Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5322
標題: 鐵及環糊精複合鐵活化過硫酸鹽氧化三氯乙烯 - 管柱實驗
Iron and Cyclodextrin Encapsulated Iron Activated Persulfate Oxidation of Trichloroethylene - A Column Study
作者: 李宜玲
Li, I-Ling
關鍵字: ISCO;現址化學氧化法;NAPL;sulfate free radical;chlorinated solvent;soil column;groundwater;非水相液體;硫酸根自由基;氯化有機溶劑;土壤管柱;地下水
出版社: 環境工程學系所
引用: 參考文獻 1. 董上銘,2003,以甲苯半連續馴養現地微生物共代謝三氯乙烯之研究,國立成功大學資源工程研究所碩士論文。 2. 鄧名志,2003. 環糊精及膠體穩定度對整體毛細管柱製備之研究,國立成功大學化學研究所碩士論文。 3. 林財富,2005,「土壤及地下水污染物化整治技術介紹」,土壤及地下水污染預防與整治之法令及技術宣導講習會。 4. 林財富、洪旭文,2002,「透水性反應牆之設計介紹」,工業污染防治,第84期,第114-135頁。 5. 賴明俊,2007,奈米及微米級零價鐵結合過硫酸鹽降解氯化有機溶劑,國立中興大學環境工程學系學士論文。 6. 梁振儒,2007,「淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法」,台灣土壤及地下水環境保護協會簡訊,第23期,第13-20頁。 7. 盧至人(譯),1998,Charbeneau, R.J., Bedient, P.B. and Loehr, R.C. (著),「地下水的污染整治」,台北國立編譯館。 8. 盧至人,2004,「地下水現地生物復育和廢污水生物處理的特性探討」,台灣土壤及地下水環境保護協會簡訊,第14期,第7-15頁。 9. 高雄市環保局第一科,2007,空氣污染防制網。 10. 經濟部,2006,環保技術簡e報,第40期。 11. 行政院勞委會,2004,物質安全資料表。 12. NIEA, National Institute of Environmental Analysis,行政院環保署環境檢驗所之公告檢測方法。http://www.niea.gov.tw/. 13. 行政院環保署,2000,「地下水及土壤處理技術與回收設備」,環訓所雙月刊,第51期。http://ivy2.epa.gov.tw/out_web/training/51-3-1.htm 14. 行政院環保署,1996,三氯乙烯毒理資料,環境資料庫。http://edb.epa.gov.tw/index_toxic.htm 15. 行政院衛生署國民健康局,2006,25種特別危害健康作業健康檢查指引手冊,中華民國環境職業醫學會。 16. 行政院環保署,2003,「土壤及地下水污染整治工作之規劃與技術支援計畫」-國內外整治技術蒐集及彙整,利用界面活性劑提昇含水層整治成效執行手冊(Surfactant-Enhanced Aquifer Remediation (SEAR) Implementation Manual)。 17. 行政院環境保護署,1994,「污水注入地下水水體標準」。 18. 行政院環境保護署,1997,「飲用水水源水質標準」。 19. 行政院環境保護署,2005,「飲用水水質標準」。 20. 行政阮環保署,2001,「土壤污染管制標準」與「地下水污染管制標準」 21. 行政院環境保護署,1999,「有害事業廢棄物認定標準」附表三,「溶出毒性事業廢棄物溶出試驗標準」。 22. 行政院環境保護署,1999,「毒性化學物質運送管理辦法」。 23. 中華土壤肥料學會,1995,土壤分析手冊 第二版。 24. 陳玫慧,2004,以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究,國立中央大學化學研究所碩士論文。 25. 陳谷汎、高志明、蔡啟堂,2002,「土壤及地下水生物復育技術」,工業污染防治,第84期,第136-157頁。 26. 陳國興,2001,利用毛細管環糊精修飾區帶電泳法對啡噻類化合物之遷移行為與分離之研究,國立臺灣大學化學研究所碩士論文。 27. 陳家洵,1997,「地下水污染問題之討論」,應用倫理研究通訊,第3期,第19-23頁。http://www.ncu.edu.tw/~phi/NRAE/newsletter/no3/06.html 28. 黃秋芬,2006,環糊精對鐵活化過硫酸鹽氧化氯化有機溶劑影響之探討,國立中興大學環境工程研究所碩士論文。 29. 蔡文田、邱伸彥,1992,「蒸氣脫脂用含氯溶劑之特性」,工業污染防治,第41 期,第145-160 頁。 30. 蘇一哲,2006,現地化學氧化法整治受汽油污染之地下水案例經驗評析,中華民國環境工程學會會刊,第17卷第四期,第25-34頁。 31. 王建明,2003, Cyclodextrins對phenanthrene溶解度和微生物可利用度上的影響,環境工程學會第十五屆年會及研討會論文集。 32. Acros Organics MSDS, 2006. 33. Anipsitakis, G.P., Dionysiou, D.D., 2004. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38(13): 3705-3712. 34. Bender, M. L., Komiyama, M., 1978. Cyclodextrin chemistry. Springer-Verlag Berlin Hidelberg New York. 35. Behrman, E.J., Dean, D.H., 1999. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate(persulfate1)in polyacrylamide gel electrophoresis. J. Chromatogr. B. 723: 325–326. 36. Bizzigotti, G.O., Reynolds, D.A., Kueper, B.H., 1997. Enhanced solubilization and destruction of tetracholoethylene by hydroxypropyl-β-cyclodextrin and iron. Environ. Sci. Technol. 31(11): 472-478. 37. Block, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. 38. Boogaard, M.V.D., 2003. Cyclodextrin-containing supramolecular structures : from pseudo-polyrotaxanes towards molecular tubes, insulated molecular wires and topological networks. http://irs.ub.rug.nl/ppn/24276326X 39. Boving, T.B., Brusseau, M.L., 2000. Solubilization and removal of residual tricholoethylene from porous media: comparison of several solubilization agents. J. Contam. Hydrol. 42(16): 51-67. 40. Bruell, C.J., Barker, C.C., Ryan, D.K., Duggan, J.W., 1998. Surfactant enhanced flushing of Unsaturated Porous Media. J. Soil Contam. 