Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5324
標題: 高溫菌分解有機污泥之影響因子
Factor affecting the degradation of waste activated sludge by thermophilic bacteria
作者: 翁靖媛
Weng, Jing-Yung
關鍵字: thermophilic bacteria;高溫菌;digestion
出版社: 環境工程學系所
引用: Ash, C., Farrow, J. A. E., Wallbanks, S., and Collins, M. D., 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letters in Applied Microbiology 13: 202-206. Allen, M. B., 1953. The thermophilic aerobic sporeforming bacteria. Bacterial Rev 17:125-173. Baker, H., Frank, O., Pashr, I., Hunter, S., and Sobotka, H., 1960. Growth requirement of 94 strains of thermophilic bacilli. Canadian Jour. of Microbiology 2: 21-23. Banat, F. A., Prechtl, S., and Biscof, F., 2000. Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol. Chemosphere 44: 294-302. Barr, T. A., Taylor, J. M., and Duff, S. J., 1996. Effect of HRT , SRT and temperature on the performance of activated sludge reactors treating bleached kraft mill effluent. Water Research 30: 799-810. Beaudet, R., Gagnon, C., Bisaillon, J. G., and Ishaque, M., 1990. Microbiological aspects of aerobic thermophilic treatment of swine waste. Applied and Environmental Microbiology 56: 971-976. Brock, T. D. and Freeze, H., 1969. Therms aquaticus gen. N. and sp. N., a non-sporulating extreme thermophile. Journal Bacteriol 98: 289-297. Carlson, C. H., 1982. Optimised aerobic and thermophilic treatment of municipal sewage sludges and night soils in a continuous operation. Journal of Chemical Technology and Biotechnology 32: 1010-1015. Cleverdon, R. C., Pelezer, M. J., and Doetsch, R. N., 1949. Vitamin requirements of B. coagulans. Journal of bacteriology 58: 113. Chen, X. G., Stabnikova, O., Tay, J. H., Wang, J. Y., and Tay, S. T., 2004. Thermoactive extracellular protease of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophilies 8: 489-498. Chu, A., Mavinic, D. S., Ramey, W. D., and Kelly, H. G., 1996. A biochemical model describing volatile fatty acid metabolism in thermophilic aerobic design of wastewater sludge. Water Research 30: 1759-1770. Dougherty, M. H. and McNary, R. R., 1958. Elevated temperature effect on citrus waste activated sludge. Sewage Indust Wastes 30: 1263-1265. Forgaty, W. M. and Kelly, C. T., 1980. Microbial enzymes and bioconversions:Amylases. New York: Academic Press: 115–170. Gehm H. W., 1956. Activated sludge at high temperatures and pH values. In Biological Treatment of Sewage and Industrial Wastes, Volume I: Aerobic Oxidation. eds. J. McCabe and W. W. Eckenfelder Jr., Reinhold Publishing Corporation, New York, NY, U.S.A Ginnivan, M. J., Wods, J. L., and O`Callaghan, J. R., 1980. Survival of Salmonella dubline in pig slurry during aerobic thermophilic treatment in batch , cyclic and continuous system. Journal of Applied Bacteroilogy 49: 13. Ginnivan, M. J., Wods, J. L., and O`Callaghan, J. R., 1981. Thermophilic aerobic treatment of pig slurry. Journal of Agricultural Engineering Research 26: 455-466. Gordon, R. E., Haynes, W. C., and Pang, C. H.-N., 1937. The genus Bacillus. Agricultural Research Service, United States Department of Agriculture, Washington, D.C. Gordon, R. E. and Smith, N. R., 1949. Aerobic sporeforming bacteria capable of growth at high temperatures. Journal of Bacteriology 58: 327-341. Hamilton, L. M., Kelly, C. T., and Forgary, W. M., 1999. Production and properties of the raw-starch-digestion α-amylase of Bacillus sp. IMD-435. Process Biochemistry 35: 27-31. H&auml;ner, A., Mason, C. A., and Hamer, G., 1994. Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products. Water Research 28: 863-869. Hasegawa, S., Shiota, N., Katsura, K., and Akashi, A., 2000. Solubilization of organic sludge by thermophilic aerobic bacteria as pretreatment for anaerobic digestion. Water Science and Technology 41: 163-169. Haseltine, C., Rolfsmeier, M., & Blum, P., 1996. The glucose effect andregulation of a-amylase synthesis in the hyperthermophilic archaeonSulfolobus solfataricus. Journal of Bacteriology 178: 945–950. Hewitt, C. J. and Solomons, G. L., 1996. The production of α-amylase by Bacillus amyloliquefaciens, in a complex and a totally defined synthetic culture medium. Journal of Industrial Microbiology: 96–99. Hunter, J. V., Genetelli, E. J., and Gilwood, M. E., 1996. Temperature and retention time relationshups in the activated sludge process. In Proceedings of The 21st Industrial Waste Conference, Purdue University, Lafayette. 