalytic Reduction of CO2 With H2O on TiO2 and Cu/TiO2 Catalysts”, Research on Chemical Intermediates, Vol. 20 Num. 8, p. 815(1994)。 Yamashita, Hiromi, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi and M. Anpo “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves” Catalysis Today, Vol 45, Issues 1-4, pp. 221-227(1998)。 Yang, J., Mei, S. and Rerreira, J. M. F., "Hydrothermal synthesis of nanosized titania powder: influence of peptization and peptizing agents on the crystalline phases and phase transition." Journal of the American Ceramic Society, Vol. 83(6), 1361-1368 (2000)。 Yang, J. C., Y. C. Kim, Y. G. Shul, C. H. Shin, and T. K. Lee, “Characterization of Photoreduced Pt/TiO2 and Decomposition of Dichloroacetic Acid over Photoreduced Pt/TiO2 Catalysts”, Applied Surface Science, Vol. 121/122, pp. 525-529 (1997)。 Yu, G., Z. Chen, Z. Zhang, P. Zhang and Z. Jiang, “The photocatalytic activity and stability of a nanosized TiO2 film prepared by carbon black modified method.”, Catalysis Today, Vol. 90, pp. 305-312 (2004)。 Zafiriou, O. C., J. J. Dubien, R. G. Zepp, and R. G. Zika, “Photochemistry of Natural Waters”, Environmental Science & Technology, Vol. 18, No. 12, p. 358 (1984)。 Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste”, Environmental Science & Technology, Vol. 22, No. 3, p. 256 (1988)。 Zhang, R. B. and Gao, L., "Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles." Materials Research Bulletin, Vol. 37(9), pp. 1659-1666 (2002).。 Zhang, X., M. Zhou and L. Lei, “Preparation of an Ag-TiO2 Photocatalyst coated on activated carbon by MOCVD.” Materials Chemistry and Physics, Vol. 91, pp. 73-79 (2005)。 Zhou, J., Takeuchi, M., Ray, A. K., Anpo, M., and Zhao, X. S., "Enhancement of photocatalytic activity of P25 TiO2 by Vanadium-ion implantation under visible light irradiation." Journal of Colloid and Interface Science, In Press, Corrected Proof. (2007)
摘要: 
本研究主要包含三個部分,(1). 採用實驗計劃法進行化學沈積法製備二氧化鈦薄膜之探討; (2). 利用所製備的光反應器進行光催化降解二氯酚之實驗,探討其反應特性及中間產物; (3). 以光還原沈降法添加鉑及銀修飾光觸媒,期能增進光催化之效能。
第一部分實驗探討不同製備條件下所製備的光觸媒,於液相處理有機物時的影響。實驗中對製備條件:氧化溫度、鍛燒溫度、載流氣體流量及高溫轉速採用實驗計劃法中的直交表法作規劃,分別討論不同操作變因中,各變數對有機物轉化率的貢獻率。實驗結果顯示,在操作變因中以觸媒的氧化及鍛燒溫在400℃/550℃(高溫/高溫)及30 rpm的披覆轉速下所製造的反應器,在水楊酸的分解上有較高的轉化率;而載流氣體的流速,對於水楊酸的轉化率,則沒有太大的影響。
第二部分實驗中的直接光解結果顯示,365nm波長之紫外光對於高pH值下的二氯酚有明顯的去除率和脫氯效果;若以HPLC圖譜觀察之,各種二氯酚在不同pH值下的中間產物大致相同,而pH值提高則會使產物產量增加,且有脫去兩個氯的產物形成。在光催化系統結果則顯示,二氯酚皆有在高pH值去除率較佳,而pH=4及pH=7差不多情形。而比較在pH=4與pH=7中,雖然對於雙氯酚的去除能力差不多,但pH=7中以酸類產物佔的比例較高,pH=4中大部分是以未開環產物存在,顯示pH值高時有利於氫氧自由基的產生,並對一級產物進行開環作用。
在光催化系統中,雖然氫氧自由基攻擊路徑不同,但2,3-二氯酚,2,5-二氯酚及3,4二氯酚的中間產物中皆有氯對二酚產物的形成,而3,4二氯酚和2,3二氯酚也有部份行脫氯作用之酚類產物再度進行鹵化作用而生成2,6二氯酚及3,4二氯酚。
研究第三部份則以光還原沉積法對二氧化鈦光觸媒進行改質,實驗中的製備條件:包括金屬離子濃度、光強度及照光時間,採用實驗計劃法中的直交表法作規劃,分別討論不同操作變因中,各變數對有機物去除的貢獻率。實驗結果顯示,金屬離子濃度對Ag/TiO2光觸媒的製備所造成的影響最大,以1.5 mM的銀離子濃度,對水楊酸的轉化有最大的貢獻率,而照光時間則沒有太大的影響;但對Pt/TiO2光觸媒來說,則有相反的結果,照光時間對其製備的影響最為顯著,以照光時間8hr時,對水楊酸的轉化率有最大的貢獻,而金屬離子濃度反而沒有太大的影響。