7(1): 47-71. 41. Brusseau, M.L., Wang, X., Hu, Q., 1994. Enhanced transport of low-polarlty organic compounds through soil by cyclodextrin. Environ. Sci. Technol. 28(21): 952-956. 42. Brusseau, M.L., Wang, A., Wang, W.Z., 1997. Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environ. Sci. Technol. 31(23): 1087-1092. 43. Buxton, G.V., Barlow, S., McGowan, S., Samon, G. A., Williams, J.E., 1999. The reaction of the SO3-–radical with Fe(II) in acidic aqueous solution- A pulse radiolysis study. Phys. Chem. Chem. Phys. 1: 3111-3116. 44. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. 1998., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(OH–/O-–)in aqueous solution. J. Phys. Chem. Ref. Data. 45. Buxton, G.V., Malone, T.N.S., Samon, G. A., 1997. Reaction of SO4-–with Fe2+ , Mn2+ and Cu2+ in aqueous solution. J. Chem. So., Faraday Trans. 93: 2893-2897. 46. Chen, G., Hoag, G.E., Chedda, P., Woody, B.A., Dobbs, G.M., 2001. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. J. Hazard. Mater. B87:171-186. 47. Connors, K.A., 1997. The stability of cyclodextrin complexes in solution. Chem. Rev. 97:1325-1357. 48. Conrad, S.H., Glass, H.C., Peplinski, W.J., 2002. Bench-scale visualization of DNAPL remediation processes in analogue heterogeneous aquifers: surfactant floods, and in situ oxidation using permanganate. J. Contam. Hydrol. 58: 13-49. 49. Crini, G., Morcellet, M., 2002. Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 25: 789-813. 50. Cuypers, C., T. Grotenhuis, J. Joziasse, and W. Rulkens., 2000. Rapid persulfate oxidation predicts PAH bioavail¬ability in soils and sediments. Environ. Sci. Technol. 34(10): 2057-2063. 51. Damm, J.H., Hardacre, C., Kalin, R.M., Walsh, K.P., 2002. Kinetics of the oxidation of methyl tert- butyl ether (MTBE) by potassium permanganate. Water Res. 36: 3638-3646. 52. Den, W., Pirbazari, M., Huang, C.C., Shen, K.P., 1998. “Technology Review for Vapor Phase Biofiltration Part I:Technology Development and Application”. Journal of Chinese Institute of Environmental Engineering 8(3): 159-179. 53. Ducom, G., Cadassud, C., 1999. Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production. Desalination 124: 115-123. 54. Ehsan, S., Prasher, S.O., Marshall, W.D., 2007. Simultaneous mobilization of heavy metals and polychlorinated biphenyl(PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68: 150-158. 55. Fahrig, R., Madle, S., Baumann H., 1995. Genetic toxicology of 56. trichloroethylene (TCE). Mutat. Res. 340: 1-36. 57. Fava, F., Bertin, L., Fedi, S., Zannoni, D., 1998. Methyl-β-cyclodextrin enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol. Bioeng. 81: 1-10. 58. FMC, 2001. Persulfate Technical Information. 59. Forkert, P.G., Sylvestre, P.L., Poland, J.S., 1985. Lung injury induced by trichloroethylene. Toxicology. 35: 143-160. 60. Hanna, K., de Brauer, Ch., Germain, P., 2004. Cyclodextrin-enhanced solubilization of pentachlorophenol in water. J. Environ. Manage. 71(1): 1-8. 61. Haselow, J.S., Siegrist, R.L., Crimi, M., Jarosch, T., 2003. Estimating the total oxidant demand for in situ chemical oxidation design. pp. 5-16. 62. Hoigné, J., Bader, H., 1976. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res. 10: 377-386. 63. Hoigné, J., 1997. Inter-calibration of OH radical sources and water quality parameters. Water Sci. Technol. 35(4): 1-8 64. Hoigné, J., Bader, H., 1983. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water—II, Dissociating Organic Compounds, Water Res. 17(2): 185-194. 65. House, D.A., 1962. Kinetics And Mechanism of Oxidations by Peroxydisulfate. Chem. Rev. 62: 185-203. 66. Hrapovic, L., Sleep, B.E., Major, D. J. Hood, E.D., 2005. Laboratory study of Treatment of trichloroethene by chemical oxidation followed by bioremediation. Environ. Sci. Technol. 39: 2888-2897. 67. Huang, K.C., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M., 2002. Chemical oxidation of trichloroethylene with potassium permanganate in porous medium. Adv. Environ. Res. 7: 217-229 . 68. Huang, K.C., Hoag, G.E., Chheda, P., 2001. Kinetic study of oxidation of chlorinated ethenes with permanganate. J. Hazard. Mater. 87: 155-169. 69. Huang, K.C., Couttenye, R.A.,Hoag, G.E., 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49(4): 413-420. 70. Huling, S.G., Pivetz, B.E., 2006. In-Situ Chemical Oxidation. Engineering Issuse. U. S. EPA, pp. 5. 71. ITRC, Interstate Technology and Regulatory Conuncil, 2005. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, 2nd ed. 72. Jang, M., Hwang, J.S., Choi, S.I., Park, J.K., 2005. Remediation of arsenic-contaminated soils and washing effluents. Chemosphere 60: 344-354. 73. Kang, N., Hua, I., Rao, P.S.C., 2006. Enhanced Fenton’s destruction of non- aqueous phase perchloroethylene in soil systems. Chemosphere 63: 1685-1698. 74. Kolthoff, I.M., Medalia, A.I., Raaen, H.P., 1951. The reaction between Ferrous iron and Peroxides. IV. Reaction with potassium persulfate, J. Am. Chem. Soc. 73: 1733-1739. 75. Kopinke, F.-D., Georgi, A., 2005. Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. pp. 9-18. 76. Kueper, B.H., Wealthall, G.P., Smith, J.W.N., Lehame, S., Lerner, D.N., 2003. An illustrated handbook of DNAPL transport and fate in the subsurface. 77. LaChance, J.C., Hewitt, A., Reitsma, S., Lachance, J., Barker, R., 1998. In stiu oxidation of TCE using potassium permanganate Part 2: Pilot study. Physical, Chemical, and Thermal technologies, Remediation of chlorinated and recalcitrant compounds, Battelle Press, Ohio USA. 78. Latimer, W.M., 1952. Oxidation Potentials, Prentice-Hall, Inc., Englewood Cliffs, NJ. 79. Lee, E.S., Seol, Y., Fang, Y.C., Schwartz, F.W., 2003. Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene. Environ. Sci. Technol. 37: 2540-2546. 80. Lenka, S., Dash, S.B., 1983. Polymerization of acrylonitrile initiated by potassium persulfate-cobalt(II) and potassium persulfate-manganese(II) redox system. J. Macro. Sci. Chem. A. 20(3): 397-407. 81. Levenspiel, O., 1999. Chemical Reaction Engineering. John Wiley & Sons, N.J. 82. Lipctnska-Kochany, E., Sprah, G., Harms, S., 1995. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the fenton reaction. Chemosphere 30(1): 9-20. 83. Liang, C., 2002. Chemical oxidation of chlorinated solvents by sodium persulfate in aqueous and soil slurry systems. Department of Civil and Environmental engineering. University of Massachusetts, Lowell, pp. 161. 84. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2001. Kinetics of thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1- trichloroethane (TCA). In The First International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater(ORTs-1), Niagara Falls, Ontario, Canada. 85. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Themrmally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam. 12: 207-228. 86. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004a. Persulfate ocidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55: 1213-1223. 87. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004b. Persulfate ocidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55: 1225-1233. 88. Liang, C., Wang, Z.-S., Mohanty, N., 2006. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20℃. Sci. Total Environ. 370(2-3): 271-277. 89. Liang, C., Wang, Z.-S., Bruell, C., 2007. Influences of pH on persulfate oxidation of trichloroethylene at ambient temperatures. Chemosphere 66(1): 106-113. 90. Lindsey, M.E., Xu, G., Lu, J., Tarr, M.A., 2003. Enhanced Fenton Degradation of Hydrophobic Organics by Simultaneous Iron and Pollutant Complexation with Cyclodextrins, Sci. Total Environ. 307: 215-229. 91. Li, Z., 2004. Surfactant- enhanced oxidation of trichloroethylene by permanganate-proof of concept. Chemosphere 54: 419-423. 92. Mackay, D.M., Robert, P.V., Cherry, J.A., 1985. Transport of organic contaminants in groundwater. Environ. Sci. Technol. 19: 384-392. 93. Marvin, B.K., Nelson, C.H., Clayton, W., Sullivan, K.M., Skladany, G., 1998. In situ chemical oxidation of pentachlorophenol and polycyclic aromatic hydrocarbons: from laboratory test to field demonstration. Proceeding of 1st International Conference Remediation of Chlorinated and Recalcitrant Compounds, May 1998, Monterey, CA. Battelle: 383-388 94. McCray, J.E., Brusseau, M.L., 1998. Cyclodextrin- enhanced in situ flishing of multiple-component immiscible organic liquid contamination at the field scale: mass removal effectiveness. Environ. Sci. Technol. 32(9): 1285-1293. 95. Morillo, e., Pérez-Martínez, J.I., Ginés, J.M., 2001. Leaching of 2,4-D from a soil in the presence of β-cyclodextrin: laboratory columns experiments. Chemosphere 44: 1065-1069. 96. Mumford, K.G., Lamarche, C.S., Thomson, N.R., 2004. Natural Oxidant Demand of Aquifer Materials Using the Push-Pull Technique. pp. 1139-1146. 97. Nadim, F., Huang., K.-C., Dahmani, A.M., 2005. Remediation of soil and groundwater contaminated with PAH using heat and Fe(II)-EDTA catalyzed persulfate oxidation. pp. 227-232. 98. Nyer, E.K., Vance, D., 1999. Hydrogen peroxide treatment: The good, the bad, the ugly. Ground Water Monit. Rem. Summer 19(3): 54-57. 99. Pavlostathis, S.G., Jaglal, K., 1991. Desorptive behavior of trichloroethylene in contaminated soil. Environ. Sci. Technol. 25: 274-279. 100. Pignatello, J.J., 1992. Dark and photoassisted Fe3+-cata¬lyzed degradation of chlorophenoxyl herbicides by hydro¬gen peroxide. Environ. Sci. Technol. 26(5): 944-951. 101. Ravlkumar, J.X., Gurol, M.D., 1994. Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environ. Sci. Technol. 28: 394-400. 102. Schroth, M.H., Oostrom, M., Wietsma, T.W., Istok, J.D., 2001. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. J. Contam. Hydrol. 50: 79-98. 103. Semer, R., Reddy, K.R., 1996. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. Hazard. Mater. 45: 45-57. 104. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principle and Practices of in situ chemical Oxidation Using Permanganate. Battelle Press. 105. Sigma-aldrich MSDS, 2006 106. Shirin, S., Buncel, E., VanLoon, G.W., 2003. The use of β-cyclodextrins to enhance the aqueous solubility of trichloroethylene and perchloroethylene and their removal from soil organic matter: Effect of substituents. Can. J. Chem. 81: 45-52. 