Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5330
標題: 都會區高污染大氣中亞硝酸異相生成機制之探討
Investigation of the Heterogeneous Formation Mechanisms of Nitrous Acid in the Highly Polluted Urban Air
作者: 榮建誠
Jung, Chien-Cheng
關鍵字: high pollution;高污染;nitrous acid;heterogeneous reactions;OH radical;亞硝酸;異相反應;OH 自由基
出版社: 環境工程學系所
引用: 1. Acker, K., G. Spindler and E. Bruggemann, “Nitrous and Nitric Acid Measurements During the INTERCOMP2000 Campaign in Melpitz,” Atmospheric Environment, Vol. 38, No. 38, pp. 6497-6505 (2004). 2. Acker, K., D. Moller, R. Auel, W. Wieprecht and D. Kalab, “Concentration of Nitrous Acid, Nitrite and Nitrate in the Gas and Aerosol Phase at a Site in the Emission Zone During ESCOMPTE 2001 Experiment,” Atmospheric Research, Vol. 74, No. 1/4, pp. 507-524 (2005). 3. Acker, K., A. Febo, S. Trick, C. Perrino, P. Bruno, P. Wiesen, D. Moller, W. Wieprecht, R. Auel, M. Giusto, A. Geyer, U. Platt and I. Allegrini, “Nitrous Acid in the Urban Area of Rome,” Atmospheric Environment, Vol. 40, No. 17, pp. 3123-3133 (2006). 4. Alicke, B. and U. Platt, ”Impact of Nitrous Acid Photolysis on the total Hydroxyl Radical Budget During the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono Study in Milan,” Journal of Geophysical Research, Vol. 107, No. D22, pp. 8196 (2002). 5. Alicke, B., A. Geyer, A. Hofzumahaus, F. Holland, S. Konrad, H. W. Patz, J. Schafer, J. Stutz, A. Volz-Thomas and U. Platt, ”OH Formation by HONO Photolysis During the BERLIOZ Experiment,” Journal of Geophysical Research, Vol. 108, No. D4, pp. 8247 (2003). 6. Ammann, M., M. Kalberer, D. T. Jost, L. Tobler, E. Rossler, D. Piguet, H. W. Gaggeler and U. Baltensperger, ”Heterogeneous Production of Nitrous Acid on Soot in Pollution Air Masses,” Nature, Vol. 395, pp. 157-160 (1998). 7. Appel, B. R., A. M. Winer, Y. Tokiwa and H. W. Biermann, “Comparison of Atmospheric Nitrous Acid Measurements by Annular Denuder and Differential Optical Absorption Systems,” Atmospheric Environment, Vol. 24, No. 3, pp. 611-616 (1990). 8. Arens, F., A., L. Gutzwiller, U. Baltensperger, H. W. Gaggeler and M. Ammann, “Heterogeneous Reaction of NO2 on Diesel Soot Particles,” Environment Sciences&Technology, Vol. 35, No. 11, pp. 2191-2199 (2001). 9. Anders-Hernandez, M. D., J. Notholt, J. Hjorth and O. Schrems, “A DOAS Study on the Origin of Nitrous Acid at Urban and Non-Urban Sites,” Atmospheric Environment, Vol. 30, No. 2, pp. 175-190 (1996). 10. Atklnson, R., D. L. Baulch, R. A. Cox, R. F. Hampso, J. A. Kerr and J. Troe, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry Supplement IV,” Journal of physical and chemical Reference Data,, Vol. 21, No. 6, pp. 1126-1556 (1992). 11. Atklnson, R. and S. M. Aschmann, “OH Radical Production from the Gas-Phase Reactions of O3 with a Series of Alkenes Under Atmospheric Conditions,” Environment Sciences&Technology, Vol. 27, No. 7, pp. 1357-1363 (1993). 12. Aumont, B., F. Chervier and S. Laval, “Contribution of HONO Sources to the NOx/HOx/O3 Chemistry in the Polluted Boundary Layer,” Atmospheric Environment, Vol. 37, No. 4, pp. 487-498 (2003). 13. Bai, H. and H. Y. Wen, “Applicability of an Annular Denuder System to Measure Acidic and Basic Gases in the Hsinchu Area,” Journal of the Chinese Institute of Environment Engineering, Vol. 8, No. 1, pp. 66-77 (1998). 14. Bari, A., V. Ferraro, L. R. Wilson, D. Luttinger and L. Husain, “Measurement of gaseous HONO, HNO3, SO2, HCl, NH3, Pareiculate Sulfate and PM2.5 in new York, NY.,” Atmospheric Environment, Vol. 37, No. 20, pp. 2825-2835 (2003). 