953. Lapara, T. M. and Alleman, J. E., 1999. Thermophilic aerobic waste treatment. Water Research 33(4): 895-908. Li, D. H. and Ganczarczyk, J. J., 1989. Fractal geometry of particle aggregates generated in water and wastewater treatment process. Environmental Science and Technology 23 : 1385. Li, D. H. and Ganczarczyk, J. J., 1990. Structure of activated sludge flocs. Biotechnology and Bioengineering 35:57. Lin, L. L., Chyau, C. C., and Hsu, W. H., 1998. Production and propertiesof a raw-starch-degrading amylase from thermophilic and alkaliphilicBacillus sp. TS-23. Biotechnology and Applied Biochemistry 28: 61–68. Loll U., 1976. Purification of concentrated organic wastewaters from the foodstuffs industry by means of aerobic-thermophilic degradation process. Progr. Water Technol 48(2/3): 373-379. Rintala J. and Lepist&ouml; R., 1993. Thermophilic anaerobic-aerobic and aerobic treatment of kraft bleaching effluents. Water Science Technology 28(2): 11-16. Rudolfs, W. and Amberg, H. R., 1953. White water treatment V. Aeration with nonflocculent growths. Sewage Indust Wastes 25: 70-78. Jackson M. L., 1983. Thermophilic treatment of a high-biochemical oxygen demand wastewater: Laboratory,pilot-plant and design. In Proceedings of the 37th Purdue Industrial Waste Conference, Purdue University, ed. J. M. Bell, Ann Arbor Science Publishers, Ann Arbor, MI, U.S.A. Jones, W. J., Leigh, J. A., Mayer, F., Woese, C. R., and Wolfe, R. S., 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from submarine hydrothermal vent,” Archives of Microbiology 136: 254-261. Kambhu, K. and Andrew, J. F., 1969. Aerobic thermophilic process for the treatment of wstes-simulation studies. Journal of the Water Pollution Control Federation 41: 127-141. Kendrick, M. J., May, M. T., Plishka, M. J., and Robinson, K. D., 1992. In: metals in biological system. Ellis Horwood, Chichester: 87-111. Kim Y. K., Bae J. H., Oh B. K., Lee W. H., and Choi J. W., 2002. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process. Bioresource Technology 82: 157-164. Knight, B. C. and Proom, H., 1950. A comparative survey of the nutrition and physiology of mesophilic species in the genus Bacillus. Journal of General Microbiology 4: 508. Kosseva, M. R., Kent, C. A., and Lloyd, D. R., 2001. Thermophilic bioremediation of whey: effect of physico-chemical parameters on the efficiency of the process. Biotechnology Letters 23: 1675-1679. Malladi, B. and Ingham, S. C. 1993. Thermophilic aerobic treatment of potato-processing wastewater. World Journal of Microbiology and Biotechnology 9: 45-49. Mason, C. A. 1986. Microbial death lysis and ''cryptic'' growth: Fundamental and applied, DIss. ETH No. 8150 Swiss Federal Institute of Technology, Zurich. McIntosh, K. B. and Oleszkiewicz, J. A. 1997. Volatile fatty acid production in aerobic thermophilic pre-treatment of primary sludge. Water Science and Technology 36: 189-196. McNary, R. R., Wolford, R. W., and Dougherty, M. H., 1956. Pilot plant treatment of citrus waste water by activated sludge. Sewage Indust Wastes 28: 894-905. Nakamura, S., Tanaka, T., Yada, R., and Nakai, S., 1997. Improving the thermostability of bacillus stearothermophilus neutral protease by introducing praline into the active site helix. Protein Engineering 10: 1263-1269. Nazina, T. N., Tourova, T. P., Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., Lysenko, A. M., Petrunyaka, V., Petrunyaka, G. A. O. V., Belyaev, S. S., and Ivanov, M. V., 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermo-catenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. International Journal of Systematic and Evolutionary Microbiology 51: 433-446. Pamukoglu, M. Y., and Kargi, F., 2007. Mathematical modeling of copper(II) ion inhibition on COD removal in an activated sludge unit. Journal of Hazardous Materials. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Sing, D., and Mohan, R., 2000. Advances in microbial amylases. Biotechnology and Applied Biochemistry 31: 135-152. Pertulla M., Konr&aacute;dsd&oacute;ttir M., Pere J., Kristj&aacute;nsson J. K. and Viikari L., 1991. Removal of acetate from NSSC sulphite pulp mill condensates using thermophilic bac-teria. Water Research 25: 599-604. Sakai, Y., Aoyagi, T., Shiota, N., Akashi, A., and Hasegawa S., 2000. Complete decomposition of biological waste sludge by thermophilic aerobic bacteria. Water Science and Technology 42: 81-88. Shindala, A. and Parker, J. E., 1970. Thermophilic activated sludge process. Water Wastes Engineering 7: 47-49. Shiota, N., Akashi. A., and Hasegawa, S., 2002. A strategy in wastewater treatment process for significant reduction of excess sludge production. Water Science and Technology 45: 127-134. Sonnletiner, B. and Fiechter, A., 1983. Bacterial diversity in thermophilic aerobic sewage sludge II. Types of organism and their capacity. Eur. J. Appl. Microbial. Biotechnology 18: 174-180. Sűrűcű, M. H., Chian, E. S. K., and Engelbrecht, R. S., 1976. Aerobic thermophilic treatment of high strength wastewaters. Journal Water Pollution Control Federation 48 (4): 669-679. Sűrűcű, G., 1999. Growth Requirements of Thermophilic Aerobic Microorganisms in Mixed Cultures for The Treatement of Strong Wastes. Water Science Technology 40: 53-60. Sűrűcű G. A., Chian E. S. K. and Engelbrecht R. S., 1975. Thermophilic microbiological treatment of high strength wastewaters with simultaneous recovery of single cell protein. Biotechnology and Bioengineering 17: 1639-1662. Ugwuanyi, J. O., Harvey, L. M., and McNeil, B., 2005a. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technology 96: 707-719. Ugwuanyi J. O., Harvey L. M., and McNeil B., 2005b. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste. Bioresource Technology 96, 721-730. Ugwuanyi, J. O., Harvey, L. M., and Mcneil, B., 1999. Effect of temperature, pH and suspended solids content upon pasteurization of model agricultural waste during thermophilic aerobic digestion. Journal of Applied Microbiology 87: 387–395. US EPA., 1993. Standard for Use or Disposal of Sewage Sludge:Final Rules. Part 503. Tambo, N. and Hozumi, H., 1979. Physical characteristics of flocs-Π. Strength of floc. Water Research 13: 421-427. Tyagi, R. D., Tran, F. T., and Agbebavi, T. J., 1990. Mesophilic and thermophilic aerobic digestion of sludge in air lift U-shaped bioreactor. Biological Wastes 31: 251-266. Watanabe H., Kitsrnura T., Ochi S., and Ozaki M., 1997. Inactive of pathogenic bacteria under mesophilic and thermophilic condition. Water Science Technology 36: 25-1997. White, D., Sharp, R. J., and Priest, F. G., 1993. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Leeuwenhoek 64: 357-386. Williams, R. A. D. and Sharp, R., 1995. The taxonomy and identification of Thermus. In Thermus Species: 1-39. New York: Plenum Press. Zeigler, D. R., 2001. The Genus Geabacillus. Bacillus Genetic Stock Center Catalog of Strains. 朱敬平,李篤中。2001。 污泥處置Ⅰ:簡介及膠羽特性. 台大工程學刊 81: 47-58. 許以樺。2000。以高溫好氧處理油脂廢水可行性研究。碩士論文。國立中興大學。台中。 謝孟廷。2005。高溫性細菌分解有機污泥之研究。碩士論文。國立中興大學。台中。 陳莞貽。2006。高溫性細菌分解有機污泥及光合作用細菌利用污泥分解物生成氫氣之研究。碩士論文。國立中興大學。台中。 黃鈺淳。2006。高溫性細菌分解有機污泥之研究。大專學生參與專題研究計劃研究成果報告。行政院國家科學委員會。 吳向宸。2007。影響嗜高溫菌Geobacillus分解汙泥能力之因子。大專學生參與專題研究計劃研究成果報告。行政院國家科學委員會。 李季眉、翁靖媛、蔡佳玲。2007。高溫菌生理生化特性及快速大量培養研究。祥勝綠色科技股份有限公司研究報告。 江舟峰。1998。以呼吸儀評估染整廢水高溫好氧處理可行性研究,朝陽科技大學,台中。 王暄、季民、王景峰、楊造燕。2005。好氧顆粒污泥胞外聚合物提取方法研究。中國給水排水21:91-93。 白明德。1999。厭氧生物產氫機制與程序操作策略之研究。碩士論文。國立成功大學。台南。 永續產業發展資訊網。2007/3/17。 <http://proj.moeaidb.gov.tw/isdn/> 於2007/3/17上網瀏覽。 中國固廢網。2007/2/1。 <http://72.14.253.104/search?q=cache:fpa5MGsPe5EJ:www.solidwa ste.com.cn/>於2007/2/1上網瀏覽。