將製備完成之改質光觸媒進行表面分析(XRD、SEM-EDS及ESCA),證實利用光還原沉積法確實可將銀及鉑擔持於二氧化鈦光觸媒表面,且改質前後不會對二氧化鈦光觸媒的晶型造成改變。結果顯示改質後的二氧化鈦光觸媒對水楊酸的分解效果有所提升,證實以銀及鉑改質二氧化鈦光觸媒是可行的。

The study include of three parts: (1). Using Taguchi method to investigate the preparation of titanium dioxide thin film by chemical vapor deposition method (CVD); (2). Photocatalysis of dichlorophenol by previous reactor and discussion of reaction character and intermediates; (3).Platinum and silver modify the photocatalyst by photoreduction deposition.
The first part of experiments discussed the salicylic acid conversion efficiency with the different preparing parameters by chemical vapor deposition (CVD) method. The results indicated that the optimum preparing parameters for TiO2 photocatalysis were carrier gas flow rate = 550 ml/min, oxidation/calcinations temperature = 400℃/550℃, rotating speed of furnace = 20 rpm. Among the parameters, carrier gas flow rate and oxidation/calcination temperature were significant in salicylate conversion.
The result of directly photolysis (only 365nm UV without photocatalyst) showed obvious degradation and dechlorolation of dichlorophenol at higher pH. To compare HPLC diagrams, kinds of the intermediate are similar at different pH. The quantities of intermediates increase with pH rising and form spices that are broken 2 chlorine. The result of photocatalysis show that degradation of dichlorophenol is best at pH=10. Photocatalysis degradation at pH=4 and pH=7 are similar, but higher ratio of low molecular acids at pH=7 and most intermediates at pH=4 are aromatic spices. We inferred that the high pH have advantage of hydroxyl radical production and break aromatic structure of primary intermediates.
Although different reacting pathway of hydroxyl radial, chlorohydroquinone, was all identified in 2,3-DCP, 2,5-DCP and 3,4-DCP photocatalysis. It was found that the dechlorination intermediate, like phenoxyl product, would rechlorinate again. This was supported by the identified intermediate products: 2,6-DCP from 3,4-DCP and 3,4-DCP from 2,3-DCP.
The third part of experiments discussed the conversion effect of salicylic acid with different modifying parameters including the concentration of metal, irradiation intensity and irradiation time by photoreduction deposition method. The results indicated that the optimum preparing parameters for Ag/TiO2 photocatalyst were 1.5mM Ag+, for Pt/TiO2 photocatalyst were 8 hrs irradiation time. Among the parameters, irradiation time was not important in Ag/TiO2 process, and the concentration of metal was not important in Pt/TiO2 process.
By the results of XRD, SEM-EDS and ESCA could confirm that modified Ag and Pt on TiO2 thin film wouldn't change the TiO2 crystal type (Anatase). The enhanced photoactivity of Ag/TiO2 and Pt/TiO2 compared to TiO2 under experimental results suggested that loaded Ag and Pt on TiO2 thin film are feasible.
URI: http://hdl.handle.net/11455/5314
其他識別: U0005-2101200818165400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.