15. Castro, L. M., C. A. Pio, R. M. Harrison, and D. J. T. Smith, “Carbon Aerosol in Urban and Rural European Atmospheres : Estimation of Secondary Organic Carbon Concentration, ” Atmospheric Environment, Vol. 33, No. 17, pp. 2771-2781 (1999). 16. Chan, W. H., R. J. Nordstrom, J. G. Calvert and J. H. Shaw, “Kinetic Study of HONO Formation and Decay Reactions in Gaseous Mixtures of HONO, NO, NO2, H2O, and N2,” Environment Sciences & Technology, Vol. 10, No. 7, pp. 674-682 (1976). 17. Chen S.J., S.H. Liao, W.J. Jian, and C.C. Lin, “Particle Size Distribution of Aerosol Carbon in Ambient Air, ” Environment International, Vol. 23, No. 4, pp. 475-488 (1997). 18. Crutzen, P. J. and P. H. Zimmermann﹐“The changing photochemistry of the troposphere,” Tellus, Vol. 43, pp. 136-151 (1991). 19. Danalatos, D. and S. Glavas, “Gas phase nitric acid, ammonias and related particulate matter at a Mediterranean Coastal Site, Patras, Greece,” Atmospheric Environment, Vol. 33, No. 20, pp. 3417-3425 (1999). 20. Febo, A., and C. Perrino, “Prediction and Experimental Evidence for High air Concentration of Nitrous Acid in Indoor Environment,” Atmospheric Environment, Vol. 25, No. 5-6, pp. 1055-1061 (1991). 21. Grosjean Daniel﹐”Organic Acid in Southern Callfornia Air: Ambient Concentrations, Mobile Source Emission, in Suit Formation and Removal Processes,” Environmental Science & Technology, Vol. 23, No. 12, pp. 1506-1514 (1989). 22. George, C., R. S. Strekowski, J. Kleffmann, K. Stemmler and M. Ammann, “Photoenhanced Uptake of Gaseous NO2 on Solid Organic Compounds: A Photochemical Source of HONO,” Faraday Discussion, Vol. 130, pp. 195-210 (2005). 23. Gutzwiller, L., F. Arens, U. Baltensperger, H. W. Gaggeler and M. Ammann, “Signification of Semivolatile Diesel Exhaust Organics for Secondary HONO Formation,” Environment Sciences & Technology, Vol. 36, No. 4, pp. 677-682 (2002). 24. Harris﹐G. W.﹐W. P. L. Carter﹐A. M. Winer and J. N. P. Jr, ”Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone – Precuresor Relationships,” Environment Sciences & Technology, Vol. 16, No. 7, pp. 414-419 (1982). 25. Harrison, R. M. and A. M. N. Kitto, “Evidence for a Surface Source of Atmospheric Nitrous Acid,” Atmospheric Environment, Vol. 28, No. 6, pp. 1089-1094 (1994). 26. Harrison, R. M., J. D., Peak and G. M., Collins, “Tropospheric Cyclone of Nitrous Acid,” Journal of Geophysical Research, Vol. 101, No. D9, pp. 14429-14439 (1996). 27. Harry, M. T. B. and S. Henk, “Technical Note the Dark of HONO in Environmental (SMOG) Chambers,” Atmospheric Environment, Vol. 32, No. 2, pp. 247-251 (1998). 28. He, K., F. Yang, Y. Ma, Q. Zhang, Tao, X. Yao, C. K. Chan, S. Cadle, T. Chan and P. Mulawa, “The characteristics of PM2.5 in Beijing, Chan.” Atmospheric Environment, Vol.35, pp. 4959-4970 (2001). 29. Hoek, G., M. G. Mennen, G. A. Allen, P. Hofschreuder and T. V. D. Meulen, “Concentration of acidic air pollutants in the Netherlands.” Atmospheric Environment, Vol. 30, pp. 3141-3150 (1996). 30. Kalberer, M., M. Ammann, H. W. Gaggeler and U. Baltensperger, “Adsorption of NO2 on Carbon Aerosol Particles in the Low ppb Range,” Atmospheric Environment, Vol. 33, No. 17, pp. 2815-2822 (1999). 31. Kraus, A. and A. Hofzumahaus, “Field Measurement of Atmospheric Photolysis Frequencies for O3, NO2, HCHO, CH3CHO, H2O2, and HONO by UV Spectroradiometry,” Journal of Atmospheric Chemistry, Vol. 31, pp. 161-181 (1998). 32. Khoder, M. I., “Atmospheric conversion of sulfur to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in urban area.” Chemosphere, Vol. 49, pp. 675-684 (2002). 33. Kirchstetter, T. W. and R. Harley, “Measurement of Nitrous Acid in Motor Vehicle Exhaust,” Environmental Science & Technology, Vol. 30, No. 9, pp. 2843-2849 (1996). 