107. Shirin, S., Buncel, E., VanLoon, G.W., 2004. Effect of cyclodextrins on iron-mediated dechlorination of trichloroethylene – A proposed new mechanism. Can. J. Chem. 82: 1674-1685. 108. Shixiang, G., Liansheng, W., Qingguo, H., Sukui, H., 1998. Solubilization of polycyclic aromatic hydrocarbons by β-cyclodextrin and carboxymethyl-β-cyclodextrin. Chemosphere 37(7): 1299-1305. 109. Skarzëwski, J., 1984. Cerium catalyzed persulfate oxidation of polycyclic aromatic hydrocarbons to quinines. Tetrahedron. 40(23): 4997-5000. 110. St-Pierre, C., Martel, R., Gabriel, U., Lefebvre, R., Robert, T., Hawari, J., 2004. TCE recovery mechanisms using micellar and alcohol solutions: phase diagrams and sand column experiments. J. Contam. Hydrol. 71: 155-192. 111. Sujatha, T.V., Hegde, M.J., 1998. C-mitotic effects of trichloroethylene (TCE) on bone marrow cells of mice. Mutat. Res. 413: 151-158. 112. Tang, W.Z., Huang, C.P., 1996. Effectof chlorine content of chlorinated phenols on their oxidation kinitics. Chemosphere 33(8): 1621-1635. 113. Travina, O.A., Kozlow, Y.N., Purmal’, A.P., Rod’ko, I.Y., 1999. Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions. Russ. J. Phys. Chem. 73(8): 1215-1219. 114. USEPA, 1998. National primary drinking water regulations, technical fact sheet on trichloroethylene. http://www.epa.gov/OGWDW 115. USEPA, 2001. A Citizen''s Guide to Bioremediation. EPA 542-F-01-001. 116. USEPA, 2001. A Citizen’s Guide to Permeable Reactive Barriers. EPA 542-F-01-005. 117. USEPA, 1992. Estimating Potential for Occurrence of DNAPL at Superfund Sites January . 118. Van Eldik, R., Harris, G.M., 1980. Kinetics and mechanicsm of the formation, acid-catalyzed decomposition, and intramolecular redox reaction of oxygen-bonded (sulfite)pentaamminecobalt(III) ions in aqueous solution. Inorg. Chem. 19(4): 880-886. 119. Viglianti, C., Hanna, K., Brauer, C.D., Germain, P., 2005. Removal of polycyclic aromatic hydrocarbons from aged- contaminated soil using cyclodextrins: experimental study. Environ. Pollut. article in press. 120. Waldemer, R.H., Tratnyek, P.G., Jonhson R.L., Nurmi J.T., 2007. Oxidation of chlorinated ethenes by heat-activated persulfate: kintics and products. Environ. Sci. Technol. 41: 1010-1015. 121. Wang, J.M., Marlowe, E.M., Miller-Maier, R.M., Brusseau, M.L., 1998. Cyclodextrin-enhanced biodegradation of phenanthrene. Environ. Sci. Technol. 32(3): 1907-1912. 122. Wang, X., Brusseau, M.L., 1993. Solubilization of some low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environ. Sci. Technol. 27(8): 2821-2825. 123. Wang, X., Brusseau, M.L., 1995. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environ. Sci. Technol. 29(13): 2632-2635. 124. Weeks, K.R., Bruell, C.J., Mohanty, N.R., 2000. Use of fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries. Soil Sediment Contam. 9(4): 331-345. 125. Xu, X.R., Li, H.B., Wang, W.H., Gu, J.D., 2005. Decolorization of dyes and textile wastewater by potassium permanganate. Chemosphere 59: 893-898. 126. Yardin, G., Chiron, S., 2005. Photo-Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin. Chemosphere 62: 1395-1402. 127. Yeh, C.K.J., Wu, H.M., Chen, T.C., 2003. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. J. Hazard. Mater. 46: 67-73. 128. Zhai, X., Hua, I., Rao, P.S.C., Lee, L.S., 2006. Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate. J. Contam. Hydrol. 82: 61-74.