摘要: 
高溫好氧消化(TAD)是一個新興的污泥處理方法,相較於一般污泥處理系統,其具備穩定性佳、污泥減量效果好、可有效的殺死致病菌等優點。故本研究將嘗試於高溫好氧的條件下,以批次實驗的方式,找出污泥減量的最適操作條件,並進一步找出影響消化效率之因子。
本研究之實驗架構主要可分為五部分,第一部分為菌株Geobacillus caldoxylosilyticus N6生理特性之初步測試,結果指出嗜高溫菌N6最適生長的溫度為65℃,且菌株在pH範圍為6.9~8.5的環境下有最佳的生長情形。若在菌株培養的過程中,希望一天即可得到胞子,則環境中最佳的MnSO4濃度為300 mg/L;而當MnSO4濃度為25 mg/L~600 mg/L時,不論何種濃度,培養三天皆可獲得大量胞子。由實驗中亦發現於Modified Thermus Medium中添加金屬離子及不同氮源,確實會對嗜高溫菌N6造成生長方面的影響,且不同濃度對菌株的影響亦不同。
第二部分為高溫消化最適操作條件之探討,由實驗結果顯示系統在消化溫度控制為65℃、pH未經任何調整、MLSS濃度為14000 mg/L、污泥於反應前先經過80℃加熱1 hr後再打碎10 min預處理的條件下,整體之去除率最佳,其MLVSS去除率可達41%。因此,在往後的實驗中,將選擇本節所測試出的最適操作條件,以期能促進污泥減量的效率。
第三部分將探討消化後期去除率降低之原因所在,結果發現去除情形不佳,主要是因為反應後期菌株活性降低,其次為消化槽內抑制物的累積,而導致污泥無法有效的被分解。
第四部分為找出可增加消化效率的因子,實驗結果顯示當消化槽內額外添加2 mM Ca2+濃度,系統的去除效果最好,MLVSS的去除率可達50%。而Fe2+濃度對污泥減量的影響與添加濃度有關,低濃度可促進污泥分解效率;高濃度下則會產生抑制。當消化槽內所額外添加的金屬離子為Zn2+的情況下,添加濃度愈高的組別,其消化效率愈低。而不同氮源的添加實驗中,發現不論何種氮源的添加,對污泥的分解皆無幫助。
第五部分為選擇可得到最佳污泥分解率之操作條件,並針對其他來源之污泥進行測試,結果發現本研究所得到的最佳消化條件亦適用台中某生活污水廠之廢棄污泥。

As a considerably new and dynamic technique, Thermophilic Aerobic Digestion (TAD) is highly acclaimed for its efficient sludge reduction and pathogen destruction. To determine the best operating strategies for sludge decomposition under the TAD reactor, a series of batch experiments were carried out to uncover factors affecting the degradation of waste activated sludge.
This study was composed of five main parts. The first part was a preliminary study on the characteristics of Geobacillus caldoxylosilyticus N6. Based on the experimental results, the optimum temperature for the growth of Geobacillus caldoxylosilyticus N6 was 65℃, and the range of optimum pH values was 6.9~8.5. If the concentration of MnSO4 in the medium was 300 mg/L, Geobacillus caldoxylosilyticus N6 could produce endospore after inoculating 1 day. And when concentration of MnSO4 was between 25 mg/L~600 mg/L, equally substantial amount of spore would be formed in three days after inoculation. Moreover, the addition of various metal ions and nitrogen sources also influenced the growth of Geobacillus caldoxylosilyticus N6, so does these various concentration of additives on N6.
The second part was an investigation into the optimum operating condition for Thermophilic Aerobic Digestion. The results indicated a best MLVSS removal efficiency, which was 41%, was achieved at 65℃, MLSS concentration of 14000 mg/L, and without pH control when the sludge was heated (80℃, 1 hr) and shattered (10 min) as pretreatment. Thus, in the future experiments, this could be a perspective approach for improving the efficiency of sludge decomposition.
The third part was an attempt to find factors leading to declining removal efficiency in a later period. The experiment results illustrated that the main reason lay in the inactivity of thermophilic bacteria in a later stage, accompanied by an accumulation of inhibitors in the sludge digestion tank, which hampered efficient sludge decomposition.
Then, the forth part looked into how to improve digestive efficiency. The results suggested that different concentration of additive metal ions made a difference. As the best removal efficiency of MLVSS at 50% was generated with 2 mM Ca2+ added, the addition of Zn2+ only slowed down the process, and the higher concentration of Zn2+, the lower efficiency was achieved. Also, while low Fe2+ concentration enhanced sludge biodegradability, high Fe2+ concentration only turned out a counteraction. As for adding different nitrogen sources, there was no significant influence on sludge decomposition.
Efforts were made on the final part to discern the optimal operating condition for sludge biodegradation, as well to probe into sludge from other places. Indicated by this study, the optimal operating condition also pertained to wasted activated sludge of a wastewater treatment plant in Taichung.
URI: http://hdl.handle.net/11455/5324
其他識別: U0005-2407200714031300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.