34. Kleffmann, J., K. H. Becker and P. Wiesen, “Heterogeneous NO2 Conversion Processes on Acid Surfaces: Possible Atmospheric Implications,” Atmospheric Environment, Vol. 32, No. 16, pp. 2721-2729 (1998). 35. Kotamarthi, V. R., J. S. Gaffney, N. A. Marley and P. V. Doskey, “Heterogeneous NOx Chemistry in the Polluted PBL,” Atmospheric Environment, Vol. 35, No. 26, pp. 4489-4498 (2001). 36. Kurtenbach, R., K. H. Becker, J. A. G. Gomes, J. Klrffmann, J. C. Lorzer, M. Spittler, P. Wiesen, R. Ackermann, A. Geyer and U. Platt, “Investigations of Emissions and Heterogeneous Formation of HONO in a Road Traffic Tunnel,” Atmospheric Environment, Vol. 35, pp. 3385-3394 (2001). 37. Lee, H. S., C. M. Kang, B. W. Kang and H. K. Kim, “Season variable of acidic air pollutants in Seoul, South Korea,” Atmospheric Environment, Vol. 33, pp. 1235-1246 (1999). 38. Lin, Y. C., M. T. Cheng, W. Y. Ting and C. R. Yeh, “Characteristics of Gaseous HONO, HNO3, NH3 and Particulate Ammonium Nitrate in an Urban City of Central Taiwan,” Atmospheric Environment, Vol. 40, No. 25, pp. 4725-4733 (2006). 39. Lin, J. J. and H. S. Tai, “Concentration and Distributions of Carbonaceous Species in Ambient Particles in Kaohsiung City, Taiwan,” Atmospheric Environment, Vol.35, No. 15, pp. 2627-2636 (2001). 40. Matsumoto, M. and T. Okita, “Long Term Measurement of Atmospheric Gaseous and Aerosol Species Using an Annular Denuder System in Nara, Japan,” Atmospheric Environment, Vol.32, No. 8, pp. 1419-1425 (1998). 41. Meier, R. R., G. P. Anderson and C. A. Cantrell, “Review Paper Actinic Radiation in the Terrestrial Atmosphere,” Journal of Atmospheric and Solar-terrestrial Physics, Vol. 59, No. 17, pp. 2111-2157 (1997). 42. Meller, R. and G. K. Morrtgart, “Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm,” Journal of Geophysical Research, Vol. 201, No. D22, pp. 7089-7101 (2000). 43. Moussiopoulos, N., S. Papalexiou, G. Lammel and T. Arvanitis, “Simulation of Nitrous Acid Formation Taking into Account Heterogeneous Pathways: Application to the Milan Metropolitan Area,” Environment Modelling & Software, Vol. 15, No. 6/7, pp. 629-637 (2000). 44. Na, K., A. A. Sawant, S. Chen and D. A. Cocker Ⅲ, “Primary and Secondary Carbonaceous Species in the Atmosphere of Western Riverside County, California, ” Atmospheric Environment, Vol. 38, No. 9, pp. 1345-1355 (2004). 45. Pagsberg, P., E. Bjergbakke, E. Ratajczak and A. Sillesen, “Kinetics of the Gas Phase Reaction OH + NO( + M) HONO( + M) and the Determination of the UV Absorption Cross Sections of HONO,” Chemical Physical Letters, Vol. 272, pp. 383-390 (1997). 46. Park, S. S., S. B. Hong, Y. G. Jung and J. H. Lee, “Measurements of PM10 Aerosol and Gas-phase Nitrous Acid During Fall Season in a Semi-Urban Atmosphere,” Atmospheric Environment, Vol. 38, No. 2, pp. 293-304 (2004). 47. Paulson, S. E., M. Y. Chung and A. S. Hasson, “OH Radical Formation from the Gas-Phase Reaction of Ozone with Terminal Alkenes and the Relationship between Structure and Mechanism,” The Journal of Physical Chemistry A, Vol. 103, No. 41, pp. 8125-8238 (1999). 48. Reisinger, Andy. R., “Observations of HNO2 in the Polluted Winter Atmosphere Possible Heterogeneous Production on Aerosols,” Atmospheric Environment, Vol. 34, No. 23, pp. 3865-3874 (2000). 49. Ren, X., H. Harder, M. Martinez, R. L. Lesher, A. Oliger, J. B. Simpas, W. H. Brune, J. J. Schwabc, K. L. Demerjianc, Y. He, X. Zhou and H. Gao, ” OH and HO2 Chemistry in the Urban Atmosphere of New York City,” Atmospheric Environment, Vol. 37, No. 26, pp. 3639-3651 (2003). 