摘要: 
現址化學氧化法(ISCO)為土壤及地下水污染整治技術中一項能夠有效地破壞分解含氯有機污染物(例如:三氯乙烯,TCE)的方法。而其中一現址化學氧化反應作用機制係利用亞鐵離子(Fe2+)活化過硫酸鹽(S2O82-)進一步產生較強之硫酸根自由基氧化劑(SO4-‧)( Eo = 2.6 V),以達到破壞污染物之目的。本研究利用多孔隙介質(玻璃珠或土壤)管柱實驗探討過硫酸鹽氧化溶解相TCE之可行性。此外,化學氧化法處理受TCE--DNAPL(dense non aqueous phase liquid)污染之土壤與地下水時,DNAPL之低水中溶解度常成為處理限制因素,故本研究更進一步嘗試利用環糊精衍生物Hydroxypropyl-β-cyclodextrin (HPCD)增加TCE於水中之溶解度,以提高硫酸根自由基降解TCE之效率。

經計算Cl-與S2O82-之平均停留時間以比較兩者於管柱中(無TCE存在下)之傳輸情形,其結果顯示,氯離子於S2O82-貫穿前後之平均停留時間不同,推測可能是土壤經氧化劑氧化後,有機質減少而孔隙體積增加所致。於氧化溶解相TCE實驗結果指出,去離子水或S2O82-會將TCE推擠出管柱,約1孔隙體積(PV)淋洗後出流之TCE濃度增加至最大。再者,當管柱中存在較高Fe2+濃度(10.74 mM)時,可觀察到出流之TCE濃度快速下降且更多TCE被降解。此外,當TCE溶液通過土壤管柱時,其出流濃度達貫穿之速度是相對緩慢的;而當使用TCE /S2O82-混合溶液淋洗土壤管柱時,S2O82-可能會優先與土壤中可氧化物質反應,降低土壤對TCE之吸附,所以促進TCE之傳輸。

於環糊精淋洗TCE-DNPAL實驗結果指出,HPCD確實可增加TCE之水中溶解度。相較Fe2+/HPCD淋洗通過曝S2O82-流體帷幕與PS/HPCD淋洗通過曝Fe2+流體帷幕實驗結果指出,前一種方式可得較高之Cl-生成率,因此推論於實場應用上,以PS/HPCD淋洗通過曝Fe2+流體帷幕為一具潛力之處理TCE-DNAPL污染之整治方式。

In situ chemical oxidation (ISCO) is one of the several innovative soil and groundwater technologies that showed promise in destroying chlorinated solvents such as trichloroethylene (TCE). Advanced oxidation processes involved ferrous ion activated persulfate anion (S2O82-) was employed to generate powerful sulfate radicals (SO4-‧)( Eo = 2.6 V) that can oxidize TCE. In this study, we investigated the possibility of oxidation of dissolved phase TCE by persulfate in porous media (i.e., glass bead and sandy soil). Moreover, effectiveness of ISCO for remediation of dense non-aqueous phase liquids (DNAPLs) is usually limited due to low water solubility. Therefore, we made attempt to investigate the potential use of hydroxypropyl-β-cyclodextrin (HPCD) to increase the apparent aqueous solubility of TCE and enhance the oxidation reaction rate.

Experiments were conducted to calculate the mean residence time for persulfate and chloride ion tracer in the absence of TCE within a soil column. The results indicated that mean residence time was different for pre-chloride and post-chloride flushing after persulfate transport. It was speculated that the destruction of soil organic matters by persulfate may result in an increase in pore volume. In the TCE treatment experiment, results indicated that the water or persulfate flushing would push dissolved TCE from the column and resulted in a gradual increase in TCE concentration to the maximum at where one pore volume was replaced with the flushing solution in the column. Furthermore, the presence of Fe2+ concentration (e.g., 10.74 mM) caused a quick drop in TCE concentration in the effluent. When the TCE solution was flushing through soil column, breakthrough of TCE concentration in the effluent was relatively slow. In contrast, when the soil column was flushed with the mixed solution of persulfate and TCE, persulfate might preferentially oxidize soil oxidizable matters rather than TCE during transport. Hence, the persulfate oxidation may possibly reduces the adsorption of TCE onto soils and facilitated the transport of TCE through soil column resulting in fast breakthrough.

Experimental results showed that the apparent solubility of TCE was significantly increased in the flushing TCE-DNPAL experiments. When comparing the results of the Fe2+/HPCD flushing through S2O82- fluid sparging curtain system to the S2O82-/HPCD flushing through Fe2+ sparging curtain system, the former system resulted in a higher rate of chloride formation. Therefore, the S2O82-/HPCD flushing through Fe2+ fluid sparging curtain may offer a potential way for remediation of TCE-DNAPL contamination.
URI: http://hdl.handle.net/11455/5322
其他識別: U0005-2407200712205100
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.