50. Ren, X., W. H. Brune, J. Mao, M. J. Mitchell, R. L. Lesher, J. B. Simpas, A. R. Metcalf, J. J. Schwab, C. Cai, Y. Li, K. L. Demerjian, H. D. Felton,G. Boynton, A. Adams, J. Perry, Y. He, X. Zhou and J. Hou, “Behavior of OH and HO2 in the Winter Atmosphere in New York City,” Atmospheric Environment, Vol. 40, No. 2, pp. 252-263 (2006). 51. Perrino C., F. D. Santis and A. Febo, “Criteria for the Choice of a Denuder Sampling Technique Devoted the Measurement of Atmospheric Nitrous and Nitric Acids,” Atmospheric Environment, Vol. 24, No. 3, pp. 617-626 (1990). 52. Sjodin Ake, “Studies of the Dlurnal Varlation of Nitrous Acid in Urban Air,” Environmental Science & Technology, Vol. 22, No. 9, pp. 1086-1089 (1988). 53. Stemmler, K., M. Ammann, C. Donders, J. Kleffmann and C. George, “Photosensitized Reduction of Nitrogen Dioxide on Humic Acid as a Source of Nitrous Acid,” Nature, Vol. 440, pp. 195-198 (2006). 54. Stutz, J., B. Alicke and A. Neftel, ”Nitrous Acid Formation in the Urban Atmosphere: Gradient Measurements of NO2 and HONO Over Grass in Milan, Italy,” Journal of Geophysical Research, Vol. 107, No. D22, pp. 8192 (2002). 55. Svensson, R., E. Ljungstrom and O. Lindqvist, “Kinetics of the Reaction between Nitrogen Dioxide and Water Vapour,” Atmospheric Environment, Vol. 21, No. 7, pp. 1529-1539 (1987). 56. Tsai, C. J. and S. N. Perng, “Artifact of ionic species for hi-vol PM10 and PM10 dichotomous sampler.” Atmospheric Environment, Vol.32, pp. 1605-1613 (1998). 57. Ueda, H., T. Takemoto, Y. P. Kim and W. Sha, “Behaviors of Volatile inorganic Components in Urban Aerosols,” Atmospheric Environment, Vol. 34, No. 3, pp. 353-361 (2000). 58. Vogel, B., H. Vogel, J. Kleffmann and R. Kurtenbach, “Measured and Simulated Vertical Profiles of Nitrous Scid—Part II. Model Simulations and Indications for a Photolytic Source,” Atmospheric Environment, Vol. 37, No. 21, pp. 2957-2966 (2003). 59. Wainman, T., C. J. Weschler, P. J. Lioy and J. Zhang, “Effects of Source Type and Relative Humidity on the Production and Concentration of Nitrous Acid in a Model Indoor Environment,” Environmental Science & Technology, Vol. 35, No. 10, pp. 2200-2206 (2001). 60. Walker, J. T., D. R. Whitall, W. Robarge and H. W. Paerl, “Ambient Ammonia and Ammonium Aerosol Across a Region of Variable Ammonia Emission Density,” Atmospheric Environment, Vol. 38, No. 9, pp. 1235-1246 (2004). 61. Wall, K. J., C. L. Schiller and G. W. Harris, “Measurement of the HONO Photodissociation Constant,” Journal of Atmospheric Chemistry, Vol. 55, No. 1, pp. 31-54 (2006). 62. Ye, B., X. Ji, H. Yang, X. Yao, C. X. Chan, S. H., Chan, T. Chan and P. A. Mulawa, “Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period.” Atmospheric Environment, Vol.33, pp. 499-510 (2003). 63. Zellweger, C., M. Ammann, P. Hofer and U. Baltensperger, “NOy Speciation With a Combined Wet Effluent Diffusion Denuder-Aerosol Collector Coupled to Ion Chromatography,” Atmospheric Environment, Vol. 33, No. 7, pp. 1131-1140 (1999). 64. Zhu, Y., W. C. Hinds, S. Kim, S. Shen and C. Sioutas, “Study of Ultrafine Particles Near a Major Highway with Heavy-Duty Diesel Traffic,” Atmospheric Environment, Vol. 36, No. 27, pp. 4323-4335 (2002). 65. Seinfeld﹐J. H. and S. N. Pandis﹐Atmospheric Chemistry and Physical﹐New York﹐pp. 239-244 (1998). 66. 張能復,光化軌跡模式使用手冊,1.1版,台北 (2003). 67. 邱嘉斌,「台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究」,博士論文,國立中興大學環境工程學系,台中 (2005). 68. 楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性及來源分析」,碩士論文,國立中興大學環境工程學系,台中 (1998). 69. 白玨玲,「中部地區臭氧特徵與天氣型態相關探討」,碩士論文,東海大學環境科學系,台中 (1998). 70. 藍文農,「台灣中部地區大氣有機碳及元素碳微粒之特性研究」,碩士論文,國立中興大學環境工程學系,台中 (2002). 71. 陳淑萍,「台中都會區氣態亞硝酸污染物之觀測及生成機制分析」,碩士論文,國立中興大學環境工程學系,台中 (2006).
摘要: 
亞硝酸為光化反應所需OH的主要來源之一,因此瞭解其生成機制極為重要,但有關亞硝酸的異相反應尚未完全瞭解,也鮮少研究針對高污染期間的異相特性進行分析,並進一步探討亞硝酸光解產生的OH對光化反應的重要性,故本研究於2006年8月至2007年3月期間,於台中市每四小時採集大氣污染物,並藉採集結果分析亞硝酸的異相機制和其對光化反應的重要性。
亞硝酸濃度在0.1 ~ 4.8 ppb之間,其中高污染(PM2.5 > 65 μg/m3)和夜間濃度分別為平日和日間的2倍,所量測之夜間HONO/NO2與PM2.5也較平日有較佳的相關性。理論推估之日間亞硝酸主要來自同相機制,夜間則以微粒表面上之異相機制為主,此結果除顯示夜間和高污染期間亞硝酸異相反應的重要性外,也可提供光解以生成較多的OH,進而影響日間的光化反應。理論推估之亞硝酸光解產生的OH相較於臭氧在秋季、冬季和各季節清晨顯得更為重要,且凌晨亞硝酸和當日正午臭氧最大值呈高度相關,顯示無法忽略亞硝酸對日間光化反應的重要性。進一步利用多元線性迴歸分析,其日間和夜間之亞硝酸濃度經驗模式分別為:
[亞硝酸]日間 = 0.034 [NOx] - 0.010 [O3-MAX] + 0.759
[亞硝酸]夜間 = 0.046 [NOx] + 0.015 [PM2.5]
亞硝酸、NOx和O3-MAX單位為ppb,PM2.5則為μg/m3。亞硝酸的生成主要受NOx和PM2.5影響,顯示都會區交通源的有效管控,將可間接減緩臭氧的生成。

Nitrous acid is an important source of OH radicals which act to enhance photochemical reactions. Accordingly, it is necessary to understand its formation mechanisms. However, the heterogeneous formation mechanisms of nitrous acid are still not completely understood, and to date, few studies have addressed the characteristics of such mechanisms under high pollution conditions and their coupling with the added the importance of OH to photochemical reactions. Hence, in this study we collected air pollutants in Taichung city every 4 hours during August 2006 - March 2007, in order to investigate the importance of heterogeneous mechanisms and photochemical reactions of nitrous acid.
Nitrous acid concentration ranged between 0.1 - 4.8 ppb. Concentration during high pollution episodes (PM2.5 > 65 μg/m3) and during the night were twice as high as those during normal air quality condition and during the day, respectively. There was a strong correlation between HONO/NO2 and PM2.5 during high pollution episodes. Nitrous acid was predominantly formed by homogeneous mechanism during the day, and NO2 reduced aerosol reaction was main source of nitrous acid during the night by the theoretical evaluations. These results suggest that nitrous acid is formed by heterogeneous reactions during the night and during high pollution episodes, and nitrous acid is also accounted for OH by photolysis. During autumn, winter and the early mornings of each season, nitrous acid photolysis was by far a greater source of OH than ozone. Furthermore, nitrous acid concentration was found to be highly correlated with maximum ozone, which demonstrates that the impact of nitrous acid photochemistry should not be neglected. Models for nitrous acid concentration obtained using multiple linear regression analysis are:
[Nitrous acid] day = 0.034 [NOx] - 0.010 [O3-MAX] + 0.759;
[Nitrous acid] night = 0.046 [NOx] + 0.015 [PM2.5],
Where nitrous acid, NOx, and O3-MAX concentration are measured in ppb, and the units of PM2.5 are μg/m3. The main factors influencing nitrous acid were found to be NOx and PM2.5, so controlling traffic emissions is expected to indirectly abate O3 formation in urban areas.
URI: http://hdl.handle.net/11455/5330
其他識別: U0005-2607200721221300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.